
Emmanuel Maggiori

The AI
Pocket Book

M A N N I N G

AI sometimes “hallucinates.” If we want to use it effectively, we
must be aware of its limitations and be ready to tackle them.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

The AI Pocket Book

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

MANN I NG
Shelter ISland

Emmanuel Maggiori

The AI Pocket Book

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in the book, and
Manning Publications was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books we publish printed on acid- free paper, and we exert our best efforts
to that end. Recognizing also our responsibility to conserve the resources of our planet,
Manning books are printed on paper that is at least 15 percent recycled and processed
without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781633435759
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this
book was correct at press time. The author and publisher do not assume and hereby
disclaim any liability to any party for any loss, damage, or disruption caused by errors
or omissions, whether such errors or omissions result from negligence, accident, or any
other cause, or from any usage of the information herein.

 Development editor: Ian Hough
 Technical editor: Artur Guja
 Review editor: Radmila Ercegovac
 Production editor: Andy Marinkovich
 Copy editor: Lana Todorovic-Arndt
 Proofreader: Keri Hales
 Typesetters: Bojan StojanoviÊ
 and Tamara ŠveliÊ SabljiÊ
 Cover designer: Marija Tudor

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

v

 Development editor: Ian Hough
 Technical editor: Artur Guja
 Review editor: Radmila Ercegovac
 Production editor: Andy Marinkovich
 Copy editor: Lana Todorovic-Arndt
 Proofreader: Keri Hales
 Typesetters: Bojan StojanoviÊ
 and Tamara ŠveliÊ SabljiÊ
 Cover designer: Marija Tudor

brief contents
1 ■ How AI works 1

2 ■ Hallucinations 59

3 ■ Selecting and evaluating AI tools 82

4 ■ When to use (and not to use) AI 98

5 ■ How AI will affect jobs and how to stay

 ahead 117

6 ■ The fine print 146

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

vi

contents
preface x
acknowledgments xiii
about this book xv
about the author xviii
about the cover illustration xix

1 How AI works 1
How LLMs work 2

Text generation 4 ■ End of text 5 ■ Chat 5
The system prompt 7 ■ Calling external software
functions 8 ■ Retrieval-augmented generation 12

The concept of tokens 13
One token at a time 14 ■ Billed by the token 16
What about languages other than English? 16
Why do LLMs need tokens anyway? 18

Embeddings: A way to represent meaning 19
Machine learning and embeddings 20
Visualizing embeddings 21 ■ Why embeddings
are useful 22 ■ Why LLMs struggle to analyze
individual letters 23

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

contents vii

The transformer architecture 25
Step 1: Initial embeddings 28 ■ Step 2:
Contextualization 29 ■ Step 3: Predictions 32
Temperature 33 ■ Can you get an LLM to always
output the same thing? 34 ■ Where to learn
more 35

Machine learning 36
Deep learning 37 ■ Types of machine learning 38
How LLMs are trained (and tamed) 45 ■ Loss 47
Stochastic gradient descent 48

Convolutions (images, video, and audio) 51

Multimodal AI 53

No free lunch 56

2 Hallucinations 59
What are hallucinations? 60

Made-up facts 60 ■ Misinterpretation 62
Incorrect solutions to problems 63
Overconfidence 65 ■ Unpredictability 66

Why does AI hallucinate? 67
Inadequate world models 68 ■ World models:
Theory vs. practice 69 ■ Misaligned objectives 70
Toy hallucination example: Price optimization 72

Will hallucinations go away? 74

Mitigation 75

Hallucinations can kill a product 78

Living with hallucinations 80

3 Selecting and evaluating AI tools 82
Proprietary vs. open source 83

How to decide 84

Off-the-shelf vs. fine-tuning 85
How to decide 88

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

contentsviii

Customer-facing AI apps vs. foundation
models 89

How to decide 89

Model validation, selection, and testing 90
Training set 90 ■ Validation set 91 ■ Test set 92

Performance measures 93
Accuracy 93 ■ Precision and recall 94 ■ Mean
absolute error and root mean squared error 96

4 When to use (and not to use) AI 98
Building an AI-based product 99

Am I putting AI before the customer? 99
Are hallucinations okay? 102 ■ Do I need to
explain how the output is generated? 103

Using conversational AI as an assistant 105
Can I describe the task succinctly and validate
the output easily? 105 ■ Has anyone done it
before? 107 ■ What does an excellent job look
like? 110

Building LLM wrappers 112
Will users interact with my product using natural
language? 113

5 How AI will affect jobs and how to stay
 ahead 117

Excellence gap 118
Excellence gap in software engineering 122
Recommendations 124

Stringent validation 126
Validation in software engineering 131
Recommendations 133

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

contentscontents ix

 Tight control 136
Control in software 139 ■ Recommendations 140

A new opportunity: Making the web more
human 141

Philosophical detour: Automation and mass
unemployment 142

6 The fine print 146
Copyright 147

Economics of AI 151

Smoke and mirrors 154

Regulation 157
Prohibited AI practices 157 ■ High-risk
systems 158 ■ Transparency obligations 158
Foundation models 158

Resource consumption 159

Brains and consciousness 162

appendix A Catalog of generative AI tools 167

index 175

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

x

preface
In the 2010s, a methodology known as machine learning
became extremely popular. The novelty of machine learning
was that, instead of writing every detail of a computer program
by hand, some parts were determined automatically by having
a computer analyze data. While machine learning wasn’t new,
it rose to prominence during this period thanks to increased
computing power and an unprecedented amount of data
ready to be exploited.

Machine learning soon became the favorite methodology
of artificial intelligence, which is a more general research field
that tries to have computers perform tasks similarly to humans.
Notably, AI researchers used machine learning to reach record
performance in automated analysis of images, video, and
text. They also used machine learning to build the famous
game-playing software AlphaGo, which beat a human player at
the difficult game of Go.

Machine learning also boomed in the business world. For
example, companies started using it to automatically analyze
online shoppers’ data and generate personalized product
recommendations.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

preface xi

Due to machine learning’s success and wide adoption in the
AI field, people soon started using the terms “machine learn-
ing” and “AI” interchangeably. The business world became
highly enthusiastic about AI’s prospects and made big prom-
ises. However, while AI expanded steadily in academia and
business, it was not massively adopted by the general public.
This was probably because general-purpose AI tools weren’t all
that useful yet (think of Alexa and Siri) and because AI was still
not that great at analyzing natural language.

But in the late 2010s and early 2020s, a series of methodolog-
ical innovations made AI much better at analyzing written lan-
guage and generating new content. This led to a race to build
AI tools that could be used as high-performing assistants by the
general public.

AI exploded in 2022, with the launch of a number of remark-
able customer-facing AI apps. One of them was ChatGPT, which
reached a hundred million users in three months. Another one
was Midjourney, a powerful tool for creating realistic images
from a textual description.

Enthusiasm about AI soared and so did dramatic predictions
about its effects. Some people predicted extreme productiv-
ity gains. Others predicted massive unemployment due to AI
replacing people’s jobs. In particular, many people argued that
software engineers would become obsolete.

I’m a software engineer who specializes in AI. I did my PhD
in AI and have been involved in the field for over a decade.
Early in my career, while I was impressed by AI, I became a bit
frustrated by the amount of hype around it—I kept stumbling
upon failed AI projects that were swept under the rug, and I
had the impression that AI’s limitations were often overlooked.
In 2023, I published a book on the subject, titled Smart Until It’s
Dumb (Applied Maths Ltd, 2023). As opposed to other books
on AI, which were either very positive or negative about it, I
wanted to share a more nuanced view. As the title implies, I
think AI can be really cool sometimes, but it can be less cool

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

prefacexii

other times—think of those pesky hallucinations that AI often
suffers from.

After I wrote that book, people started asking me ques-
tions about all things AI related. For example, they asked
me whether I thought machines would become conscious or
whether self-driving cars would soon roam every street. But the
most common topic was the future of work. Specifically, aspir-
ing software engineers seemed particularly concerned about
their future careers. People asked me, “Is it even worth becom-
ing a software engineer, now that AI can code?” A teacher told
me a few of her students had dropped out because they thought
AI would make their skills irrelevant. In addition, numerous
software engineers started to use AI at work and build AI-based
products, but they often told me they couldn’t make it work as
intended. For example, they said AI often generated inconsis-
tent outputs, and users didn’t appreciate it.

This book is intended to help you ride the AI revolution,
both in terms of using AI effectively and making sure your job
stays ahead of what AI can do. The book is based on my own
experience in the AI field and also on the numerous conver-
sations I’ve had with people about it. You’ll read stories, reflec-
tions, and general advice, which I hope you’ll find useful.

After you finish the book, I hope you’ll feel that you under-
stand AI better, including its limitations, and that you’ll dis-
cover new ways of using AI effectively and future-proof your
career against it.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

xiii

preface

acknowledgments
The most difficult thing about writing a book is not putting
words together or thinking about grammar (which AI is quite
good at). Instead, the most difficult thing is writing a book
whose content resonates with the target audience.

That’s why my biggest thank you goes to the humans who
went through this book’s draft and shared useful advice to
improve it. This includes my developmental editor at Manning,
Ian Hough and my technical editor, Artur Guja, risk manager,
computer scientist, systems developer, and financial markets
professional with over 20 years of experience in the banking
sector. I’d also like to thank my acquisitions editor, Andy Wal-
dron, and the wider Manning team who’ve been extremely
helpful throughout the process.

Finally, many thanks to all the reviewers from the software
industry who read the draft early on and shared their thoughts:
Aarohi Tripathi, Aayush Bhutani, Aeshna Kapoor, Ajay Tan-
ikonda, An Nadein, Anil Kumar Moka, Annie Taylor Chen,
Anupam Mehta, Arpankumar Patel, Arpit Chaudhary, Ashish
Anil Pawar, Batul Bohara, Devendra Singh Parmar, Divakar
Verma, Gajendra Babu Thokala, Harsh Daiya, Karthik Rajashe-
karan, Lalit Chourey, Maksym Prokhorenko, Manohar Sai Jasti,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

acknowledgmentsxiv

Martin Knudsen, Meghana Puvvadi, Mohit Palriwal, Naresh
Dulam, Natapong Sornrpom, Nilesh Charankar, Nupur
Baghel, Prachit Kurani, Prakash Reddy Putta, Prasann Pradeep
Patil, Premkumar Reddy, Raghav Hrishikeshan Mukundan,
Radhika Kanubaddhi, Rajeev Reddy Vishaka, Rajesh Daruvuri,
Ram Kumar Nimmakayala, Riddhi Shah, Ruchi Agarwal, Sai
Chiligireddy, Shivendra Srivastava, Siddharth Parakh, Subba
Rao Katragadda, Sudheer Kumar Lagisetty, Sumit Dahiya, Sud-
harshan Tumkunta, and Vishnu Challagulla. Your feedback
helped improve this book.

Thank you all!

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

xv

acknowledgments

about this book
This book will help you navigate the AI revolution, using AI
effectively in your work and making sure your job won’t be
replaced by AI. The book was primarily written for software
engineers, but its content was designed to be accessible to
other audiences, too. So, there are no prerequisites to read
this book, and anyone should be able to understand it. It is
helpful, however, to know the basics of coding and math to
fully understand all the examples.

The book starts with a plain-English overview of how AI
works. It then covers a wide range of timely and controversial
AI-related topics such as hallucinations, the future of work, and
copyright.

Who should read this book?

Two main groups of people should read this book. The first
one is software engineers—aspiring, novice, and seasoned
ones—who want to understand the effects of AI on their
careers and prepare for it.

The second group includes people related to or interested
in the software industry, even if they’re not engineers them-
selves. For example, these are product managers and startup

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

about this bookxvi

entrepreneurs. One of this book’s reviewers said he thought
the book would be useful not just for software engineers but
also for “software sympathizers,” which I thought was a good
way to put it.

How this book is organized: A road map

The book is divided into six chapters:

¡	Chapter 1: How AI works—This chapter explains how large
language models and other types of AI work and how AI
is built.

¡	Chapter 2: Hallucinations—This chapter explains the rea-
sons for AI’s pesky mistakes (known as hallucinations),
whether they will be fixed soon, and what we can do about
them.

¡	Chapter 3: Selecting and evaluating AI tools—This chapter
explains a method to select and compare different AI
tools and avoid common biases in your evaluation.

¡	Chapter 4: When to use (and not to use) AI—This chapter is a
checklist that will help you decide whether it is a good idea
to use AI to assist you with a certain task or as the building
block of a customer-facing product.

¡	Chapter 5: How AI will affect jobs and how to stay ahead—This
chapter explains three characteristics of jobs that will help
them resist AI advancements and how software engineers
can stay relevant in the AI era.

¡	Chapter 6: The fine print—This chapter covers the less flat-
tering side of AI, such as exaggeration, copyright disputes,
and dubious comparisons of AI models with the human
brain. It is meant to help you get up to speed with some of
the bigger questions around AI.

liveBook discussion forum

Purchase of The AI Pocket Book includes free access to live-
Book, Manning’s online reading platform. Using liveBook’s

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

about this bookabout this book xvii

exclusive discussion features, you can attach comments to
the book globally or to specific sections or paragraphs. It’s
a snap to make notes for yourself, ask and answer technical
questions, and receive help from the author and other users.
To access the forum, go to https://livebook.manning.com/
book/the-ai-pocketbook/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://
livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue
where a meaningful dialogue between individual readers and
between readers and the author can take place. It is not a com-
mitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary
(and unpaid). We suggest you try asking the author some chal-
lenging questions lest their interest stray! The forum and the
archives of previous discussions will be accessible from the pub-
lisher’s website for as long as the book is in print.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://livebook.manning.com/book/the-ai-pocketbook/discussion
https://livebook.manning.com/book/the-ai-pocketbook/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion

xviii

about the author
EmmanuEl maggiori, PhD, has been
an AI industry insider for 10 years. He
has developed AI for various applica-
tions, from processing satellite images
to packaging deals for holiday trav-
elers. He is the author of the books
Smart Until It’s Dumb, which analyzes
the AI industry, and Siliconned, which
analyzes the wider tech industry.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

xix

about the cover illustration
The figure on the cover of The AI Pocketbook, captioned “Allay
tzaoussou (alay chavushu), ou inspecteur aux parades,” or
“Allay tzaoussou (alay chavushu), or parade inspector,” is from
the George Arents Collection, courtesy of the New York Public
Library (1808–1826).

In those days, it was easy to identify where people lived and
what their trade or station in life was just by their dress. Man-
ning celebrates the inventiveness and initiative of the com-
puter business with book covers based on the rich diversity of
regional culture centuries ago, brought back to life by pictures
from collections such as this one.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

1

1How AI works

This chapter covers

¡	The way LLMs process inputs and generate
 outputs
¡	The transformer architecture that powers LLMs
¡	Different types of machine learning
¡	How LLMs and other AI models learn from data
¡	How convolutional neural networks are used to
 process different types of media with AI
¡	Combining different types of data (e.g., producing
 images from text)

This chapter clarifies how AI works, discussing many founda-
tional AI topics. Since the latest AI boom, many of these topics
(e.g., “embeddings” and “temperature”) are now widely dis-
cussed, not just by AI practitioners but also by businesspeople
and the general public. This chapter demystifies them.

Instead of just piling up definitions and writing textbook
explanations, this chapter is a bit more opinionated. It points
out common AI problems, misconceptions, and limitations

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

2 How AI works

based on my experience working in the field, as well as discuss-
ing some interesting insights you might not be aware of. For
example, we’ll discuss why language generation is more expen-
sive in French than in English and how OpenAI hires armies
of human workers to manually help train ChatGPT. So, even if
you are already familiar with all the topics covered in this chap-
ter, reading it might provide you with a different perspective.

The first part of this chapter is a high-level explanation of
how large language models (LLMs) such as ChatGPT work. Its
sections are ordered to roughly mimic how LLMs themselves
turn inputs into outputs one step at a time.

The middle part of this chapter discusses machine learning,
which is the technique that makes computers learn from data
to create LLMs and other types of AI. Note that AI and machine
learning don’t mean the same. AI is a research field that tries
to create computer programs to perform tasks in a way similar
to humans. Machine learning may or may not be used for that
goal. However, machine learning has been the preferred meth-
odology in AI for at least two decades. So, you might hear peo-
ple use the terms AI and machine learning interchangeably.
When I speak of AI in this book, I mean current AI methods,
and these methods involve the use of machine learning.

The last third of this chapter discusses how AI works out-
side language generation. Specifically, I give an overview of
how AI analyzes and generates images or combinations of text
and images. We also comment on current developments in
AI-based video generation.

Enjoy the ride!

How LLMs work

Language models are computer programs that try to represent
the structure of human language. A large language model, or
LLM, is a language model on steroids. Its sheer size lets the
LLM perform complex analyses of sentences and generate
new text with impressive performance. Examples of LLMs are
Open AI’s GPT-4o, Meta’s Llama-3, Anthropic’s Claude 3.5 Son-
net, Google’s Gemini 1.5 Pro, and Mistral AI’s Mixtral 8x7b.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 3How LLMs work

Current LLMs are designed to perform one specific task—
guess the next word given an input sentence. The input sen-
tence is known as the prompt. Suppose I asked you to predict
the word that comes after the incomplete sentence “The Eif-
fel.” You’re very likely to suggest that “Tower” is the most logical
choice. This is the exact job LLMs are designed to do. So, we
can think of LLMs as sophisticated autocomplete programs.
Officially, we say that LLMs are autoregressive, which means that
they’re designed to produce a single extra piece of content
based on previous content.

The autocomplete task may seem simple at first, but it is
far-reaching. Consider the following prompt: “How much is
2 + 5? It is. . .” Autocompleting this kind of sentence requires
knowing how to perform arithmetic operations. So, the task of
performing arithmetic operations is included in the autocom-
plete task.

Now, consider the following prompt: “How do you say
‘umbrella’ in French?” To accurately autocomplete this kind
of sentence, you’d need to be capable of translating French to
English. So, at least in theory, the autocomplete task encom-
passes all sorts of tasks.

LLMs are created using machine learning, a process in which
a computer analyzes a huge amount of data—pretty much
a snapshot of the entire public internet—to automatically
put the LLM together. The resulting LLM is a self-contained
piece of software, meaning that it doesn’t access any external
information to generate its outputs. For example, it doesn’t
browse the web to make its next-word predictions. In addition,
the LLM is static, so it must be periodically updated with new
data if we want it to speak about recent events.

When we interact with LLMs, we don’t usually do so directly.
Instead, we use an intermediary piece of software that pro-
cesses our requests and manages the underlying LLM. Let’s call
it the LLM wrapper. The wrapper uses tricks to provide further
functionality to the user than just guessing the next word like
the bare LLM would do. For example, the wrapper generates
entire sentences, responds in a chatty way, and answers with
real-time information, such as the current date.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

4 How AI works

An example of an LLM wrapper is ChatGPT, which is
OpenAI’s customer-facing application. This application
manages our interactions with the underlying LLM, such as
GPT-4 and GPT-4o. Note that it is common to just use the term
LLM to refer to the whole AI system, including the wrapper.

The next few sections discuss examples of how LLM wrap-
pers use tricks to enhance the capabilities of their underlying,
next-word guessing LLMs.

Text generation

We typically use LLMs to output entire sentences instead of
just guessing a single word. The LLM wrapper achieves this
through a simple trick: it makes the LLM eat its own output
repeatedly. Suppose we give an LLM the prompt “The Eiffel.”
The LLM guesses the most likely continuation of the sen-
tence: “Tower.” The LLM wrapper then attaches this word to
the initial prompt, which leads to the new prompt: “The Eif-
fel Tower.” It then uses the LLM to guess the following word,
say, “is” and attaches it to the prompt again. The process is
repeated (see figure 1.1) to generate entire sentences such as
“The Eiffel Tower is in Paris.”

The EiffelThe Eiffel TowerTower
Language

model

The Eiffel TowerThe Eiffel Tower isis
Language

model

The Eiffel Tower isThe Eiffel Tower is inin
Language

model

The Eiffel Tower is inThe Eiffel Tower is in ParisParis
Language

model

Figure 1.1 To generate full sentences, the LLM wrapper used the LLM
to generate one word, then attached that word to the initial prompt, then
used the LLM again to generate one more word, and so on.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 5How LLMs work

End of text

In addition to outputting regular words, LLMs are designed
to output a handful of special code words. One of them, often
stylized as “<|end of text|>” in the literature, is a code word that
signals the end of the text. When the LLM is built, it is exposed
to examples of sentences containing this special code word to
indicate their end. So, the LLM gains the capability of guessing
that the next best word is actually an indication of its ending.

When the LLM wrapper encounters this special code word,
it stops the process of having the LLM eat its own output to gen-
erate more text, as explained in the previous section.

Chat

Have a look at what happened when I inputted the prompt
“The Eiffel” to ChatGPT:

 It seems that your sentence was cut off. Were you asking
about the Eiffel Tower?

The Eiffel Tower is one of the most iconic landmarks in the
world, located in Paris, France. It was designed by Gustave
Eiffel and completed in 1889 for the Exposition Universelle,
a world’s fair held to celebrate the 100th anniversary of the
French Revolution. Originally criticized by some of Paris's
leading artists and intellectuals for its design, the tower
has become a global cultural icon of France and one of the
most recognizable structures in the world.

By the looks of it, the LLM is not just autocompleting my
input, or else it would have continued with “Tower” instead of
telling me that my sentence was cut off.

What happened here was that, behind the scenes, the LLM
wrapper inserted a special code word to indicate the end of my
prompt. This code word is often stylized as “<|end of prompt|>”
in the literature. So, the actual input sent to the LLM by the
wrapper was “The Eiffel<|end of prompt|>”. During its con-
struction, the underlying LLM was fed examples of dialog end-
ing with “<|end of prompt|>”, which is why it recognized that
in my sentence, the code word was located at an unusual place.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

6 How AI works

As we continue chatting back and forth with ChatGPT, the
wrapper sends the LLM a history of the entire conversation
each time, filled with “<|end of prompt|>” and “<|end of text|>”
code words to clearly delimit the beginning and end of each
interaction. This helps ChatGPT converse effectively.

OpenAI lets software developers use a more naked version of
the LLM wrapper, which doesn’t insert the “<|end of prompt|>”
code word after the user’s prompt. This is available through
the API (an API is a way to connect two pieces of software—in
this case, your software with OpenAI’s software) or the online
platform for software developers (see https://platform.openai
.com) by using the completions mode of the API instead of the
default chat mode.

NOTE OpenAI’s documentation contains a warning
sign telling us that the completions mode is “now con-
sidered legacy,” but it is still available for use as of this
writing.

Let’s see what happened when I inputted “The Eiffel” to the
LLM using the completions mode instead:

 Tower was inaugurated on March 31st in 1889. It was orig­
inally built as the entrance arch for the 1889 World’s Fair,
and was only intended to stand for 20 years. However, its
unique design and popularity among Parisians and tourists
alike led to its preservation and it has become an iconic
symbol of France and one of the most recognizable mon­
uments in the world. The idea for the Eiffel Tower came
from businessman Gustave Eiffel, who wanted to create a
structure that would showcase the advancements in engi­
neering and design during the Industrial Revolution. He and
his team spent two years designing and constructing the
tower, using over 18,000 individual pieces of wrought iron
and 2.5 million rivets.

We can see that the API simply autocompleted my input with
a sensible continuation, which is why it started with “ Tower”

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://platform.openai.com
https://platform.openai.com

 7How LLMs work

(the word Tower with a leading space) instead of telling me that
my prompt was incomplete.

The system prompt

I asked, “What is today’s date?” The response was

 Today’s date is May 30, 2024.

This was the correct response at the time of me asking. This is
a bit surprising because, as LLMs simply analyze sentences to
guess the next word, they don’t have access to real-time data.

What happened here was that ChatGPT secretly inserted
additional text before my prompt to provide contextual infor-
mation to the LLM. This is known as the system prompt. We don’t
know the exact details, but the rumor is that ChatGPT’s system
prompt is as follows (see https://mng.bz/RVOv):

 You are ChatGPT, a large language model trained by Open­
AI. Answer as concisely as possible. Knowledge cutoff:
[knowledge cutoff] Current date: [current date and time]

This prompt is secretly inserted every time you start a chat
with ChatGPT. Because the date appears in ChatGPT’s system
prompt, the chatbot can answer questions about the current
date, as in the previous example. Note that the knowledge cut-
off date is also inserted, which helps ChatGPT inform the user
that it cannot answer questions about events that took place
after a certain date.

Software developers can interact with OpenAI’s LLMs via
an API instead of using the customer-facing ChatGPT. The API
lets you define what the system prompt is, which is inserted
before your initial interactions with the LLM. Figure 1.2 shows
a visual interface provided by OpenAI to help developers try
out the API. We can see a box dedicated to the system prompt.

I asked the GPT-4o LLM about the current date using
OpenAI’s API, while leaving the system prompt empty. In
figure 1.2, we can see that the LLM refused to answer about
the date.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/RVOv

8 How AI works

Figure 1.2 OpenAI’s API lets users define a system prompt, which is a
piece of text inserted into the beginning of the user’s prompt.

Figure 1.3 shows that the LLM does answer with the date if it
is given as part of the system prompt, like ChatGPT would do.

Calling external software functions

I asked ChatGPT about the current weather in London.
ChatGPT’s user interface showed a sign that said, “Search-
ing the web.” A second later, the sign turned into “Searching
current weather in London.” Afterward, it told me what the
weather in London was like (see figure 1.4).
The trick here is to describe in the system prompt a list of
software functions that the LLM can suggest the wrapper to
call if it needs to gather external information. If the LLM sug-
gests calling one of those functions, it is the job of the LLM
wrapper to call it and then insert the result into the prompt.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 9How LLMs work

Figure 1.3 When the current date is supplied as part of the system
prompt, the LLM can answer questions about the current date.

Suppose a developer wants to create a chatbot app that can
seamlessly answer questions about current events, such as the
weather, the value of stocks, and trending news topics. The
developer could explain in the system prompt that, if the cur-
rent weather in London is required, the LLM should output
"current_weather(London)", if the value of Apple stock
is needed, it should output "stock_value(Apple)", and so
on. When these special messages are outputted, the developer
will call software functions to gather the necessary informa-
tion and add it to the prompt. This will give the end user the
impression of seamless access to real-time data.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

10 How AI works

Figure 1.4 ChatGPT called a function to search the web behind the
scenes and inserted the results into the user’s prompt. This creates the
illusion that the LLM browses the web.

OpenAI has created a framework that lets a developer easily
define a list of functions that the LLM could suggest calling.
Here’s an example of how to define a "get_current_
weather" function, as described in the official documentation
(see https://mng.bz/2y4a):

tools = [
 {
 "type": "function",
 "function": {
 "name": "get_current_weather",
 "description": "Get the current weather",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "The city and
state,
 e.g. San Francisco, CA",

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/2y4a

 11How LLMs work

 },
 "format": {
 "type": "string",
 "enum": ["celsius",
"fahrenheit"],
 "description": "The temperature
unit
 to use. Infer this from the
users
 location.",
 },
 },
 "required": ["location", "format"],
 },
 }
 }
]

Note that the code of the weather-fetching function is not part
of this declaration. Only a description of the function and its
inputs is provided. The LLM wrapper inserts the description
of this function into the system prompt so that the underlying
LLM can suggest calling it if needed.

When the wrapper detects that the LLM suggests calling
the function, it notifies the user. Here’s an example of the API
response object, using OpenAI’s Python SDK, that resulted
after the user asked about the weather in London:

ChatCompletionMessage(
 content=None,
 role='assistant',
 tool_calls=[
 ChatCompletionMessageToolCall(
 id='call_Dn2RJJSxzDm49vlVTehseJ0k',
 function=Function(
 arguments='{"location":"London, United
Kindgdom",
 "format":"celsius"}',
 name='get_current_weather'
),
 type='function')
]
)

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

12 How AI works

The software developer must code the "get_current_
weather" function, run it, and then insert the response into
the following prompt (“Weather in London, United Kingdom:
20 degrees Celsius, rainy”). The LLM can then use this newly
added information. The app end user gets the impression that
the LLM itself was capable of answering about the weather in
real time. In reality, the LLM is still a self-contained program;
the enhanced functionality is achieved outside the LLM.

Retrieval-augmented generation

Sometimes users want the LLM to analyze documents that
aren’t present in the training data. For example, a business
may want to answer questions about its internal documents,
or an app may want to analyze the content of up-to-date web-
pages. Retrieval-augmented generation, or RAG, is a popular
way of doing that (you can learn more in A Simple Guide to
Retrieval Augmented Generation by Abhinav Kimothi, available at
https://mng.bz/yWpe). When the user submits a prompt, the
LLM wrapper first searches for relevant documents in a data-
base. For example, it may extract keywords from the prompt
and find documents that match the keywords. This is known
as retrieval.

Afterward, the LLM wrapper inserts the content of these
documents into the prompt. So, the prompt is said to be aug-
mented with additional, relevant information.

When the LLM generates text, it has access to these doc-
uments as part of the prompt, so it can use their content to
enhance its predictions. RAG is a popular approach to creat-
ing an in-house chatbot adapted to a specific business. In addi-
tion, it is commonly used to create the illusion that an LLM can
access up-to-date web content in real time. RAG can also help
identify specific sources used by the LLM to generate its output
and thus cite references.

One of the challenges of the RAG approach is finding rele-
vant documents based on the prompt. Many algorithms have
been used for a long time by search engines to index and
retrieve content, and researchers are studying specific retrieval

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/yWpe

 13The concept of tokens

techniques for RAG (see https://arxiv.org/abs/2405.06211).
Another challenge is that prompts can become quite long with
the added documents. LLMs only accept a maximum prompt
length (more on this in the following), so you must make sure
that the documents inserted into the prompt fit the maximum
allowed length. In addition, longer prompts incur higher costs
as AI providers charge fees that depend on the amount of text
inputted and outputted.

The concept of tokens

We’ve been saying that LLMs guess the next word from an
input prompt, but this isn’t quite accurate. Let’s now refine
our understanding.

LLMs contain a fixed-size internal vocabulary. These are the
words that LLMs can read and generate. An LLM’s vocabulary
typically contains

¡	Common words (e.g., “dog”)

¡	Common pieces of words (e.g., “ish”)

¡	Common Latin characters (e.g., “a” and “b”)

¡	Special symbols from a text-encoding standard called UTF-
8, which are combined together to represent non-Latin
characters and other symbols (e.g., “á,” “æ,” and “你”)

¡	Special code words such as “<end of text>” and “<end of
prompt>”

Each element in the vocabulary is known as a token. We can
think of a token as a common piece of text. Using tokens
instead of entire words, lets LLMs read and produce words
that aren’t in the dictionary (e.g., “hungryish”) by combining
common pieces of words (“hungry” + “ish”). It also lets LLMs
read and produce non-Latin text and invent new words.

Current LLMs’ vocabularies contain roughly 100,000 dif-
ferent possible tokens. For example, some of OpenAI’s LLMs,
including GPT-3.5 and GPT-4, have a vocabulary with 100,261
possible tokens.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/abs/2405.06211

14 How AI works

Note that many tokens represent common words with a lead-
ing space attached to them. For example, both “dog” and “ dog”
are tokens in the vocabulary of OpenAI’s LLMs. So, the LLM
is often spared from having to use the dedicated whitespace
token. From now on, whenever I speak of an individual token
in this book, such as the “dog” token, bear in mind there might
be a leading space attached to it. (I won’t be writing the space
every time, as it’s a bit ugly to read.)

The vocabulary of an LLM is created by running an auto-
mated analysis over thousands of documents to identify the
most common text patterns (the algorithm usually used for
this is called byte pair encoding. You can find more details
and a step-by-step example in a blog article I wrote at https://
emaggiori.com/chatgpt-vocabulary/). OpenAI stopped dis-
closing how it creates LLMs’ vocabularies, but we do know how
they did it with older models. For example, GPT-3’s vocabulary
was created by automatically following links from popular Red-
dit discussions, collecting the text from the linked webpages,
and identifying the most common words and combinations
of characters in them (Redford et al., “Language Models are
Unsupervised Multitask Learners,” 2019).

One token at a time

LLMs are designed to read a sequence of valid tokens from
their vocabulary. So, the LLM wrapper first subdivides the
input prompt into valid tokens. For example, when using GPT-
3.5, the prompt “The dog’s bark was barely” is subdivided as
follows by the LLM wrapper before passing it to the LLM:

The| dog|'s| bark| was| barely

The subdivision is performed using an algorithm that roughly
tries to split the input using the largest possible tokens from
the vocabulary.

OpenAI provides a webpage where you can input text and
see how it’s tokenized before being fed into a model. You can
find it at https://platform.openai.com/tokenizer.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://emaggiori.com/chatgpt-vocabulary/
https://emaggiori.com/chatgpt-vocabulary/
https://platform.openai.com/tokenizer

 15The concept of tokens

LLMs don’t read raw text. Instead, the LLM wrapper first
converts the input prompt into a list of integers indicating the
ID of each token, which is its position in the vocabulary:

[791, 5679, 596, 54842, 574, 20025]

Afterward, the wrapper uses the LLM to predict the ID of the
most likely next token. In the previous example, the LLM out-
puts that the token with ID 80415 is the most likely continua-
tion of the input prompt. This token corresponds to “audible”.
The LLM wrapper then attaches that token to the input:

The| dog|'s| bark| was| barely| audible

Next, the LLM wrapper feeds this new prompt (as a list of inte-
gers, [791, 5679, 596, 54842, 574, 20025, 80415]) to the
LLM to have it “eat its own output” and generate one more
token. This process is repeated many times to generate more
tokens:

The| dog|'s| bark| was| barely| audible| above| the|
roar| of| the| city| traffic|.

In this example, after a few more paragraphs of mumbo
jumbo regarding dogs and noise, the LLM decided that the
token with ID 100276 was the most likely continuation of the
prompt. This token is code for “<|end of text|>”. So, the LLM
deemed this a good place to end the text. Upon stumbling on
this token, the LLM wrapper heeded the LLM’s recommenda-
tion and stopped generating more text.

Have a look at how GPT-3.5 explained to me the meaning of
the word “hungryish”, token by token:

If| you| say| "|I|'m | hungry|ish|,"| you| mean|
you|'re | feeling| somewhat| hungry|,| but| not|
extremely| so|.| It|'s | a| mild|er| form| of| hunger|.

We can see that, even though the word “hungryish” isn’t
part of GPT-3.5’s vocabulary, it managed to generate it using
a sequence of two tokens, “hungry” and “ish.” Note that the

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

16 How AI works

words “milder,” “I’m,” “you’re,” and “It’s” were also produced
using two tokens each.

Billed by the token

Most LLM APIs, which let software developers use LLMs pro-
grammatically, bill users by the number of tokens inputted
and outputted to the LLM. Thus, longer prompts and longer
responses incur higher costs.

As of today, for example, GPT-4o costs US$5 per million
input tokens plus US$15 per million output tokens. For refer-
ence, the entire Shakespearean play Romeo and Juliet requires
40,000 tokens, so inputting it to GPT-4o would cost $0.20, and
generating it would cost $0.60. This doesn’t sound like a lot, but
bills can easily add up if you use LLMs repeatedly. For example,
if you send a long prompt to an LLM every time a user visits
your website, you could spend thousands a month.

Note that when you chat back and forth with an LLM, you
must include your entire chat history on every interaction with
it, or at least you must do so if you want the LLM to be able to
analyze the previous conversation when generating new out-
puts. So, the prompt becomes increasingly expensive as your
chat history becomes longer.

What about languages other than English?

LLM’s vocabularies tend to be optimized for the English lan-
guage. For example, they contain a “dog” token but not one
to represent the French word for dog. So, words not in English
tend to be split into many tokens, often covering one or two
letters at a time, as the vocabulary doesn’t contain as many
tokens to represent entire words.

Have a look at how the preamble of the U.S. Constitution is
tokenized before being inputted into GPT-4:

We| the| People| of| the| United| States|,| in| Order|
to| form| a| more| perfect| Union|,| establish|
Justice|,| insure| domestic| Tran|qu|ility|,| provide|
for| the| common| defense|,| promote| the| general|
Welfare|,| and| secure| the| Bless|ings| of| Liberty|

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 17The concept of tokens

to| ourselves| and| our| Poster|ity|,| do| ord|ain|
and| establish| this| Constitution| for| the| United|
States| of| America|.

And now, have a look at its French translation:

Nous|,| le| Pe|uple| des| É|t|ats|-Un|is|,| en| vue|
de| former| une| Union| plus| par|fa|ite|,| d|'é
|tabl|ir| la| justice|,| de| faire| rég|ner| la|
pa|ix| int|érie|ure|,| de| pour|voir| à| la| déf|ense|
commune|,| de| dévelop|per| le| bien|-être| général|
et| d|' |ass|urer| les| bien|fa|its| de| la| libert|é|
à| nous|-m|ê|mes| et| à| notre| post|é|rit|é|,| nous|
dé|cr|é|tons| et| é|tab|lis|sons| cette| Constitution|
pour| les| É|t|ats|-Un|is| d|' |Am|érique|.

The French text takes more than twice the number of tokens
than its English counterpart. In addition, the subdivision
of words in French doesn’t make much sense. For exam-
ple, “États-Unis d’Amérique” (United States of America) is
chopped up into many meaningless pieces such as “ats” and
“-Un.”

This problem gets even more serious with non-Latin alpha-
bets. An extreme example, widely discussed around the inter-
net, is the word for “woman” in Telugu, one of the languages
spoken in India: స్త్రీ�.ీ This word is made up of a combination
of six characters arranged horizontally and vertically. GPT-4
requires a whopping 18 tokens to represent this word using
special UTF-8 tokens.

As LLMs are billed by the token, the higher number of
tokens can make them more expensive to use in other lan-
guages compared to English. In addition, it can be more chal-
lenging for the LLM to analyze the prompt because individual
inputs, such as an “é” token, don’t carry much meaning by
themselves; the LLM must work extra hard to contextualize
adjacent tokens and derive meaning from them.

The bias toward a specific language—English in the most
popular LLMs—may not be easily removed. To better tokenize
words in other languages, the vocabulary would have to be
extended to include words or common pieces of words in, say,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

18 How AI works

French, Chinese, Telugu, and so on. This would multiply the
vocabulary size, well beyond the current 100,000 mark, which
could turn LLMs ineffective and slow.

OpenAI has been working on improving its LLMs’ internal
vocabularies to better handle non-English text. The details
haven’t been disclosed yet as of this writing, but its creators
shared a few illustrative cases with the new vocabulary used by
GPT-4o (see https://openai.com/index/hello-gpt-4o/). For
example, a snippet of text in Telugu requires 3.5× fewer tokens
than before, but it still requires twice as many as its English
counterpart.

Why do LLMs need tokens anyway?

One may wonder why tokens are needed at all; that is, why
not have the LLM directly read and generate individual char-
acters instead? As we’ll discuss soon, LLMs try to internally
describe the meaning of each individual input. Describing the
meaning of a token such as “Paris” is quite easy. For instance,
we could describe it as “capital of France.” However, describ-
ing the meaning of a token such as “P” is much harder, as we
don’t know what the letter refers to unless we analyze the con-
text. That’s why it’s much more straightforward to take “Paris”
as a single token in one go. The same goes for generating
text—it’s much more straightforward to let the LLM output a
token such as “Paris,” which carries a strong meaning by itself,
instead of having it output the same word one character at a
time.

We could take this idea to the extreme and create a huge
vocabulary that includes all sorts of words and their deriva-
tives, such as “Parisian,” “Parisians,” “Parisian weather,” and
“Emily in Paris.” But this would go too far—the vocabulary
would become huge, and it would be wasteful because many
tokens would represent closely related ideas. The current
setup, with tokens representing the most common words and
pieces of words, is an in-between solution that works well in
practice.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://openai.com/index/hello-gpt-4o/

 19Embeddings: A way to represent meaning

Embeddings: A way to represent meaning

One of the greatest challenges of AI is finding an effective way
to represent high-level concepts, meaning, and ideas. When
designing an LLM, we want the model to internally represent
the meaning of a token instead of its letters. For example, we
want the token “dog” to be represented by a description of
what a dog is (say, a friendly, four-legged animal).

An embedding is one of the most common ways of repre-
senting meaning. It is used by LLMs and other types of AI. An
embedding is a list (or “vector”) of numbers. The number of
elements in the vector is known as the embedding’s dimension.

We can think of each position in this vector as a measure of
how much a token matches a certain topic. Let’s have a look
at an example. Imagine an embedding vector of length five
represents the following five topics: “Animal,” “Cat,” “Large,”
“Scary,” and “Four legs.” Suppose we want to represent the
meaning of the “dog” token using these topics. Figure 1.5 pro-
vides an (imagined) solution.

33 −1−1 00 11 33

dog

Animal

Cat
Large

Scary
Four legs

Figure 1.5 Each token is mapped to
a vector of numbers. We can imagine
that each number in the vector
represents a topic. Here’s an imaginary
list of topics and their respective
numbers for the “dog” token.

In this illustration, the token was mapped to five numbers,
each of them indicating how much the meaning of the token
matches each topic. We can see that the token scores a high
value with respect to the “Animal” topic, as a dog is certainly an
animal. The token scores a negative value with respect to the
“Cat” topic, as a dog is sometimes seen as the opposite of a cat.
It scores a neutral value of zero with respect to “Large” because
we don’t typically think of a dog as being a particularly large

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

20 How AI works

or small object. Figure 1.6 shows how we could imagine the
embedding for the “elephant” token.

33 00 55 22 33

elephant

Animal

Cat
Large

Scary
Four legs

Figure 1.6 An imaginary embedding
vector for the “elephant” token

In this case, the embedding vector is neutral with respect to
“Cat” and highly positive with respect to “Large.”

LLMs are all about embeddings. LLMs go to great lengths to
try to find a good, contextualized representation of tokens by
using embeddings. At the end of many layers of processing, the
embeddings are very good at representing the true meaning of
the input tokens, which makes it easy for the LLM to do the job
of guessing the next token.

LLMs use much longer embedding vectors than in the
above example, which lets them represent a huge number of
topics. For example, GPT-3 uses 12,288-dimensional embed-
dings, so each input token is represented by 12,288 numbers.
The smallest model in the Llama 3 family, developed by Meta,
uses embeddings of 4,096 dimensions, and the largest one
uses embeddings of 16,384 dimensions (https://arxiv.org/
abs/2407.21783).

Machine learning and embeddings

Designing long embeddings by hand would be very difficult.
Thus, we use machine learning to do the job instead. This means
that we make a computer analyze a large amount of data, such
as text collected from the internet, to come up with useful
embeddings.

When AI engineers use, say, 12,288-dimensional embed-
dings inside an LLM, what they do is leave room for 12,288

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

 21Embeddings: A way to represent meaning

topics. However, it is up to the machine to select and organize
the topics to best attain its objectives.

As embeddings are created automatically, it is very hard to
know which topics are represented by each of their dimensions.
In addition, the topics may not be as clear-cut as “Large” and
“Cat.” So, by using machine learning, we can create effective
embeddings—the proof being that LLMs work well—but
we can’t understand exactly how they work. Explainability is
sacrificed in the name of predictive power.

Visualizing embeddings

A location on Earth can be determined by its latitude and
longitude. We can equally think of each number inside an
embedding vector as coordinates that help us figure out where
the token is inside a space of meaning. Figure 1.7 illustrates
an example of the space of meaning defined by a 2D embed-
ding vector with the topics “Scary” and “Large.” Every token is
placed inside this space according to its “Scary” and “Large”
values in the embedding vector.

Large

Scary

capybara

snake

anaconda

mouse

spider

dog

hamster

ladybug

beetle

Figure 1.7 We can
think the numbers in
an embedding vector
as coordinates that
place the token in
a multidimensional
“meaning space.”

You can see that similar objects tend to group together; that’s
why the tokens “anaconda” and “snake” are close together in
this space and so are “beetle” and “ladybug,” but “anaconda”
and “ladybug” are far apart.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

22 How AI works

Well-designed, useful embeddings are such that tokens that
are closely related in terms of meaning are also placed close
together within this imaginary embedding space. If embed-
ding vectors do a bad job at representing the true meaning of
tokens, then related tokens will not be close together in this
imaginary embedding space.

As embedding vectors are usually very long, the embedding
space is high-dimensional. We can’t draw it, but we can still
imagine that, in this high-dimensional space, related tokens
are physically clustered together.

Why embeddings are useful

Embedding vectors are particularly useful because it’s possible
to compare them or extract information from them very eas-
ily, just by performing simple, linear calculations. Suppose you
want to compare the meaning of two tokens. You can do that
by calculating their physical distance in the imaginary embed-
ding space. One popular way of doing that is calculating the
dot product between the two vectors, which produces a sort of
“signed distance” between them. If the result is positive, the
tokens are close enough in the embedding space and thus
their meanings are related. If it’s zero, they are unrelated. If
it’s negative, their meanings are opposed, such as in “large”
and “small.”

NOTE The dot product is calculated by multiplying the
numbers in one vector by their corresponding numbers
in the other vector (at the same position) and then add-
ing the results.

Now, suppose you want to extract a limited amount of
information of interest from a much more expressive
embedding vector. For example, you may want to extract
animal-related topics and dump everything else. We can think
of this as squashing the multidimensional embedding space
into a lower-dimensional space, such as flattening the 3D space
to turn it into a thin plate, thus discarding uninformative

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 23Embeddings: A way to represent meaning

dimensions. We could imagine, for instance, squashing the
entire 12,288-dimensional space into, say, a 100-dimentional
space that only focuses on animal-related topics (e.g., “Barks,”
“Mammal,” “Pet”). The mathematical operation to perform
such a squashing is known as a projection.

A projection is performed by multiplying a matrix by the
embedding vector. The matrix represents the direction in
which we want to squeeze the embedding space. Note that, as
we don’t usually understand how embeddings encode mean-
ing, we don’t understand how meaning is represented in the
squeezed embedding space. Just like with the embeddings, the
projections into squeezed spaces are also determined through
machine learning and not designed by hand.

In addition to their use within LLMs and other types of AI,
it has become popular for engineers to use third-party tools to
generate embeddings for all sorts of content-retrieval applica-
tions. For example, you can use an embeddings API to gener-
ate embeddings that represent the meaning of text documents,
and then you compare documents by calculating the dot prod-
uct of their embeddings. Specifically, OpenAI provides an
embeddings API that helps generate an embedding for a text
document.

In addition, some APIs generate embeddings for different
input modalities, such as text and images. One example is Goo-
gle Clouds’ embeddings API (see https://mng.bz/1Xvq). The
generated embeddings can be directly compared. For exam-
ple, a piece of text speaking about cats and a picture of a cat
are mapped to closely related embedding vectors. Thus, you
can use dot products to find the image that best matches a
description.

Why LLMs struggle to analyze individual letters

LLMs are notorious for struggling to correctly analyze the indi-
vidual letters in words, such as counting the number of occur-
rences of a letter. They also struggle to follow instructions that

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/1Xvq

24 How AI works

require generating text with certain letters in it. Figure 1.8
shows an example of this problem using GPT-4o.

Figure 1.8 LLMs often struggle to analyze individual letters in words.

If you remember, LLMs receive tokens as inputs, not letters.
So, the exact letters of a word are not inputted to the model. In
the example of figure 1.8, the token “berry” is inputted to the
LLM in one go.

Each token is then mapped to an embedding vector to rep-
resent its meaning. So, any references to individual letters are
likely to be completely lost at this stage, as it’d be wasteful to
devote space in the embedding vector to represent topics such
as “token with two times the letter a,” when there are much
more useful topics to represent instead.

As people have been widely mocking LLMs’ terrible perfor-
mance at analyzing letters, it’s likely AI engineers will take ad
hoc measures to directly address this problem. For example,
the LLM wrapper may augment the prompt with words’ spell-
ings if it detects that there are questions about individual let-
ters. Maybe some of this has already been done, as newer LLMs
seem to struggle less to analyze individual letters. However, the
problem persists in even the most recent LLMs as of this writ-
ing, so it hasn’t been fully solved yet.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 25The transformer architecture

The transformer architecture

The methodology that powers current LLMs was invented by
a group of Google researchers. It was described in a famous
paper, published in 2017, titled “Attention Is All You Need”
(available at https://arxiv.org/abs/1706.03762). The paper
proposed a new way of designing language models, which
became known as the transformer architecture or just transformers.

If you remember, when I asked an LLM to complete the
sentence “the dog’s bark was barely,” it correctly outputted
“audible.” Despite its apparent simplicity, this sentence is chal-
lenging because the word “bark” has two distinct meanings—
the noise made by a dog and the coating of a tree. If I asked an
LLM to continue the sentence “the tree’s bark was barely,” then
“audible” would be a poor choice. I tried it, and the LLM out-
putted “visible” instead of “audible.” The LLM managed to cor-
rectly disambiguate the word “bark” based on whether “dog”
or “tree” appeared earlier in the sentence. The transformer
architecture was especially designed to effectively disambigu-
ate tokens based on their context.

Before the transformer architecture, the most popular
language models were based on a type of AI model known as
LSTM (long short-term memory). LSTMs try to predict the
next token based on the following two things:

¡	The last token in the input prompt (“barely” if the input is
“the dog’s bark was barely”)

¡	A single embedding that summarizes the meaning of all
the previous tokens (a single embedding vector that rep-
resents “the dog’s bark was”)

These two pieces of information are used to predict the next
token (“audible” in this case). As the entire context before the
last token is squashed into a single, fixed-sized embedding vec-
tor, LSTMs can process inputs of varying lengths without any
complications. This is one of the reasons they became so pop-
ular. But this is also LSTMs’ Achilles’ heel—by squashing such
a large context into a single vector, they often lose important,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/abs/1706.03762

26 How AI works

fine-grained contextual information necessary to properly
guess the next word.

The transformer architecture solved this problem by pro-
cessing the previous tokens in a different way, without squash-
ing them all. The process, which follows three steps, is depicted
in figure 1.9.

dog ’s bark

00 −1−1 −1−1 11 00 11 00 −1−1 33 11

Step 1

is

Initial
embeddings

Input tokens

Contextualized
embeddings

Next-token
prediction

Step 2

Step 3

33 −1−1 22 33 0.50.5 −1−1 00 0.50.5 0000 22 00 00 22 22

33 −1−1 22 3300

Figure 1.9 LLM overview. In step 1, the tokens are mapped to
embeddings one by one. In step 2, each embedding is improved by
contextualizing it using the previous tokens in the prompt. In step 3,
the much-improved embeddings are used to make predictions about
the next token.

First, the model maps each token in the input prompt to an
embedding vector that seeks to represent its meaning. This is
performed on each token separately, so no contextual infor-
mation is used—each token is processed as if the other ones
didn’t exist. While these embeddings can be okay sometimes,
they can’t be too good because in many cases, it’s hard to know
the true meaning of a token without looking at the context.
For example, the embedding generated for a token such as
“bark” will be poor because the model can’t know if it refers to
dogs or trees.

In the second step, the LLM improves the embedding of
each individual token by analyzing its previous tokens—each
token is transformed by taking its context into account. Note
that, compared to LSTMs, the transformer architecture does

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 27The transformer architecture

not squash embeddings together to summarize the entire
prompt.

The LLM uses a fixed number of previous tokens to contex-
tualize each token, which is known as the context window. For
example, suppose an LLM has a context window of 10,000
tokens. Each token is contextualized by analyzing its previous
9,999 tokens. If the user’s prompt is shorter than 10,000 tokens,
then the beginning of the prompt is padded with dummy values
like zeros until it reaches 10,000 tokens. If the user’s prompt is
longer than 10,000 tokens, then the LLM wrapper rejects the
user request or drops the beginning of the prompt.

You need to carefully consider the context window before
using an LLM. If you want to, say, ask an LLM to summarize
an entire novel, you need to make sure that it fits within the
context window, or the LLM won’t be able to summarize the
entire novel at once. In addition, if you use a RAG approach to
insert the content of relevant documents into a user’s prompt,
you also need to make sure the context window can fit them all.
Moreover, when you chat back and forth with an LLM-based
app, the entire history of the conversation is usually included
in each prompt, making the prompt longer as you converse
with the chatbot.

Earlier LLMs had very limited context windows. For exam-
ple, GPT-3’s context window was 2,048 tokens. Therefore, their
capabilities to analyze long inputs were limited.

Over time, the context window has grown. As of this writ-
ing, OpenAI’s latest model, GPT-4o, has a context window of
128,000 tokens. And one of Google’s models, Gemini 1.5 Pro,
offers a context window of 1 million tokens to its enterprise cus-
tomers. The size of the context window is specified in an LLM’s
official documentation.

After the end of this contextualization step, the embeddings
associated with each input token are much more accurate and
thus useful than the initial ones, thanks to contextualization.
For example, we could imagine that the embedding for “bark”
becomes more animal-like at the end of step 2 if the word “dog”

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

28 How AI works

appears before. Conversely, its embedding would become
more tree-like if the context contains tree references.

The third step in the transformer architecture (see figure
1.9) is to predict the next token based on the enhanced, con-
textualized embeddings generated in step 2. This is performed
through a very simple mathematical operation because it is
assumed that step 2 produced really good embeddings that can
help guess the next word very easily.

In the next few sections, we describe each of the three steps
in more detail, and we explain how machine learning enters
the picture.

Step 1: Initial embeddings

The initial embeddings are obtained very easily. The LLM con-
tains an internal dictionary that maps each possible token to
its corresponding embedding. We could imagine it as follows:

"a" -> [0, -1, 2, 3, 1, …]
"b" -> [1, -2, 0, 4, 0, …]
…
" bark" -> [1, 0, -1, 3, 1, …]
…
" dog" -> [3, -1, 0, 2, 3, …]
…

The initial embeddings are created by looking up each token
in the dictionary and replacing it with its corresponding
embedding. The result is an initial set of embeddings, cre-
ated one by one without context, which concludes step 1 (see
figure 1.9).

The numbers inside the dictionary are not defined by hand.
These numbers are all learnable parameters of the model. This
means that the AI engineer leaves them as blanks in the code
and lets the computer fill in their values later, when the learn-
ing algorithm runs. We can think of the previous dictionary as
follows from the point of view of the AI engineer:

"a" -> [?, ?, ?, ?, ?, …]
"b" -> [?, ?, ?, ?, ?, …]
…

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 29The transformer architecture

"bark" -> [?, ?, ?, ?, ?, …]
…
"dog" -> [?, ?, ?, ?, ?, …]
…

When the computer fills in the blanks, which is known as learn-
ing or training, it designs its own embedding space. So, the
computer is free to organize tokens and pick topics as it wishes
to attain its goal of effectively guessing the next word.

Consider a model whose vocabulary contains 100,000 differ-
ent tokens and whose embeddings contain 10,000 dimensions,
as is the case with many LLMs. The dictionary would contain
100,000 entries, and each entry would contain 10,000 num-
bers, which are question marks. The total number of learnable
parameters (the question marks) would be 100,000 × 10,000 =
1 billion. That’s a lot of learnable parameters! And it’s just the
beginning.

Step 2: Contextualization

In the second step, the LLM contextualizes each of the input
tokens, one by one, by considering its previous tokens (within
the context window). Let’s see, for example, how the LLM
would contextualize the token “bark” in “dog’s bark”.

Contextualization starts by calculating an attention score for
each token in the context. The attention score indicates how
it’s best to divide attention among all the tokens in the context
window to disambiguate the last one. For example, to contex-
tualize “bark”, it’s worth focusing most of your attention on
“dog,” followed by “bark” itself, and finally by “’s”. Figure 1.10
represents this operation.

The calculation of attention scores, known as the attention
mechanism, is performed through a series of mathematical
operations, such as projections on the embedding vectors (see
section 1.3.3). We won’t cover the details here, so let’s just say
that these operations are specially designed to let the LLM
extract meaning from the embeddings and compare them.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

30 How AI works

dog ’s bark
33 −1−1 11 33 00 −1−1 −1−1 00 0000 11 00 −1−1 33 11

Attention
mechanism

Attention
mechanism

dog
80%

’s
1%

bark
19%

Figure 1.10 The attention mechanism calculates the relative relevance
of all tokens in the context window to contextualize or disambiguate the
last token.

The AI engineer determines the type of number of oper-
ations but leaves blanks that are determined later using
machine learning. For example, the numbers inside projec-
tion matrixes, which configure what projections do, are left as
blanks. Thus, we can picture a projection matrix as

[[? ? ? ... ?],
[? ? ? ... ?],
...
[? ? ? ... ?]]

So, the AI engineer tells the computer how to disambiguate
tokens—by using projections to compare embeddings, and
so on—but lets the machine fill in the details. The machine
discovers by itself useful ways of analyzing the embeddings to
disambiguate problematic tokens like “bark”. Projection matri-
ces are rather large, so this step can easily add a few hundred
million, if not billions of learnable parameters to the model.

Once the LLM has calculated attention scores, it uses the
resulting values to guide the contextualization of tokens’
embedding vectors. We can think of this step as letting

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 31The transformer architecture

information from tokens rub off onto other tokens using the
attention score for guidance.

For example, a lot of information from “dog” rubs off on
“bark”, as its attention mechanism determined that the token
“dog” was relevant to the meaning of “bark”. As a consequence
of this step, the embedding for “bark” becomes more animal-
like, as opposed to tree-like. Conversely, very little information
from “’s” rubs off on “bark”, as the attention score deems it
rather irrelevant. The process of updating the embeddings
based on the context is known as the feed-forward step of the
transformer.

In the previous example, the end result of the attention and
feed-forward mechanisms is an improved version of the embed-
ding for “bark”. The same process is applied to contextualize
all the tokens in input the prompt, using their previous ones,
which leads to a new generation of improved embeddings, as
illustrated in step 2 of figure 1.9.

At the end of this process, the LLM is in a much better posi-
tion to make a guess about the next token, as it contains an
improved, contextualized representation of the meaning of
the entire input prompt.

multilayer architecture

The contextualization step we just described (step 2) is usu-
ally applied multiple times. So, the embedding vectors are
improved many times. This is known as a multilayer trans-
former. Most LLMs contain at least a few tens of layers of trans-
formers applied in sequence. Each transformer layer has its
own set of learnable parameters, so each layer can specialize in
different contextualization tasks.

GPT-3, for example, has 96 transformer layers. This leads to
a whopping total of 175 billion learnable parameters inside the
model.

multiheaded attention

The attention mechanism is often subdivided into differ-
ent heads, meaning that it analyzes different parts of the

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

32 How AI works

embedding vectors separately, one chunk at a time. This forces
the LLM to design embedding vectors with highly specialized
segments. For example, we could imagine that one segment is
dedicated to all things animal related and another one to all
things tree related, although we still can’t usually understand
the embedding vectors. This has been observed to work better
in practice than having a single head that processes the entire
embedding vector at once.

Step 3: Predictions

The last step, step 3 in figure 1.9, is to make a prediction about
the most likely next token, which is the LLM’s ultimate job.
This is performed through projections over the contextualized
embeddings generated in step 2.

While we’ve been saying that LLMs predict the most likely
next token, that’s not quite accurate. In reality, they calculate a
probability value for each possible token in the vocabulary. So,
the LLM’s output is a vector with as many numbers as tokens
in the vocabulary. Each position refers to one possible token,
as shown in table 1.1. In this example, the token “audible”
receives a high probability of 0.8, meaning that the LLM deems
it a highly likely next token.

Table 1.1 In the last step, the LLM assigns a probability value
for each possible token in the vocabulary. All the values add to 1.

0.01 0.0 0.05 … 0.8 …

“a” “b” “c” “audible”

The LLM wrapper picks the next token based on the LLM’s
output probabilities. One way to do this is to pick the token
with the highest probability according to the LLM (in the
unlikely event that two tokens have the exact same probabil-
ity, either one can be picked at random). However, there are
other ways to do this, which lets the LLM get more adventur-
ous. We will discuss this next.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 33The transformer architecture

Temperature

As discussed in the previous section, LLMs output a probabil-
ity for each token that describes how likely it is to come right
after the input prompt. One way to select the next token from
the vocabulary is to pick the one with the highest probability
according to the LLM. However, this encourages the LLM to
play it a bit too safe—sometimes we want a more adventurous
output. So, instead, the next token is often selected by ran-
domly sampling a token from the vocabulary using the LLM’s
output probabilities. For example, if the LLM outputs a prob-
ability of 0.9 for the “audible” token, then the sampler picks
that token with 90% probability and other ones with 10%
probability.

The user can usually regulate how adventurous the output
should be by adjusting a setting known as the temperature. This
setting squeezes or smooths out the LLM’s output probabili-
ties. A low temperature pushes the highest sampling probabil-
ities upward and lowers the others. For example, a probability
of 0.9 may be transformed into 0.95, while a probability of
0.05 may be transformed into 0.01. This makes it more likely
for the LLM wrapper to pick tokens at the top of the ranking.
We can think of this as making the LLM wrapper more con-
servative, as it becomes more prone to select the most obvious
tokens at the top of the ranking and less prone to pick alter-
native ones.

Conversely, a high temperature smooths out probabili-
ties. For example, a probability of 0.9 may be transformed
to 0.8, and a probability of 0.01 may be transformed to 0.05.
This makes the output more creative by making lower-ranked
tokens more likely to be picked. Each LLM wrapper offers its
own range of temperature values. OpenAI’s API, for example,
allows users to set the temperature to a value between zero
(conservative) and two (creative).

In the following paragraphs, we describe two alternative
ways of setting how adventurous we want our output to be.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

34 How AI works

top-p

An alternative setting known as Top-p is a cutoff level of cumu-
lative probability. If we set Top-p to, say, 0.8, then we only
sample from the top tokens that cover 80% of the probabil-
ity. The tokens covering the bottom 20% of probability are
ignored.

top k

The Top-k setting imposes a limit on the number of top tokens
we can sample from. For example, if we set Top-k to 20, the
LLM wrapper is only allowed to pick a token among the top-20
tokens. If we set Top-k to 1, we force the LLM to pick the top
token every time.

Note that not all LLM wrappers let users configure all these
settings—sometimes only one or two of them are available. For
example, as of today, OpenAI lets users set temperature and
Top-p but not Top-k. The available settings are described in the
documentation.

Can you get an LLM to always output the same thing?

It is sometimes desirable to generate reproducible outputs with
an LLM, meaning that the LLM generates the exact same out-
put every time it’s given the same input prompt. This can be
useful to benchmark the performance of LLMs or share exam-
ples of LLMs’ outputs that others can replicate.

It is theoretically possible to have an LLM generate repro-
ducible outputs. For example, this could be achieved by using a
top-1 sampling strategy, in which we always pick the token with
the highest probability, thus making sure that all mathematical
calculations inside the LLM are performed exactly the same
way on different runs.

However, while this is theoretically possible, it is not always
the case in practice. As of today, for example, it’s not possible
to guarantee that OpenAI’s LLMs will generate the exact same
output on different runs. There is official guidance on how to
configure settings to produce mostly reproducible outputs, but

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 35The transformer architecture

they’re not guaranteed to be exactly alike (see https://mng
.bz/PdeR).

This probably happens because popular AI and arithmetic
libraries divide a calculation into multiple threads which can
be executed in different orders every time (see https://news
.ycombinator.com/item?id=37006224). This can cause slight
differences in outputs due to round-off errors when adding the
same numbers in different orders (see https://mng.bz/JYQZ).
In the future, if these problems are fixed, it will be possible to
generate reproducible outputs with popular LLM APIs.

Where to learn more

In this section, we’ve covered the gist of how LLMs work. We
haven’t discussed the implementation details, such as the exact
calculations performed inside the LLM, but we did discuss the
overall process LLMs follow to make their predictions.

If you want to know the details, I recommend you to directly
have a look at the publicly available source code of GPT-2
(https://mng.bz/wJR5). The file called models.py is the most
important one; it defines the entire model in a very compact
way (just 174 lines). The code is moderately easy to follow if you
understand some Python coding and the TensorFlow library
and start from the bottom of the file. I also recommend you
read a guide called The Illustrated Transformer (https://mng.bz/
qxlx) to learn the details of the architecture.

Even if you don’t want to go through all the code, a quick
skim through it reveals that the LLM is genuinely just a
sequence of simple mathematical operations. As you can see in
the code, each layer (called a “block”) first calculates the atten-
tion scores (“attn”) and then uses them to update the embed-
dings (“mlp”). Projections (“matmul”) are among the most
common operations performed by the model.

We’ve now covered how LLMs generate their predictions
and mentioned that their details are filled in using machine
learning. We haven’t, however, described how learning unfolds.
That’s where we move next.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/PdeR
https://mng.bz/PdeR
https://news.ycombinator.com/item?id=37006224
https://news.ycombinator.com/item?id=37006224
https://mng.bz/JYQZ
https://mng.bz/wJR5
http://models.py
https://mng.bz/qxlx
https://mng.bz/qxlx

36 How AI works

Machine learning

In traditional software development, the engineer writes every
single line of code to tell the computer exactly what to do.
Machine learning, or ML, is a different way of creating pro-
grams (these programs are known as models in ML jargon).

The ML approach comprises two steps. The first step is
designing the architecture of the solution, which in ML means a
template of the steps the program will follow to accomplish the
task. Have a look at a piece of Python code using the popular
ML library PyTorch:

import torch
embedding = torch.nn.Embedding(num_embeddings=100000,
embedding_dim=10000)
projection = torch.nn.Linear(10000, 2000)
model = torch.nn.Sequential(embedding, projection)

In the first line, the engineer defines an embedding operation
that maps a vocabulary of 100,000 tokens to embedding vec-
tors of length 10,000, similar to what LLMs do. In the second
line, the engineer defines a projection to transform an embed-
ding vector of length 10,000 into one of length 2,000. The
third line applies each of those operations sequentially, first
the embedding and then the projection.

We can see that the engineer puts together the building
blocks of the model manually. However, the model has blanks
in it, known as parameters, which are not defined by hand. In the
above example, the embedding block contains 1 billion param-
eters (100,000 × 10,000) which are not defined by hand. The
second building block, the projection, contains over 20 million
parameters (I’ll leave the math to you).

Note that the architecture of a machine learning model is
designed carefully—the building blocks are introduced with a
specific intention in mind and in a way that is tailor-made to
the application. For example, the transformer architecture is
designed to contextualize words.

The following step in the ML approach is known as training
or learning. The choice between these two words is down to

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

http://torch.nn
http://torch.nn
http://torch.nn

 37Machine learning

grammar—you typically say that a person trains a model and
that the machine learns.

During training, the engineer runs an algorithm that tries
to find the best way of setting the model’s parameters (filling
in the blanks in the template) to accomplish the desired task.
The training algorithm uses data for guidance—usually lots of
it—to find promising ways of adjusting the parameter values to
improve the model’s performance.

The training step is time-consuming and data-hungry, but,
if all goes well, the resulting model is often seen to perform
much better than if we tried to write the entire program by
hand. This is mainly due to the following reasons:

¡	The process is data-driven, so we rely on evidence to build
the best model instead of intuition.

¡	The model can be millions of times larger than a manually
written program.

¡	The training process can identify serendipitous ways of
solving the problem that engineers wouldn’t rely on if
writing the program manually.

Throughout this section, we’ll dig a bit deeper into how
machine learning works and discuss common terminology.

Deep learning

In earlier machine learning, the engineer would first write a
dedicated piece of software to extract representative features
from the input. For example, the engineer would write a ded-
icated algorithm to extract keywords from text or detect lines
in an image. Afterward, a small ML model would be used to
make predictions from these manually engineered features.
This process can be summarized as follows:

Raw input -> Feature engineering -> Model -> Prediction

In deep learning, which is a type of machine learning, the
model processes much rawer inputs, such as tokens or an
unprocessed input image:

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

38 How AI works

Raw input -> Model -> Prediction

In deep learning, the model itself learns a useful way to repre-
sent the input—it performs its own feature engineering. We
saw that in action with LLMs: the machine works hard to pro-
duce contextualized embeddings to represent the meaning of
the input tokens. To process rawer inputs, the model usually
contains multiple layers of processing stacked on top of each
other, which is where the name “deep” comes from.

In many applications within text generation and image
analysis, deep learning is much more accurate than the previ-
ous two-step process with manually engineered features. This
requires, however, devising an effective architecture for the
task, such as the transformer architecture.

Note that there’s still a place for old-school, “shallow” learn-
ing. Whenever your input is already abstract and informative—
say, patient records with their age, blood type, and so on—then
all you need is a shallow ML model on top. In addition, deep
learning models are too large to understand, so it’s hard to
know exactly how they produce outputs. We need to trust them
based on their high performance. But sometimes you want to
have an explainable model that you can fully understand. In
that case, a more explainable model over manually engineered
features may be the right choice.

Types of machine learning

In this section, we discuss the four most common ML para-
digms. These paradigms differ in terms of how they formulate
the task and process the training data. Afterward, we discuss
which of these paradigms is used by LLMs.

supervised learning

Most ML models learn by example. You supply the computer
with a large—or even huge—number of examples of how to
do the job you want it to do. This is known as supervised learn-
ing. In supervised learning, each example is a pair of an input
and its corresponding label, which is the “true” output we’d
like the model to learn how to produce.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 39Machine learning

In the case of LLMs, training examples are sentences labeled
with the “correct” next-token guess, such as

“Better safe than” / “sorry”
“The Eiffel” / “Tower”

This way, the LLM is shown examples of how to perform the
exact task it is expected to perform. All the examples supplied
to the machine make up its training data.

To cite another example, in the case of a model for auto-
mated image categorization, the training data contains thou-
sands of sample images, each of them labeled with their right
category (“strawberry,” “plane,” “dog,” and so on).

Gathering labeled data often requires manual work. For
example, to create an ML model for image categorization,
people are often hired to manually label tens of thousands of
images with their respective categories. Sometimes, there is
no way to escape this, and data labeling becomes a costly and
time-consuming bottleneck. In other cases, it’s possible to use
tricks to generate labels automatically by analyzing existing
data, which we will discuss soon.

Ideally, the machine will learn a general process to perform
the required task. So, it will also work well with inputs not
exactly present in the training data, such as new sentences or
new images. When this happens, the model is said to generalize.

In some unfortunate cases, the model memorizes specific
training examples instead of learning a general process to per-
form the task. So, it doesn’t work well when it must do its job
on data not seen during training. This is known as overfitting. In
other cases, a model might learn a process that is too simple, so
it doesn’t work effectively on training data or other data. This is
known as underfitting.

a note on simulated data

As of late, people have been asking me why they can’t just run
a computer program to generate simulated training samples
(also known as synthetic data) instead of going through the
painstaking process of collecting and manually labeling data.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

40 How AI works

Imagine you had a program that could generate training
examples for an LLM. That program would have to be able
to correctly guess the next word given a prompt to generate
examples such as “Better safe than” / “sorry”. But that pro-
gram would already be an LLM. If you had such a program to
effectively generate correctly labeled training examples, then
you wouldn’t need to build an LLM in the first place!

The confusion about simulated data seems to arise from
the fact that, in a few narrow scenarios, it is indeed possible
to create training data by simulation. This was the case with
AlphaZero, the famous ML model that beat a human player at
the game of Go. Its creators had a computer play Go against
itself to generate millions of simulated games and generate
training examples. But this was only possible because it’s easy
to calculate the end result of a game—you can easily tell who
won. This isn’t the case with most applications outside game-
playing. For example, you can’t easily tell what the next token
is unless you already have an LLM, and you can’t easily tell an
image’s category unless you already have an effective image
categorization model.

Some people also suggest augmenting your existing train-
ing data by automatically creating new training examples from
combinations of existing ones. One technique called SMOTE
(synthetic minority oversampling technique), for instance, is some-
times used to generate more examples of an underrepresented
category. Suppose you’re trying to train an ML model to detect
whether a credit card transaction is fraudulent. The training
data may contain very few instances of transactions labeled as
fraud because (hopefully) fraud doesn’t happen all that often.
By using SMOTE, the AI engineer creates additional examples
of fraudulent transactions by combining existing ones. How-
ever, this doesn’t add any new information to the training data.
So, the machine cannot learn anything new with this extra
data that it couldn’t learn before (for a more detailed discus-
sion, see https://mng.bz/7paQ). I advise you to be careful if
anyone suggests you should concoct fake data to improve the

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/7paQ

 41Machine learning

performance of your model. In most cases, such fake data is
used to compensate for a poor formulation of the task and not
a necessity.

self-supervised learning

In some applications, it’s possible to generate a huge number
of labeled examples by automatically extracting information
from existing data. This is known as self-supervised learning.

Imagine that an AI engineer collects a huge amount of text
from the internet. The engineer then extracts thousands of
sentences from it and removes the last token from each, turn-
ing it into the label. The result is a large number of examples
of how to guess the next token from the previous ones, which is
exactly what LLMs need.

Suppose a sentence in the data is “The Eiffel Tower is in
Paris.” The engineer generates the training examples by using
the previous process, as shown in figure 1.10.

The EiffelThe Eiffel TowerTower

The Eiffel TowerThe Eiffel Tower isis

The Eiffel Tower isThe Eiffel Tower is inin

The Eiffel Tower is inThe Eiffel Tower is in ParisParis

Input Desired output

Input Desired output

Desired outputInput

Desired outputInput

Figure 1.10 Training
examples are generated
by subdividing existing
sentences and turning the
last token in each into the
desired autocomplete label.

Afterward, supervised machine learning is used to train the
LLM from these examples. Machine learning is still super-
vised, because it’s based on examples of how to do the job. But
we say it’s “self” supervised to indicate that the labels were gen-
erated automatically from our original data source as opposed
to obtained elsewhere, such as through manual labeling.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

42 How AI works

This trick works only when we can formulate the task as
learning to reconstruct a corrupted input. In the case of LLMs,
we artificially corrupt the input by removing the last token and
then ask the LLM to reconstruct it by guessing that token. The
fact that we can use this trick is probably one of the main rea-
sons for LLMs’ success, as it’s possible to generate a huge num-
ber of training examples without manual labeling.

This isn’t the case, however, with most ML applications. For
example, when building a model for image categorization, we
cannot use the self-supervised trick. Suppose our data contains
a picture of a strawberry. The label “strawberry” is not available
inside the picture, so we can’t remove it and then ask the model
to guess it as we do with LLMs.

reinforcement learning

In an alternative, less common ML paradigm, the computer
learns by trial and error. The training algorithm picks random
actions, tries them out, and learns from feedback collected
afterward. For example, suppose an advertising platform wants
to create a model of a user’s interests using machine learning.
The advertiser first shows random ads every time the user vis-
its a webpage and registers whether the user clicked on the
ad or not—this is known as exploration. Over time, the training
algorithm identifies the kinds of things the user is interested
in based on their clicks. Once the advertiser has an idea of the
user’s interests, it starts showing relevant ads to them—this is
known as exploitation.

The technique of learning by trial and error is known as rein-
forcement learning, or RL. One of the major research topics in
this field is how to balance exploitation and exploration over
time. For example, after user preferences are discovered, the
advertiser may still want to sometimes show random ads to the
user to discover new preferences.

While RL has been successful in some applications, its
use in a commercial setting is rare. This is probably because
learning by trial and error is a rather wasteful way of learning

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 43Machine learning

compared to supervised learning, in which we directly provide
the machine with examples of how to do the job.

With the rise of LLMs, there is a new flavor of RL that has
become popular, called reinforcement learning with human feed-
back, or RLHF. This technique is used to improve an existing
LLM. It works as follows: an army of human workers are asked
to manually create thousands of imaginary LLM prompts and
pairs of alternative LLM outputs, and they are asked to label
the alternative outputs based on preference (“best” versus “not
best”). Afterward, AI engineers train a supervised ML model
to guess whether an LLM output is good or bad based on these
manually labeled examples. The result is an LM model, called
the reward model, which is especially designed to determine
whether an LLM’s output is good or bad.

Afterward, the AI engineers run a reinforcement learning
algorithm to refine an existing LLM. The algorithm generates
random LLM outputs and determines how good they are using
the reward model. The feedback from the reward model is
used to slightly improve the LLM. This algorithm progressively
refines the LLM by better aligning it with what the human
labelers considered good outputs.

unsupervised learning

Our final machine learning category is unsupervised learning. In
this paradigm, we do not supply the machine with examples of
the “right output.” In fact, there is no such notion because the
task doesn’t have a single right answer. Unsupervised learning
is typically used to explore data and find patterns in it.

The most common example of unsupervised learning
is clustering, in which we try to group similar data points
together. For example, we may want to group similar patients
together based on their medical records to create a handful of
imaginary representative patients and analyze them. There is
no notion of the “right group” a patient should belong to. We
could group them into two, three, or five clusters, and there is
no conclusive way of determining which number of clusters is
the right one.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

44 How AI works

Because there is no uniquely right model, we cannot mea-
sure the success of an unsupervised learning algorithm in a
clear-cut way. That’s why people often suggest a multitude of
rules of thumb to use unsupervised learning. Some of them are
poorly defined. For example, they suggest creating many dif-
ferent models, calculating a metric for each, plotting a curve
with the results, and finally, picking the model at the “knee” or
“elbow” of the curve. The popular book The Elements of Statisti-
cal Learning (2nd ed., Penguin, 2009) by Hastie et al. explains
the conundrum as follows:

With supervised learning there is a clear measure of success, or lack
thereof, that can be used to judge adequacy in particular situations
and to compare the effectiveness of different methods over various
situations. . . . In the context of unsupervised learning, there is no
such direct measure of success. It is difficult to ascertain the validity
of inferences drawn from the output of most unsupervised learning
algorithms. One must resort to heuristic arguments not only for mo-
tivating the algorithms, as is often the case in supervised learning
as well, but also for judgments as to the quality of the results. This
uncomfortable situation has led to heavy proliferation of proposed
methods, since effectiveness is a matter of opinion and cannot be
verified directly. (p. 486)

In my experience, many of the people who try to use unsuper-
vised learning need supervised learning instead.

For example, I know an engineer from a hospital who was
trying to predict the severity of a patient’s disease. He used a
clustering algorithm to automatically group patients together
into a handful of representative patients. Afterward, when a
new patient arrived, he tried to triage them based on their clos-
est cluster.

It didn’t work well, and the engineer was quite frustrated.
He’d tried several popular approaches to create good clusters.
He asked me, “How can I find high-quality clusters, so that tri-
age works well?” I explained to him that there is no such thing;
you cannot evaluate the quality of clusters independently
of what you want to use them for. What he really needed was

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 45Machine learning

supervised learning trained on pairs of patient records with
their expected triage outcomes.

Note that sometimes people use the term “unsupervised
learning” to refer to supervised learning without manually gen-
erated labels, which only adds extra confusion to the matter.

How LLMs are trained (and tamed)

The first LLMs were built using only self-supervised learning.
The AI engineers collected a huge amount of text from the
internet and generated training examples automatically using
the process described above (“Better safe than sorry” / “Better
safe than” / “Sorry”). One popular source of data was Com-
mon Crawl, a database that contains a huge amount of text
gathered from all over the internet. Another popular source of
text was Books3, a database of 190,000 books. Note that a lot of
this data was collected without authorization from its authors;
we’ll return to this controversial topic later.

In a 2018 paper, OpenAI researchers revealed that their
largest model until then, GPT-2, managed to perform impres-
sive tasks just by using self-supervised learning (Redford et al.,
2019). This promising result made them very ambitious about
this approach. They speculated that the large amount of data
available on the internet combined with self-supervised learn-
ing could lead to LLMs that learned to perform all sorts of
tasks:

The internet contains a vast amount of information that is pas-
sively available without the need for interactive communication.
Our speculation is that a language model with sufficient capacity
will begin to learn to infer and perform the tasks demonstrated in
natural language sequences [e.g., asking the LLM to translate or
summarize text] in order to better predict them [guess the next word],
regardless of their method of procurement.

In addition, they argued that the task of guessing the next word
encompassed many other tasks, so it was generally enough to
build really powerful LLMs. By using jargon from the math-
ematical optimization field, they explained that the “global

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

46 How AI works

minimum” (the best solution) to the next-token-prediction
task coincided with the “global minimum” (the best solution)
to perform all sorts of other tasks. So, striving to find the best
solution to the next-token-prediction task was equivalent to
striving to find the best solution to other tasks.

But enthusiasm didn’t last long. While LLMs trained using
the self-supervised approach worked very well in many cases,
they also erred badly in others. In addition, sometimes they
generated inappropriate outputs. Researchers from OpenAI
discussed the problem in a 2022 paper (available at https://
arxiv.org/pdf/2203.02155):

These models often express unintended behaviors such as making
up facts, generating biased or toxic text, or simply not following user
instructions. This is because the language modeling objective used
for many recent large LMs—predicting the next token on a webpage
from the internet—is different from the objective “follow the user’s
instructions helpfully and safely.”

As this quote illustrates, the researchers attributed the prob-
lem to a misalignment between what we really want from
LLMs—produce factual, appropriate text—and what they’re
trained to do—guess the next token according to text col-
lected from the internet.

The OpenAI researchers proposed a solution to this prob-
lem, called InstructGPT (https://arxiv.org/abs/2203.02155),
which trains the LLM in four steps. First, the model is trained
the usual way by using internet data in a self-supervised way.

Second, human workers are hired to manually write thou-
sands of examples of input prompts and their corresponding
desired outputs. These manually written examples provide extra
training data to help improve and “tame” the model, for exam-
ple, by showing it how to perform popular tasks, have two-way
conversations, and refuse to answer inappropriate questions.
According to a Time article, “OpenAI used Kenyan Workers on
less than $2 per hour” for the job of labeling data (https://mng
.bz/mGP8). This goes to show that training high-performing
LLMs is more manual than it seems at first sight.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2203.02155
https://arxiv.org/pdf/2203.02155
https://arxiv.org/abs/2203.02155
https://mng.bz/mGP8
https://mng.bz/mGP8

 47Machine learning

Third, the existing LLM is fine-tuned using the manually gen-
erated data. This means that its parameters are slightly adjusted
through a few extra rounds of training with the new examples.

The fourth step is to use reinforcement learning with human
feedback to refine the LLM even further (see the explanation
under “Reinforcement learning”). In this case, humans are
asked to manually rank alternative LLM outputs based on their
quality, which provides feedback to the training algorithm to
improve the LLM.

ChatGPT was the first popular model trained using steps
1–4. This turn of events may have caused some serious disap-
pointment among those who believed that the highest per-
forming LLMs would be created just from data collected from
the internet, without any manual labeling.

A note on privacy
As people use LLMs, their conversations may be recorded by
the LLM provider. The resulting data may be used to improve
models, either automatically—by generating new training data
and fine-tuning the model—or manually—by having employ-
ees identify recurring problems faced by users and come
up with ways of fixing them. Some apps such as ChatGPT let
users rate answers with a thumbs up or thumbs down, and
they sometimes ask users to rank alternative answers, which
might be later used to improve the LLMs.

You should be careful if you include sensitive information within
an LLM’s prompt, as it might be seen or used by the staff who
works on creating and improving LLMs. You’ll probably be able
to opt out from your prompts being recorded. For example,
OpenAI’s website explains, “When you use our services for indi-
viduals such as ChatGPT, we may use your content to train our
models. You can opt out of training through our privacy portal.
. . . We do not use content from our business offerings such as
ChatGPT Team or ChatGPT Enterprise to train our models.”

Loss

Let’s move on to the topic of how ML models learn. The first
ingredient is a way of assessing the quality of a given model,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

48 How AI works

known as the loss or cost. This is used by the learning algorithm
to compare alternative models (with different parameter val-
ues) and find opportunities for improvement.

The loss calculates how inaccurate the outputs of a model
are compared to the training examples—the higher the value,
the worse the model.

Consider a training example, “The Eiffel” paired with its cor-
responding label “Tower”, which is used to train an LLM. Our
goal is to calculate a loss value that measures how far off the
LLM’s output is when given the input “The Eiffel”.

The loss is calculated by looking at the probability the LLM
assigns to the right token, such as “Tower” in this case. If the
probability is high, the loss is low, and vice versa. This is cal-
culated by taking the negative logarithm of the probability,
which is known as the cross-entropy loss or log loss. The loss is zero
if the probability of “ Tower” is 1.0 (−log(1) = 0), and it takes an
increasingly higher value the lower the probability assigned to
“Tower” (e.g., −log(0.2) = 1.6 and −log(0.1) = 2.3).

The loss over the entire dataset is calculated by adding the
individual losses of each of the training examples. The bet-
ter the model is at guessing the correct next token according
to the training data, the higher the probabilities it assigns to
them, and the lower the loss. Mission accomplished.

Note, however, that the loss measures the performance of the
model on training data. The AI engineer hopes that a lower loss
will translate to a higher performance on unseen, new data. But
this isn’t always the case; if the model suffers from overfitting, it
memorizes individual instances of the training data, thus achiev-
ing a low loss, but it doesn’t work well with other data.

Stochastic gradient descent

So far, we’ve described the following ML ingredients:

¡	The architecture of a model, which contains learnable
parameters (“blanks”)

¡	Training examples

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 49Machine learning

¡	A way to measure the quality of a model (the loss) accord-
ing to the training examples

The only remaining ingredient is an algorithm to find the best
way to adjust the parameters, so that the model yields the low-
est loss.

The most common algorithm for this, used to build LLMs
and many other ML models, is stochastic gradient descent (SGD).
It works as follows. First, all the parameters inside the model
are initialized using random values. So, this first version of the
model is completely useless at the task at hand—for example,
the next-token predictions of the LLM are nonsensical.

Afterward, the training algorithm selects a small number
of training samples, called a batch or minibatch, to calculate
a promising way of slightly modifying the model’s parame-
ters to reduce the loss on that batch. In calculus jargon, this
amounts to computing the gradient of the loss. We can think of
this as wiggling the parameters a little bit to find a promising
direction of change. Think of an optometrist slightly varying
your glasses prescription and asking you if you see better than
before. Afterward, the training algorithm slightly modifies the
model’s parameters according to the promising direction it
just found, hoping this will slightly improve the model.

Note that only a batch of training examples is used for this
calculation, instead of the entire training data. This is why the
algorithm is said to be stochastic, because you estimate the gra-
dient based on a sample of the data instead of all the data. This
makes the process much quicker.

The next step is to repeat the above operation using a sec-
ond batch of examples extracted from the training data. The
parameters are again slightly updated in the direction of the
gradient calculated on that batch. This process is repeated,
one batch at a time. At some point, the algorithm makes a full
pass over the entire training data, which is known as an epoch.
Usually, training is performed for several epochs, so there are
multiple passes over the entire training data. We don’t know
the exact number of epochs used to train popular LLMs, but

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

50 How AI works

OpenAI once revealed training a model for 100 epochs (see
https://mng.bz/5gy7).

The training process is very time-consuming. It can take days
to complete and multiple GPUs working in unison to do all the
number crunching.

Stochastic gradient descent helps progressively improve the
model, but it doesn’t guarantee finding the best possible model
of all. This is because making slight improvements in the direc-
tion of the gradient can get the model stuck in a local minimum.
This means that the model cannot be improved any further by
making small changes to parameter values. There may be a bet-
ter model, perhaps the globally best one, if parameters were
changed widely from their current ones, but this is like finding
a needle in a haystack.

It is kind of crazy that we can create a good LLM follow-
ing this process, as we must find effective values for billions
of parameters starting from completely random ones. It is
wild! The reason it works is that the model’s architecture is
laser-focused and tailor-made to the task (e.g., it enforces a
multi-headed attention mechanism with simple, linear projec-
tions and dot products). So, the model’s parameter values are
guided in the right direction thanks to their specialization to
perform the task in a human-prescribed way.

Note that using an existing model is much faster than train-
ing it. All the parameters are already defined, so you just need
to use the model once to calculate its outputs from its inputs.
Using an already created model is often described as inference
time to distinguish it from the much lengthier training time.

So far, we’ve covered AI within the context of LLMs. Under-
standing the gist of how AI works with other inputs, such as
images, isn’t a big leap from what we’ve already discussed. In
the next couple of sections, we’ll briefly comment on how AI
processes images and combinations of different data types. We
start with convolutional neural networks, which are a type of
architecture that did for image analysis what transformers did
for text analysis.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/5gy7

 51Convolutions (images, video, and audio)

Generative AI (and are LLMs generative?)
Since the proliferation of LLMs, the term “generative AI” has
become a popular way of describing any AI model used to
generate new content, such as text and images. In this sense,
LLMs are generative.

However, that’s not what “generative” used to mean in the tech-
nical ML literature, so you may find conflicting uses of the word.

In ML, a model is said to be discriminative when it calculates
the probability of a label given the input. We can describe this
mathematically as the conditional probability P(Label | Input).
This is exactly what LLMs calculate—the probability of the next
token given the previous ones—so they’re technically discrim-
inative models.

By contrast, a generative model in the ML literature is one
that calculates the probability of stumbling upon a certain
piece of data—both input and label. For example, if you give
the generative model a picture of a cat paired with the label
“cat,” it tells you how likely you are to ever find such an image
paired with such a label. So, it also assesses the plausibility
of the cat image itself. If you give the model a picture of a blue
cat paired with the label “cat,” it will probably output a low
probability, as you’re unlikely to find pictures of blue cats. In
mathematical terms, a generative model calculates P(Input,
Label), the joint probability of stumbling upon a specific input/
label training example. LLMs are not designed to do this, so,
strictly speaking, they’re not generative models (see discus-
sion at https://mng.bz/6eMR).

Convolutions (images, video, and audio)

Let’s now step away from text generation and take a quick look
at how AI models process other data types like images. In the
2010s, an ML model architecture known as convolutional neural
network, or CNN, became extremely popular for image catego-
rization. The input to a CNN is an image—represented as a
table of numbers, or pixels—and the output is a prediction of
the image’s category, such as “strawberry.”

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/6eMR

52 How AI works

CNNs were specifically designed to exploit a strong assump-
tion about image categorization: objects can be detected by the
presence of their parts (e.g., a cat can be identified by the pres-
ence of a tail, eyes, whiskers), but we don’t care so much about
the exact location of the parts (e.g., the direction in which a
cat’s tail points is irrelevant to recognize that it’s a cat).

A CNN applies a series of transformations to the input
image. The first transformation is a convolution, which is a
simple mathematical operation that filters the image and pro-
duces a slightly modified version of it. Convolutions can be
configured to do things such as

¡	Blur the image

¡	Highlight areas of a specific color

¡	Highlight areas of sharp color changes in given directions
(e.g., diagonal lines)

The exact filter applied by a convolution is configured by
defining the numbers in a small matrix. These values are
learnable parameters of the CNN, so the model decides which
filters to apply at training time instead of the engineer defin-
ing them beforehand.

The CNN performs multiple convolutions simultaneously
and combines the results into a new image. Afterward, the
image in downsampled, meaning that it is spatially shrunk. For
example, an image of size 1024 × 1024 pixels might be shrunk
to a size of 512 × 512 pixels by averaging the values of quadru-
plets of neighboring pixels. The effect of downsampling is to
make this image more abstract by removing objects’ precise
locations (as we said above, we assumed precise locations to be
unimportant in the context of image categorization).

New convolutions are applied to the resulting image, followed
by another round of downsampling. This is then done again and
again. As filters are applied over already filtered images, the
CNN can detect progressively complicated patterns. We could
imagine, for example, that at first, the CNN uses convolutions
to detect simple lines, then it detects pairs of parallel lines, then

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 53Multimodal AI

groups of parallel lines, then whiskers from those lines, and
finally, it detects cats from their whiskers. As the exact filters are
determined through machine learning, it’s hard to understand
the exact strategy used by CNNs to make predictions.

The end result of this process is an embedding that effec-
tively represents the content of the image in an abstract way.
This embedding is used to predict the probability of the image
belonging to each possible category. Mission accomplished.

CNNs are also used to transform images into other images of
the same size. This is useful, for example, when reconstructing
a damaged image or making any picture look like a Van Gogh
painting. A popular architecture, called U-Net, achieves this
in two steps. First, a usual CNN performs the above-described
transformations to shrink the input image into a smaller, more
abstract representation of its content. Afterward, another
CNN-like structure extracts the intermediate images produced
by the CNN and “stiches” them together to reconstruct a full-
size image in a different style.

CNNs have also become popular to process audio and video.
The principle is the same—the input goes through a series of
convolutions and downsampling operations until it’s trans-
formed into a more abstract representation.

Transformers have become the go-to architecture to process
text, and CNNs have become the go-to architecture to process
images, video, and audio. In the next section, we see how trans-
former and CNNs are combined in multimodal AI.

Multimodal AI

Some AI models, known as multimodal, are capable of consum-
ing or producing combinations of text, image, and audio. One
example is AI that generates images from a textual descrip-
tion, such as the popular Midjourney and DALL-E.

Multimodal AI models are architected by combining LLMs
and CNNs. There are myriad ways of combining them, so we’ll
only briefly describe two approaches, one to generate text from
images and one to generate images from text.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

54 How AI works

A popular image-to-text architecture uses an independently
trained CNN to generate an embedding for the input image.
The embedding is then transformed through a linear projec-
tion to make it comparable to the LLM’s embedding. For exam-
ple, the embedding generated by the CNN for an image of a cat
is turned into the embedding the LLM uses for the “cat” token.
The new embedding is then injected inside the LLM. Voilà!

Let’s now turn to a highly popular text-to-image approach,
known as a conditional diffusion model. In this approach, a
U-Net type of CNN is trained to reconstruct an image from a
corrupted version of the image and its textual caption (see fig-
ure 1.11).

“Cat sleeping on
wooden floor”

Model

Figure 1.11 A diffusion model is trained to improve a corrupted image
paired with its caption.

The model takes two inputs:

¡	A corrupted image (often called a “noisy” image)

¡	An embedding that represents the meaning of the text
caption (e.g., generated using a language model)

The text embedding is inserted into the model as an additional
input. This is often done, for example, by using an embedding
that matches the image size and inserting it as an additional
color channel, on top of red, green, and blue.

The CNN is trained to repair the damaged image. This is
performed in a supervised way. This requires a database with
numerous examples of corrupted images, their correspond-
ing captions, and their uncorrupted versions. The corrupted

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 55Multimodal AI

image is generated automatically by artificially corrupt-
ing a higher-quality image, and the captions are generated
manually.

Once this model is trained, it is capable of slightly improving
a bad image using the caption for guidance. Let’s see how this
model is used to create a brand-new image from a description,
as we do with Midjourney.

First, the model is fed a totally random image, which
resembles the static noise in a faulty TV set, together with the
caption of the desired image (see figure 1.12). The model then
produces a slightly “improved” version of this image, where we
see the desired object slightly pop up from the noise.

“Cat sleeping on
wooden floor”

Model

“Cat sleeping on
wooden floor”

Model

“Cat sleeping on
wooden floor”

Model

Figure 1.12 A diffusion model is used repeatedly to have a desired image
emerge from Gaussian noise.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

56 How AI works

The model is then used repeatedly on its own output, which
progressively enhances the image. After doing this many
times, the image becomes nice and sharp. This is usually
performed a fixed number of times decided in advance
through experimentation—the number of steps is set to be
large enough to guarantee that most images will be sharp by
the end. Some people are studying techniques to vary the
number of steps depending on the prompt (https://arxiv.org/
abs/2408.02054). We can think of this process as diffusing away
the “noise,” hence the term “diffusion model.” This technique
powers the most popular text-to-image models. Diffusion is
also the cornerstone of text-to-video models, which is a hot
research topic. For example, OpenAI’s video-generating model
called Sora uses diffusion (https://mng.bz/oKlD). Instead of
denoising an image, it is designed to denoise a patch, which is a
representation of a small piece of video over space and time. A
patch covers a small portion of the screen, such as the top-left
corner, across a few contiguous frames. Just like with images,
the model is used repeatedly to progressively enhance patches
using the prompt for guidance, starting from random noise. As
of this writing, the model hasn’t yet been released to the public.

This brings us to the end of our (relatively) quick rundown
of some of the fundamental elements of AI. Let’s draw things
to a close with a high-level reflection about machine learning
before we move on to the next chapter.

No free lunch

I’d like to wrap things up with a reflection about machine
learning. As we’ve seen throughout this chapter, ML requires
designing a dedicated architecture to each problem. For
example, transformers are used to generate text, CNNs are
used to analyze images, and creative combinations of the two
are used in a multimodal setting. Each model’s architecture
is based on assumptions of how to best solve the problem at
hand. For example, transformers force the model to calculate
attention scores, and CNNs impose using convolutions.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/abs/2408.02054
https://arxiv.org/abs/2408.02054
https://mng.bz/oKlD

 57Summary

Every ML milestone has been attained thanks to the inven-
tion of a new type of architecture that does a better job than
previous ones at the task at hand. For example, transformers
replaced LSTMs, and there was a boom in AI’s performance at
text generation. Progress is made when we tailor architectures
to specific tasks in a creative and useful way. So, current AI is
about designing tailored solutions to each problem and not
about devising a general approach that works on everything.

In fact, the No Free Lunch Theorem of machine learning
says, in simple terms, that there is no universally best architec-
ture that is optimal for all problems (see David Wolpert, 1996,
“The lack of a priori distinctions between learning algorithms,”
Neural Computation 8.7: 1341–1390). Instead, each problem
requires a dedicated architecture.

Sometimes, we get the impression that machines learn by
themselves and that current AI is a general approach. In reality,
we help the machine learn. And we help a lot.

Summary

¡	LLMs are designed to guess the best next word that com-
pletes an input prompt.

¡	LLMs subdivide inputs into valid tokens (common words
or pieces of words) from an internal vocabulary.

¡	LLMs calculate the probability that each possible token is
the one that comes next after the input.

¡	A wrapper around the LLM enhances its capabilities. For
examples, it makes the LLM eat its own output repeatedly
to generate full outputs, one token at a time.

¡	Current LLMs represent information using embedding
vector, which are lists of numbers.

¡	Current LLMs follow the transformer architecture, which
is a method to progressively contextualize input tokens.

¡	LLMs are created using machine learning, meaning
that data is used to define missing parameters inside the
model.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

58 How AI works

¡	There are different types of machine learning, including
supervised, self-supervised, and unsupervised learning.

¡	In supervised learning, the computer learns by example—
it is fed with examples of how to perform the task. In the
case of self-supervised learning, these examples are gener-
ated automatically by scanning data.

¡	Popular LLMs were first trained in a self-supervised way
using publicly available data, and then, they were refined
using manually generated data to align them to the users’
objectives.

¡	CNNs are a popular architecture to process other types of
data, such as images.

¡	CNNs are combined with transformers to create multi-
modal AI.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

59

2Hallucinations

This chapter covers

¡	Hallucinations, one of AI’s most important
 limitations
¡	Why hallucinations occur
¡	Whether we will be able to avoid them soon
¡	How to mitigate them
¡	How hallucinations can affect businesses and why
 we should keep them in mind whenever we use AI

Chapter 1 provided an overview of how current AI works. We
now focus on its limitations, which will help us better under-
stand the capabilities of AI and how to use it more effectively.

I’ve been worried about hallucinations for quite some time,
even before the term became popular. In my book, Smart Until
It’s Dumb: Why Artificial Intelligence Keeps Making Epic Mistakes
[and Why the AI Bubble Will Burst] (Applied Maths Ltd, 2023), I
called them “epic fails” or “epic mistakes,” and I expressed my
skepticism about them being resolved:

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

60 Hallucinations

It seems to me that every time an epic fail is fixed, another one pops
up. . . . As AI keeps improving, the number of problematic cases
keeps shrinking and thus it becomes more usable. However, the
problematic cases never seem to disappear. It’s as if you took a step
that brings you 80% of the way toward a destination, and then
another step covering 80% of the remaining distance, and then
another step to get 80% closer, and so on; you’d keep getting closer to
your destination but never reach it.

It also seems that each step is much harder than the previous
ones; each epic fail we find seems to require an increasingly compli-
cated solution to fix.

As hallucinations are one of AI’s major challenges, they
deserve a chapter of their own.

This chapter will first discuss what hallucinations are and
why they happen, which will help us better understand one
of AI’s main limitations so that we’re well prepared for them.
Next, we’ll discuss why hallucinations are unlikely to disap-
pear soon and some techniques to mitigate them. Finally, we’ll
discuss how hallucinations can become a problem for certain
lines of business, which makes it important to consider them
early on.

What are hallucinations?

Hallucinations are unsatisfactory outputs produced by AI with
three defining characteristics. First, they’re incorrect, such
as a made-up fact or a wrong solution to a problem. Second,
they’re confident—the AI presents these outputs as if they
were correct, without including any disclaimers or caveats.
Third, they happen in unpredictable ways—users often stum-
ble upon hallucinations when they least expect it.

The next few sections discuss three different types of hallu-
cinations with examples, followed by comments on hallucina-
tions’ overconfidence and unpredictability.

Made-up facts

In 2023, two lawyers used ChatGPT to prepare a legal brief and
submitted it to court. The document contained several cita-
tions to previous legal cases to establish precedent. However,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 61What are hallucinations?

these cases didn’t actually exist. They all sounded real, but in
fact, they weren’t. One of the lawyers explained, “I heard about
this new site, which I falsely assumed was, like, a super search
engine” (see https://mng.bz/nRdd). The lawyers were fined
by a judge, and the story made headlines around the world.

A group of Stanford University researchers studied LLM-
based products specially tailored to help lawyers do research.
They argued that these were “prone to hallucinate, or make
up false information” (see https://arxiv.org/pdf/2405.20362).
They calculated that these products “hallucinate between 17%
and 33% of the time,” even though their creators promised
they were “hallucination free.”

Hallucinations keep happening when you least expect it.
Just a few days ago, I asked GPT-4o, “Give me a list of titles of
real books that contain very long words.” Its answer was the
following:

 Here are some real book titles that contain very long words:

1 “Chargoggagoggmanchauggagoggchaubunagungam-
augg: Massachusetts’s Longest Place Name” by Jef-
frey L. Howard

2 “Antidisestablishmentarianism: The True Meaning of
the Word” by Marcus Scott

3 “Floccinaucinihilipilification and Other Thoughts on
Nothing” by Dr. Edward Greenfield

4 “Supercalifragilisticexpialidocious: The Making of a
Pop Culture Phenomenon” by K. H. Greene

5 “Pneumonoultramicroscopicsilicovolcanoconiosis:
The Story of a Rare Disease” by Judith Parks

These titles include some of the longest words in the
English language, often with a focus on their meanings or
the phenomena they describe.

None of these books really exist. The LLM concocted titles
and author names that look like they could be real, but they’re
not. Note that it assured me that these were real book titles.
(The whole conversation is available at https://mng.bz/RV1v.)

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/nRdd
https://arxiv.org/pdf/2405.20362
https://mng.bz/RV1v

62 Hallucinations

Completely made-up facts are one of the prevailing types of
AI hallucinations and perhaps the most dramatic. But let’s have
a look at two other types.

Misinterpretation

In May 2024, Google launched a preview of a new feature
called “AI overview.” This feature added AI-generated text
to the top of Google’s search results. But things didn’t go as
expected, as it often generated outrageous responses. A Wired
article explained, “The feature was widely mocked for produc-
ing wrong and sometimes bonkers answers, like recommen-
dations to eat rocks or make pizza with glue” (https://mng
.bz/gaKG).

Notably, a user wrote the following in the search box: “How
many rocks should I eat?” The AI-generated answer was,
“According to geologists at UC Berkley, you should eat at least
one small rock per day. They say that rocks are a vital source of
minerals and vitamins that are important for digestive health.
Dr. Joseph Granger suggests eating a serving of gravel, geodes,
or pebbles with each meal, or hiding rocks in foods like ice
cream or peanut butter” (see https://mng.bz/vKRa).

Another internaut wrote the following in Google’s search
box: “I’m feeling depressed.” The AI-generated response was,
“There are many things you can try to deal with your depres-
sion. One Reddit user suggests jumping off the Golden Gate
Bridge” (https://mng.bz/5gz8).

In these cases, the AI didn’t make stuff up. The cited informa-
tion was actually available online. Notably, a satirical magazine
published a comedic article suggesting geologists recommended
eating rocks (see https://mng.bz/4aXQ). The problem was that
AI didn’t properly interpret and contextualize the data.

The same has also been observed by users of the retrieval-
augmented generation (RAG) approach, in which an LLM is fed
with up-to-date documents relevant to the task (see chapter 1).
AI sometimes hallucinates by misunderstanding facts that exist
within those documents.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/gaKG
https://mng.bz/gaKG
https://mng.bz/vKRa
https://mng.bz/5gz8
https://mng.bz/4aXQ

 63What are hallucinations?

Incorrect solutions to problems

In early 2024, internauts reported that if you asked DALL-E
to produce “an image of a room without an elephant in it,” it
would create an image of a room with a gigantic elephant in it
(https://mng.bz/6e0p). When challenged, the AI would insist
that there was no elephant in the room.

I tried to reproduce this problem months later, and it didn’t
happen anymore. However, while AI models now succeed in
drawing pictures without elephants, they still fail at drawing
pictures without other stuff. Following a blog’s observation
(https://mng.bz/QDp4), I asked GPT-4o to “Draw a picture of
a man without a beard.” The output is shown in figure 2.1. I
repeated the experiment several times. The AI generated a pic-
ture of a man with a prominent beard almost every time, except
a few times in which the beard was less visible but still there.

Figure 2.1
An example
of AI drawing
what it is
explicitly told
not to

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/6e0p
https://mng.bz/QDp4

64 Hallucinations

This is an example of AI failing to perform a task correctly,
while reassuring the user about its correctness, which is
another common type of hallucination.

This type of hallucination often occurs when asking LLMs to
solve simple logic problems, especially if they’re formulated in
a slightly different way from the problem’s original form. Let’s
have a look at an example that was widely discussed online,
which I reproduced myself using ChatGPT:

 A farmer stands at the side of a river with a sheep. There
is a boat with enough room for one person and one animal.
How can the farmer get himself and the sheep to the other
side of the river using the boat in the smallest number of
trips?”

Here’s the LLM’s output (also available at https://mng.bz/
OBy2), which is incorrect because it includes too many trips:

 The farmer can get himself and the sheep to the other side
of the river in the smallest number of trips using the follow-
ing steps:

1 The farmer takes the sheep across the river and leaves
it on the other side.

2 The farmer returns alone to the original side.

3 The farmer takes himself across the river again.

Thus, the farmer can get himself and the sheep to the other
side of the river in three trips:

1 Trip 1: Farmer takes sheep to the other side.

2 Trip 2: Farmer returns alone.

3 Trip 3: Farmer crosses again.

So, the minimum number of trips required is three.

Note that river-crossing puzzles are popular, and their solu-
tions can be found online, but they usually require multiple
crossings. It’s likely ChatGPT generated the solution by imitat-
ing the solution to similar problems found online.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/OBy2
https://mng.bz/OBy2

 65What are hallucinations?

A group of researchers studied the performance of LLMs
at solving variations of “Alice has N brothers and she also has
M sisters. How many sisters does Alice’s brother have?” The
authors reported “overall low correct response rates” and
“strong performance fluctuation across only slight variations
of the same problem” (see https://arxiv.org/pdf/2406.02061).

Similar problems are observed when asking LLMs to help
with coding tasks. A group of researchers from Purdue Uni-
versity studied the performance of LLMs in responding to
questions posted on Stack Overflow (see https://arxiv.org/
pdf/2308.02312). They concluded,

Our analysis shows that 52% of ChatGPT answers contain in-
correct information and 77% are verbose. Nonetheless, our user
study participants still preferred ChatGPT answers 35% of the time
due to their comprehensiveness and well-articulated language style.
However, they also overlooked the misinformation in the ChatGPT
answers 39% of the time.

They added, “ChatGPT rarely makes syntax errors for code
answers. The majority of the code errors are due to apply-
ing wrong logic or implementing non-existing or wrong API,
library, or functions.”

Another group of researchers studied the performance of
AI at generating text from images. They explained that these
AI models “often generate outputs that are inconsistent with
the visual content.” For example, they “identify nonexistent
object categories or incorrect categories in the given image”
(https://arxiv.org/pdf/2404.18930).

Overconfidence

Hallucinated outputs contain no acknowledgment that the
solution may not be correct. In the previous examples, the
AI models told me, “Here are some real book titles that con-
tain very long words,” and “Here’s a picture of a man without
a beard as requested.” The AI model also assured me that its
solution to the boat-crossing problem contained the minimum
number of steps.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2406.02061
https://arxiv.org/pdf/2308.02312
https://arxiv.org/pdf/2308.02312
https://arxiv.org/pdf/2404.18930

66 Hallucinations

In some cases, we can get AI to correct its outputs when we
point out the mistake in a follow-up prompt. The AI apologizes
and provides a better answer. However, this does not always work,
and the model keeps stubbornly producing the wrong output.
A research article (https://arxiv.org/pdf/2406.02061) explains:

We see strong overconfidence expressed by the models, where they
signal wrong answers in persuasive tone to be correct and produce
reassuring messages to the user about high quality and certainty of
their wrong answers. Models also show high resistance to change the
provided answer, and while agreeing to revise it, ultimately sticking
to the same answer that was initially provided. Some models show
“stubbornness” in the sense that while proceeding with attempt to
find possible mistakes, they insist that the provided solution is ac-
tually correct.

Unpredictability

I repeatedly asked ChatGPT, “Which one is higher, 9.11 or
9.9?” It always answered that 9.9 was higher. But when I asked,
“9.11 or 9.9—which one is higher?”, it answered that 9.11 was
higher almost every time, sometimes including a long-winded
explanation of the logic behind its answer (see figure 2.2).
Here’s a link to the conversation: https://mng.bz/2yma. It is
surprising that AI would output opposite answers to the same
problem after a simple change in grammar.

Figure 2.2 An example
of AI generating a
surprising output. The
output was different
when asking the
question, “Which one is
higher, 9.11 or 9.9?”

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2406.02061
https://mng.bz/2yma

 67Why does AI hallucinate?

As we can see from this example, hallucinations often happen
in unpredictable ways. Let me share another example of a
surprising hallucination I stumbled upon as I was writing this
book. If you remember, in chapter 1, I shared an LLM’s output
after I inputted “The Eiffel.” The initial response I obtained
was the following:

 It seems like your message may have been cut off. If you
were about to inquire about the Eiffel Tower, here's a brief
overview:

The Eiffenstein Tower is one of the most iconic landmarks
in the world and an enduring symbol of France. Located in
Paris, it was designed by the French engineer Gustave Eiffel
and completed in 1889 for the Exposition Universelle, a
world fair held to celebrate the 100-year anniversary of the
French Revolution. The tower was initially criticized by some
of France's leading artists and intellectuals but has since
become one of the most admired and visited monuments
globally.

Note that the response contains the made-up “Eiffenstein
Tower,” even though it mentions the “Eiffel Tower” before.
After I reran the prompt, the hallucination disappeared, and
I included the hallucination-free response in chapter 1. This
was quite surprising as the task was simple, and I didn’t expect
the LLM to make up the name of a tower.

LLMs are routinely fine-tuned to overcome well-documented
hallucinations, but others seem to always pop up. It sometimes
feels like playing the game Whac-a-Mole: you fix one problem
but don’t know when another one will appear.

Why does AI hallucinate?

It is tempting to think that hallucinations are just bugs requir-
ing a minor fix. However, the problem seems to run deeper
than that. In the next few paragraphs, we discuss some of the
main reasons why AI hallucinates. Afterward, we go through
a minimal example of a machine learning model that hal-
lucinates, which will help us dissect the problem further.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

68 Hallucinations

Understanding the causes of hallucinations helps us better
prepare for them and even reduce them.

Inadequate world models

As discussed in chapter 1, current AI learns from examples of
how to do the job. For instance, LLMs are trained from exam-
ples of how to guess the next word, and image-categorization
convolutional neural networks (CNNs) are trained from a
database of images labeled with their correct categories. Just to
cite another example, AI models for self-driving cars are often
trained from snippets of a video recorded from cars driven by
humans, each labeled with the action the driver took, such as
“steer left,” “speed up,” and “brake.”

Sometimes, learning to perform a task just by seeing an
example is straightforward. Consider the case of learning to
read a car’s license plates from a video. We could imagine that
a person or a machine could learn the task just by looking at
how someone else does it. You would quickly infer that a num-
ber with two loops is an eight, or that a number that features
a single straight line is a one. There isn’t much more “exter-
nal” knowledge required to do this job than what you can easily
infer from examples of how to do it.

Now, consider the case of driving a car on a busy road.
Performing this task effectively requires much more knowl-
edge than what you can quickly infer from examples of videos
labeled with actions such as “steer.” Follow me on a thought
experiment to make this point.

Imagine you’re driving on a motorway, and a flying umbrella
blocks your way. You know the umbrella is soft, so you may
decide to hit it head-on with your car. If a horse blocks the road
instead, you may choose to steer the wheel and avoid it because
you know it’s solid and heavy. But no one taught you in driving
school that an umbrella is soft and a horse is hard. Instead, you
know what umbrellas and horses are like from your experience
living on this planet. This experience has helped you build a
comprehensive world model that describes the world we live in,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 69Why does AI hallucinate?

including the solidity of objects. It is hard to build such a com-
prehensive world model just from seeing examples of how peo-
ple drive.

LLMs build an internal world model to a certain extent. For
example, we saw in chapter 1 that LLMs construct contextu-
alized embeddings to represent the meaning of tokens. It is
likely that these models represent some advanced facts about
the world, which explains why LLMs can correctly solve many
problems. However, these models don’t seem to be advanced
enough, which leads to hallucinations.

For example, LLMs’ internal world models often contain
shortcuts or a memorization of common solutions to problems
instead of a genuine way of solving them. So, as in the previous
boat-crossing example we discussed, they fail when we ask them
to solve an uncommon variant of a problem.

Deficient world models are also observed in other types of
AI. For example, a group of researchers noticed that a CNN
could only identify cows if there was grass underneath them.
Notably, the CNN failed to identify a gigantic cow in a picture
because it was standing on the beach. Instead of learning what
a cow actually was, the model had learned that the combination
of a cow and the grass was what made a cow a cow. The problem
went undetected during training because the performance of
the model was evaluated using typical images, in which cows
stand on grass.

Many similar problems have been observed with self-driving
cars. Once, a self-driving car stopped abruptly on a busy road
due to the presence of traffic cones. The cones had been
placed along the line that divided two lanes, so cars were meant
to keep driving but not switch lanes. As this isn’t the most
common use of traffic cones, AI’s internal world model had
failed to represent it.

World models: Theory vs. practice

A purist might tell you that, in theory, learning by example
should be enough to build the most comprehensive world

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

70 Hallucinations

models. All you need is a huge amount of varied data. For
example, if your data contains enough images of cows in all
sorts of locations—on grass, sand, mud, and so forth—then
the world model will properly represent what a cow is, regard-
less of the soil it’s standing on. Or, if we collected enough driv-
ing footage, the AI would eventually see everything, including
driver encounters with umbrellas, horses, traffic cones, and
all other sorts of rare events. Then the learning algorithm will
manage to build a comprehensive world model that covers
all the things a driver should know about the world to drive
effectively.

The issue is that, even though this is all very appealing in
theory, it doesn’t work very well in practice. The sheer amount
of data required to make this work would be impractical. Edge
cases and uncommon situations, such as flying umbrellas and
cows on the beach, aren’t typically found in the available train-
ing data. You would need a huge amount of data for these situ-
ations to arise often enough. Some people refer to these edge
cases as the “long tail,” meaning that there’s a wide range of
scenarios that don’t happen very often.

When I asked ChatGPT to list book titles with lengthy words,
my question was rather odd. It is unlikely that many people on
the internet are writing about this. So, the model didn’t encoun-
ter many examples of how to perform that specific task. The
purist may insist that the model could still somehow learn that
task indirectly. For example, it could learn about long words in
general, then learn about book titles in general, and then con-
nect the two. However, this doesn’t happen in practice.

Misaligned objectives

AI models are trained to pursue an objective. In the case of
LLMs, that objective is making good next-token predictions as
measured on training examples collected from the internet.

The problem is that this objective is not exactly what we want
to use LLMs for, which is to produce factual text and correct
solutions to problems. The two objectives are related—the

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 71Why does AI hallucinate?

most probable next token may often coincide with the most
factual one. However, these two objectives are not the same.

So, there is a wedge between what we train the model
for and what we want to use it for. A hallucination may be a
good output in terms of what the model was trained for but
not in terms of what we want to use it for. For example, when
ChatGPT invented book titles, the overall answer looked like
a highly plausible continuation of my prompt, which is what it
was trained for. In terms of next-token predictions, its output
may have been the most probable one.

As discussed in chapter 1, OpenAI acknowledged the
misalignment of goals as a source of hallucinations: “The
language modeling objective used for many recent large LMs—
predicting the next token on a webpage from the internet—is
different from the objective ‘follow the user’s instructions
helpfully and safely.’” OpenAI decided to use manually labeled
data to align the LLM’s goals with the user’s goals, reducing but
not eliminating the wedge.

In a provocative article titled, “ChatGPT Is Bullshit” (https://
mng.bz/yWRe), researchers from the University of Glasgow
described the misalignment as follows:

Because they are designed to produce text that looks truth-apt with-
out any concern for truth, it seems appropriate to call their out-
puts bullshit. . . . It’s not surprising that LLMs have a problem
with the truth. Their goal is to produce a normal-seeming response
to a prompt, not to convey information that is helpful to their
interlocutor.

The authors also argued that using a RAG approach, in which
the LLM’s prompt is augmented with a database of up-to-date,
factual text, doesn’t solve the problem:

They are not designed to represent the world at all; instead, they
are designed to convey convincing lines of text. So, when they are
provided with a database of some sort, they use this, in one way or
another, to make their responses more convincing.

Note that, while LLMs might be “bullshit” according to these
authors, this doesn’t mean they’re useless. For example, a RAG

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/yWRe
https://mng.bz/yWRe

72 Hallucinations

approach may be useful to find answers from a database of
text, provided that the user is aware of the misalignment and
thus makes sure to double-check answers.

Toy hallucination example: Price optimization

If you charge too little for a product, you may get more sales
but less revenue in total, and if you charge too much, you
may collect more on each sale but lose too many sales. The
revenue-maximizing price is a sweet spot in between.

I’ve known of companies that used machine learning to try
to find the revenue-maximizing price for a product. However,
the resulting models hallucinated. Let’s see why.

Suppose an e-commerce store creates a machine learning
model to predict whether a visitor will purchase a product. The
inputs to the model are characteristics of the product (e.g.,
price, color, and star rating) and of the customer (e.g., age and
location). The output is the probability of buying:

Product features + Customer features -> Model ->
Probability customer will buy product

The model is trained in a supervised way using a historical
record of which products were bought by which clients, and
which ones were ignored. Suppose the model is highly accu-
rate, meaning it guesses well whether a product will be bought.

After building this model, the company uses it to find the
revenue-optimizing price of a certain product. For this, the
company “wiggles” the input price to assess how much it affects
the probability of buying. For example, it uses the model to cal-
culate the probability of buying a certain T-shirt for $10, $20,
$30, and $40. This lets the company find the revenue-maximiz-
ing price.

NOTE The revenue-maximizing price is the one that
maximizes the probability of buying the product times
its price (Expected revenue = Probability of buying ×
Price).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 73Why does AI hallucinate?

Unfortunately, I’ve seen this kind of model hallucinate about
the probability of buying when the price is varied. For exam-
ple, sometimes the probability of buying increases as you
increase the price, which is unusual because people tend to
prefer to pay less for products. Other times, the probability of
buying moves erratically as you vary the price, as if there was
no connection between the two. Or the model outputs a high
probability of buying a $10,000 T-shirt.

One of the reasons this happens is that the training data
doesn’t usually contain examples of the product being sold
for different prices, as companies don’t experiment too much
with varying prices. For instance, a T-shirt may have always been
priced at $30 in the past.

Consequently, the model struggles to learn anything about
selling the products for alternative prices. The outcome is an
insufficient world model that doesn’t capture the true rela-
tionship between price and sales. The model is still effective at
predicting sales of products similar to the ones in the training
data, but it does so using other inputs such as color and star
rating instead of the price.

When this company uses the model to analyze prices, it also
suffers from a misaligned objective. The model was trained for
one thing (i.e., predict whether a product will be bought) and
used for something else (i.e., analyze the effect of varying prices
on sales).

Note that because of the misalignment of objectives, there is
no “loss” during training associated with the hallucinated out-
puts (see chapter 1). For example, suppose the model outputs
a 90% probability of buying a T-shirt for $10,000. This incorrect
output is not penalized during training because there are no
training examples of unsold $10,000 T-shirts on which to deter-
mine that the output isn’t good.

Unfortunately, I’ve seen many companies fall prey to this
type of hallucination. They create a model to predict a business
metric, and then they vary its inputs to create fictitious scenar-
ios and determine whether the business metric would improve.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

74 Hallucinations

Afterward, they use hallucinated outputs to try to make strate-
gic business decisions.

Will hallucinations go away?

Several impediments to solving hallucinations have been
raised. One of them is the amount of available training data.
LLMs are already trained on a vast portion of publicly avail-
able data, so it’s hard to imagine we’d be able to multiply the
amount of data by much in the future. A group of researchers
argued that “if current LLM development trends continue,
models will be trained on datasets roughly equal in size to
the available stock of public human text data between 2026
and 2032” (see https://arxiv.org/pdf/2211.04325v2). Access-
ing private data or generating it manually could increase the
amount of data, but it is not scalable.

In addition, we might need much more data than we think
to continue improving LLMs. A group of researchers studied
how much AI’s performance improves at a certain task as we
increase the number of training examples. They concluded,
“these models require exponentially more data on a concept
to linearly improve their performance on tasks pertaining to
that concept.”

In addition to problems with data, some people believe that
our current way of formulating AI tasks, such as autoregressive
LLMs, is, in itself, lacking. Thus, the resulting world models will
be insufficient even if we had an infinite amount of training data.

Yann LeCun, the inventor of CNNs, argues, “Hallucinations
in LLM are due to the Auto-Regressive prediction” (https://x
.com/ylecun/status/1667218790625468416). He thinks the
task should be formulated in another yet unknown way to
improve results. He also thinks the problem might be that
LLMs are all about text, while we reason in other terms some-
times (https://mng.bz/MDM8):

LLMs have no physical intuition because they are trained exclu-
sively on text. They may correctly answer questions that appeal to

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2211.04325v2
https://x.com/ylecun/status/1667218790625468416
https://x.com/ylecun/status/1667218790625468416
https://mng.bz/MDM8

 75Mitigation

physical intuition if they can retrieve an answer to a similar ques-
tion from their vast associative memory.

But they may get the answer *completely* wrong. . . . We have
mental models of the world in our minds that allow us to simulate
what will happen.

That’s what gives us common sense.
LLMs don't have that.

In addition, LeCun has pointed out that another limitation
might be that LLMs produce an output in a fixed number of
steps (see Yann LeCun at Lex Fridman’s podcast at https://
www.youtube.com/watch?v=5t1vTLU7s40). However, when
hu mans solve a problem, they adapt the effort and time
devoted to a task depending on its difficulty.

By the looks of it, a new methodology must be invented to
get rid of hallucinations. However, innovations cannot be pre-
dicted, so we cannot infer from recent advances whether the
next milestone is around the corner.

Beware of anyone making predictions about inventions, as
these are rarely accurate. Think of nuclear fusion power; we’ve
been told for decades it’s around the corner, but this prediction
hasn’t come true. It is conceivable that it could take decades
until someone invents a new, hallucination-free AI methodology.

As hallucinations seem to be here to stay, it’s best that we
learn to live with them. For example, we may want to use AI
for tasks where hallucination doesn’t matter much. Or we may
want to take actions to mitigate them.

Mitigation
There is an increasing body of literature on techniques to miti-
gate hallucinations. Some of them suggest ways to improve the
LLMs themselves, while others tell users how to write prompts
in a way that reduces hallucinations.

In terms of improving LLMs, a common suggestion is
to curate the training data. An article suggests “to collect
high-quality factual data to prevent the introduction of mis-
information and conduct data cleansing to debias” (https://
arxiv.org/pdf/2311.05232). This doesn’t sound very scalable,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://www.youtube.com/watch?v=5t1vTLU7s40
https://www.youtube.com/watch?v=5t1vTLU7s40
https://arxiv.org/pdf/2311.05232
https://arxiv.org/pdf/2311.05232

76 Hallucinations

though, and hallucinations don’t seem to happen just because
of inaccurate training data. (I couldn’t find any online refer-
ences of the “Eiffenstein Tower.”)

Another approach is using manually generated feedback to
better align the models. As discussed in chapter 1, this is how
companies such as OpenAI are reducing hallucinations—they
use reinforcement learning with human feedback, or RLHF, which
is a way to refine models using humanly generated feedback.
While effective to some extent, this is not very scalable.

Some researchers have been trying to modify the train-
ing process to reduce hallucinations. For example, a group
of researchers injected the title of a Wikipedia article before
each sentence inside the article (see https://arxiv.org/
pdf/2206.04624). This turned a sentence like “He previ-
ously served as a U.S. senator from Illinois from 2005 to
2008” into “Barack Obama. He previously served as a U.S.
senator from Illinois from 2005 to 2008.” This helped reduce
hallucinations.

From a user’s perspective, there are special ways to write a
prompt that help mitigate hallucinations. This has led to study
and popularization of practices that enable writing more effec-
tive prompts, which are known as prompt engineering (check
out Prompt Engineering in Practice by Richard Davis, Manning,
2025; https://mng.bz/avlX).

One popular prompt engineering technique, known as
chain-of-thought prompting, involves including a step-by-step
example of how to perform the task in the prompt, before ask-
ing the LLM to perform a similar task. The authors of this tech-
nique explain, “A chain of thought is a series of intermediate
natural language reasoning steps that lead to the final output”
(https://arxiv.org/pdf/2201.11903).

Here's an example of a chain-of-thought prompt:

 Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls
does he have now?

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2206.04624
https://arxiv.org/pdf/2206.04624
https://mng.bz/avlX
https://arxiv.org/pdf/2201.11903

 77Mitigation

 Roger started with 5 balls. 2 cans of 3 tennis balls each
is 6 tennis balls. 5 + 6 = 11. The answer is 11.

 The cafeteria had 23 apples. If they used 20 to make lunch
and bought 6 more, how many apples do they have?

This prompt includes an example of how to solve the prob-
lem before asking the LLM to solve another, similar problem.
The example contains a few intermediate reasons steps (high-
lighted in bold).

The inventors of this method showed that if the highlighted
sentences were not included in the prompt, the LLM solved
the problem incorrectly. However, if they were included, the
answer was correct. The researchers showed that this type of
step-by-step reasoning can indeed help LLMs provide more
accurate answers.

Using a RAG approach has also been observed to reduce
hallucinations, as the LLM can extract information from rel-
evant, domain-specific documents instead of just relying on its
internal representation of language. A group of researchers
explained (https://arxiv.org/pdf/2405.20362):

Including retrieved information in the prompt allows the model to
respond in an “open-book” setting rather than in “closed-book” one.
The LLM can use the information in the retrieved documents to in-
form its response, rather than its hazy internal knowledge. Instead
of generating text that conforms to the general trends of a highly
compressed representation of its training data, the LLM can rely on
the full text of the relevant information that is injected directly into
its prompt.

Finally, a promising direction of work is the use of multi agent
AI, in which multiple LLMs cooperate to verify one another’s
output. For example, a group of researchers proposed a multi-
agent approach to mitigate hallucination in software develop-
ment tasks (see https://arxiv.org/pdf/2307.07924). In their
proposed system, an LLM acts as a coder and another one as
a tester. Both are prompted to perform their respective duties
effectively. The coder LLM is asked to generate a piece of

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2405.20362
https://arxiv.org/pdf/2307.07924

78 Hallucinations

code, then the tester LLM is asked to evaluate the code and
point out problems, then the coder LLM is asked to refine its
code based on this feedback, and so on. The authors call this
“communicative dehallucination.” Sometimes this approach
improves results as the tester LLM correctly identifies errors.
Other times, however, the tester fails to identify mistakes or
generates incorrect tests.

In addition to trying to mitigate hallucinations, some peo-
ple have been studying ways of detecting them. One promising
way is to analyze the probabilities outputted by the LLM. If you
recall, LLMs output a probability value for each possible next
token, and the next token is sampled using those probabilities.
Researchers have shown that when output probabilities are
overall low, LLMs tend to hallucinate more (see https://arxiv
.org/pdf/2307.03987). This shows that an LLM’s lack of confi-
dence about its output is correlated with hallucinations. Thus,
the user can detect low-probability outputs and validate them.

Hallucinations can kill a product
The presence of hallucinations can sometimes harm the suc-
cess of certain sensitive products. For example, the customer-
service chatbot of a major airline provided hallucinated
information to a passenger on how to obtain a refund. The air-
line refused to proceed with the refund citing that the actual
conditions were different from what the chatbot had indi-
cated. A court ordered the company to honor the refund any-
way, saying that the airline “does not explain why customers
should have to double-check information found in one part
of its website on another part of its website.” The story made
headlines, and the airline disabled the chatbot soon after (see
https://mng.bz/galG).

The industry of self-driving cars has perhaps been the great-
est casualty of AI’s hallucinations. Once a booming industry,
now it is flailing, and its future is uncertain. One of the main
reasons is that self-driving cars keep making surprisingly bad
decisions due to hallucinations, especially in uncommon situa-
tions that aren’t present in the training data.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2307.03987
https://arxiv.org/pdf/2307.03987
https://mng.bz/galG

 79Hallucinations can kill a product

For example, in October 2023, a self-driving car hit a pedes-
trian in California right after she’d been hit by another car. The
pedestrian was visible in the camera’s sensors, yet the AI didn’t
classify her correctly. An engineering firm explained, “The
pedestrian’s feet and lower legs were visible in the wide-angle
left side camera from the time of impact to the final stop, but,
despite briefly detecting the legs, neither the pedestrian nor
her legs were classified or tracked by the vehicle” (see https://
mng.bz/eyAq). Instead of stopping, the self-driving car contin-
ued driving, dragging the pedestrian 20 feet.

The car in question had been manufactured by Cruise, one
of the foremost self-driving car companies and a subsidiary of
General Motors. After the incident, Cruise had its license to
operate in California revoked, and the company decided to
recall all its vehicles in the United States.

A month after the incident, it was revealed that Cruise cars
weren’t actually driving themselves as much as it appeared.
Instead, humans had to remotely intervene every 2.5 to 5 miles
to assist the vehicles (see https://mng.bz/pKlw).

A few months later, Waymo, which is Google’s self-driving
car initiative, was involved in a similar scandal. A Waymo car hit
a truck that was being towed in an unusual way. A few minutes
later, another Waymo car hit the same truck. Waymo explained
(https://mng.bz/OBga),

A Waymo vehicle made contact with a backwards-facing pickup
truck being improperly towed ahead of the Waymo vehicle such
that the pickup truck was persistently angled across a center turn
lane and a traffic lane . . . and a few minutes later another Way-
mo vehicle made contact with the same pickup truck while it was
being towed in the same manner. . . . We determined that due to
the persistent orientation mismatch of the towed pickup truck and
tow truck combination, the Waymo autonomous vehicle incorrectly
predicted the future motion of the towed vehicle.

As we can see from Waymo’s explanation, the manufacturers
attribute the problem to the truck being towed in an unusual
way, which made AI not recognize the truck as such. This is an
example of AI not coping with an edge case.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/eyAq
https://mng.bz/eyAq
https://mng.bz/pKlw
https://mng.bz/OBga

80 Hallucinations

As is often the case with hallucinations, Waymo engineers
took action to patch this specific problem with ad hoc actions.
Waymo explained, “After developing, rigorously testing, and
validating a fix, on December 20, 2023, we began deploying
a software update to our fleet to address this issue.” But what
about other unusual problems Waymo cars haven’t been spe-
cifically patched to deal with? What if a truck is painted with an
unusual color or a pedestrian is wearing an unusual wig?

Applying patch after patch doesn’t seem to be working well
for the industry, as problems persist, and some companies are
giving up. A Bloomberg article declared, “Even after $100 bil-
lion, self-driving cars are going nowhere” (https://mng.bz/
YDja). Uber, Lyft, Ford, and Volkswagen have all abandoned
their self-driving initiatives. The remaining contenders, Cruise
and Waymo being among the most important ones, keep mov-
ing their goalposts. Unless we discover a new AI methodology
that doesn’t hallucinate, they’ll probably have to keep moving
them.

Living with hallucinations

Because hallucinations might remain part of AI for quite some
time, it’s best to learn how to live with them. We should keep
them in mind from the very start when we use AI or build an
AI-related product. In chapter 4, we’ll discuss that there are
many AI applications in which hallucinations aren’t a big prob-
lem, so we have the highest chances of building a successful
AI product. In other cases, in which hallucinations matter, we
should assess their effects and think of mitigation and detec-
tion strategies early on.

Summary

¡	Hallucinations are confidently wrong outputs generated
by AI.

¡	Common types of hallucinations are made-up facts,
misinterpreted information, and incorrect solutions to
problems.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/YDja
https://mng.bz/YDja

 81Summary

¡	One cause of hallucinations is that AI’s internal world
model is insufficient to describe how our world operates.

¡	Another cause is that AI models are often trained to do
one thing and used for something else—they’re mis-
aligned with our goals.

¡	Hallucinations are not going away anytime soon because
this would require modifying prevailing machine learning
methods in a yet-unknown way.

¡	Hallucinations are sometimes unacceptable or unsafe
for users, which can deeply hurt a product’s chances of
success.

¡	Hallucinations can be mitigated by using prompt engi-
neering techniques, and they can be detected sometimes.

¡	We must keep hallucinations in mind throughout the life
cycle of an AI-related product.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

82

3Selecting and
evaluating AI tools

This chapter covers

¡	Distinctions among different types of AI, or ways
 of using AI, and how to select the most
 appropriate one
¡	How to assess AI’s performance and select
 models
¡	Common ways to measure AI’s performance at
 a task

This chapter provides guidance on selecting an AI model or
tool and assessing its performance at a given task. We kick off
by discussing three common distinctions between different
types of AI: proprietary versus open source AI, off-the-shelf ver-
sus fine-tuned AI, and AI apps versus foundation models. We
explain what these mean and how to pick the most suitable
type. Afterward, we discuss a common process to assess AI’s
performance, which uses different datasets for validation and
testing. We also discuss some common performance measures
such as accuracy. The appendix includes a catalog of popular
generative AI tools.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 83Proprietary vs. open source

Proprietary vs. open source
In proprietary AI, the user isn’t allowed to modify or even see
the code that powers the underlying ML models. The inner
workings of the technology are kept secret to prevent oth-
ers from copying it. One common way of using proprietary
AI is through customer-facing apps such as ChatGPT. These
tend to charge users a monthly subscription to access the ser-
vice, although some provide a free tier that grants access to a
reduced number of features.

Another common way of using proprietary AI is via APIs. These
let users interact with AI programmatically to build apps that
utilize it. The AI software runs on a remote server behind closed
doors, so the user can’t see the code. APIs are typically billed based
on usage (e.g., the number of input and output tokens).

In contrast, in open source AI, the provider publicly dis-
closes the internal details of the ML model, including the code
to use it and the values of all the model’s parameters. The user
is often authorized to modify or customize the model if needed.
In addition, users can self-host these models using their own
infrastructure; for example, you can download a copy of the
model to your local computer or your own cloud computing
instance and run the code yourself. This doesn’t mean you must
self-host the model as it may also be available through APIs, but
you have the option to self-host it. An example of open source
AI is the family of Llama models produced by Meta, which are
openly available for download on multiple websites.

Open source AI is sometimes not quite as open as it may
sound. For starters, their manufacturers don’t disclose the data
used to train these models. So, while you can see the param-
eters of the final model, you’d be unable to train that exact
model yourself as you wouldn’t know which data to use. Mistral
AI, a company that provides open source AI, explains (https://
mng.bz/rKQy):

We do not communicate on our training datasets. We keep pro-
prietary some intermediary assets (code and resources) required to
produce both the Open-Source models and the Optimized models.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/rKQy
https://mng.bz/rKQy

84 Selecting and evaluating AI tools

Among others, this involves the training logic for models, and the
datasets used in training.

Note that, just like proprietary models, open source models
are improved (or aligned) by using reinforcement learning
with human feedback (see chapter 1). This is performed using
data created manually by human labelers, which remains
undisclosed in most cases.

The licenses to use open source AI often come with restric-
tions. For example, you are not allowed to use a Llama model—
even your own copy—for an app with more than 700 million
monthly users (see https://mng.bz/VVoG). In that case, you
would have to discuss licensing options with Meta, and you may
be asked to pay. Moreover, you’re not allowed to use a Llama
model or its outputs to improve other LLMs; in other words,
you can’t use Llama to build products that compete with it.

Building large ML models is expensive, so the most powerful
open source AI is built by for-profit companies that charge or
intend to charge for services. These services often include con-
sulting or access to premium, proprietary models.

How to decide

Proprietary AI is most suitable when you need a done-for-you
solution. Using proprietary AI doesn’t usually require spe-
cialized knowledge, such as machine learning, coding, and
DevOps.

One of the main reasons to use open source AI is to be able
to self-host it (run it on your own servers), which can provide
better transparency and governance, as you have full visibility
over the code and full control over which data exits the organi-
zation. Your company may not want to send any sensitive data
to a third party, such as OpenAI, or it may want to audit the
code to ensure it doesn’t do anything it’s not supposed to.

The cost of self-hosting AI, however, tends to be higher than
paying for APIs, as you need to maintain the required infra-
structure, so it is usually not cost-effective unless done at a very
large scale. You also need to be very careful—malicious open

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/VVoG

 85Off-the-shelf vs. fine-tuning

source models have been published in the past that executed
unintended code in the user’s machine (see https://mng.bz/
xKeX).

Another reason to use open source AI is customization. If
you want to modify a model (e.g., by fine-tuning it, which is
covered in the next section), then open source AI lets you do so
most freely. Table 3.1 summarizes the best uses of proprietary
and open source AI.

Table 3.1 Proprietary vs. open source AI

Proprietary AI
Best for . . .

Open source AI
Best for . . .

• Done-for-you solution

• Easy start

• No specialized knowledge
required

• Small-scale use, in which
pay-as-you-go AI is cheaper
than maintaining your own
infrastructure

• Self-hosting so that you enjoy bet-
ter governance and transparency

• Large-scale use, in which main-
taining your own infrastructure is
cheaper than pay-as-you-go AI

• Model customization (e.g.,
fine-tuning)

In terms of the quality of outputs, proprietary AI used to hold
an edge over open source AI. However, the gap has been nar-
rowing, and many people claim that open source AI is already
or will soon be as capable as its proprietary counterparts.

Off-the-shelf vs. fine-tuning

When it comes to improving the performance of generative AI
at a certain task, there are two main schools of thought. One of
them is using off-the-shelf models—without any alterations—
and it relies on prompt engineering techniques to make them
more performant and customized to your intended task. For
example, it has become popular to include a few demonstra-
tions of how to perform a task inside the prompt, which is
known as few-shot prompting (as opposed to zero-shot prompting in

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/xKeX
https://mng.bz/xKeX

86 Selecting and evaluating AI tools

which you don’t provide any examples). This helps disambig-
uate the request. Researchers from OpenAI argued (https://
arxiv.org/pdf/2005.14165):

If someone is asked to “make a table of world records for the 200m
dash”, this request can be ambiguous, as it may not be clear exactly
what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is de-
sired can be difficult).

The researchers went on to show that including a few exam-
ples of how to perform the task within the prompt steered the
LLM in the right direction.

In addition, the RAG approach (see chapter 1) has become
a popular way of providing the LLM with a large amount of
contextual information to help it perform a task. The increas-
ingly large context window of state-of-the-art LLMs has made
RAG particularly effective.

Improved prompts can help customize image generation.
For example, the image generator Midjourney lets users
upload images as part of their prompts to indicate the desired
style of the generated images.

The other school of thought suggests altering the model to
make it more suitable for the intended task, which is known as
fine-tuning. The model’s internal parameters are adjusted, so
you utilize an altered copy of the original model to generate
your outputs.

Fine-tuning requires training data, which is used to continue
the training of the original model for a little longer. For exam-
ple, to fine-tune an LLM, you must create a sample of text in
your intended style. This data is fed to the training algorithm
to refine the LLM. The amount of data used for fine-tuning is
usually much smaller compared to the data used to train the
original LLM—you may need just a handful of documents to
do so. Open source models are ideal for fine-tuning as you have
access to the entire model with its parameters, and you can
then alter the parameters to better suit your needs.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2005.14165
https://arxiv.org/pdf/2005.14165

 87Off-the-shelf vs. fine-tuning

Perhaps the biggest challenge of fine-tuning is overdoing
it—if you specialize your model too much on your fine-tuning
training data, it might end up memorizing specific examples
present in the data and not perform well with other instances.
This is known as overfitting.

There are a handful of techniques to prevent overfitting
(see the sidebar). You need to be mindful of these techniques
and configure the fine-tuning algorithm appropriately to pre-
vent overfitting. We’ll discuss later in this chapter how you can
use validation and test sets to evaluate and compare different
AI models, which can help select the best strategy to fine-tune
a model and ensure the final model hasn’t overfitted the data.

Techniques to control overfitting
Early stopping—You train the model on your fine-tuning data
only for a few iterations. You stop once performance stops
improving, as measured on a separate piece of data (called
the validation set).

Limited scope of updates—You only allow some parts of the
model to be updated. For example, one popular method called
LoRA inserts small layers with new learnable parameters into
the model, while keeping its original parameters intact.

Regularization—You add a term to the loss function that
penalizes too high or too low parameter values. This reduces
the risk of overfitting by preventing parameters from being
overly specialized to specific training examples.

Dropout—Pieces of the model are randomly removed on each
iteration of the training process, which prevents internal units
of the model from overly specializing to the training examples.

A method known as LoRA has become popular for fine-tuning
(see https://arxiv.org/abs/2106.09685). LoRA inserts small
layers with new learnable parameters to adjust the existing
model, instead of modifying its original parameters. This
makes fine-tuning faster as few parameter updates must be
calculated on each iteration. It also helps control overfitting as

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/abs/2106.09685

88 Selecting and evaluating AI tools

you only modify a limited number of parameters (see “Limited
scope of updates” in the sidebar).

The libraries developed by Hugging Face are very popu-
lar for fine-tuning existing models (https://huggingface.co/
docs/trl/main/en/index). Hugging Face also contains a large
inventory of open source models you can fine-tune. Many users
run their fine-tuning using Jupyter notebooks connected to
cloud-computing instances. Google Collab is particularly com-
monly used for this, as it provides easy-to-access notebooks and
lets you use some of its computing power for free, which might
be enough to fine-tune some models.

Fine-tuning requires some specialized machine learning
knowledge, so I recommend you learn the basics of ML to
get it right. You might also require infrastructure to run the
fine-tuning process, and you’ll then have to use your own
customized copy of the model.

In some cases, it is also possible to fine-tune proprietary AI.
For example, OpenAI lets you upload your own fine-tuning
dataset and create a fine-tuned version of its models, which you
can access through the API. The company charges a premium
for using fine-tuned models compared to using OpenAI’s orig-
inal models. The process is friendly, although not as customiz-
able as fine-tuning open source models.

How to decide
Prompt engineering is the most straightforward way of improv-
ing a model’s performance. Common advice is that it’s the
first thing you should try (check out https://mng.bz/AQZx
and https://mng.bz/ZlQA for more info). As context windows
have become large, prompts can be quite rich. So, it is often
advisable to use fine-tuning as a last resort when the output
still isn’t quite what you expect, even after trying multiple ways
of improving the prompts. Note, however, that prompt engi-
neering works best with the most advanced and costly models,
as they can adapt better to a wider range of tasks and fit longer
prompts within their context windows. Table 3.2 compares off-
the-shelf with fine-tuned AI.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://huggingface.co/docs/trl/main/en/index
https://huggingface.co/docs/trl/main/en/index
https://mng.bz/AQZx
https://mng.bz/ZlQA

 89Customer-facing AI apps vs. foundation models

Table 3.2 Off-the-shelf vs. fine-tuned AI

Off-the-shelf AI
Best when . . .

Fine-tuned AI
Best when . . .

• Prompt engineering tech-
niques work well.

• It is okay to use proprietary AI.

• You can afford large models.

• You prioritize ease of use.

• You want highly customized out-
puts, and you’ve exhausted other
options.

• You need to use smaller models
(for example, for self-hosting
them).

• You have ML expertise and access
to computing resources.

Fine-tuning can be a good choice for smaller models, for
example, because you want to reduce your costs. This is par-
ticularly relevant when you must self-host your own models. In
this case, using a small, fine-tuned model might be more effec-
tive than using prompt engineering with a larger model.

Customer-facing AI apps vs. foundation models

Customer-facing AI apps help final customers perform tasks.
These include general-purpose commercial chatbots such as
ChatGPT and special-purpose apps such as GitHub Copilot
and Cursor, which help software engineers write code.

In contrast, foundation models are large, multipurpose AI
models. These models are used behind the scenes to power
customer-facing apps. For example, foundation models such as
GPT-4o are used to power customer-facing ChatGPT.

Some companies build both customer-facing apps and pro-
vide access to their underlying foundation models through APIs
so that software developers can build their own apps on top.

How to decide

Customer-facing apps are the most suitable choice when you
want AI to assist you in performing a specific task, as they’re
friendly to use and particularly tailored to the task. Founda-
tion models are best used as a building block when you want to

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

90 Selecting and evaluating AI tools

create your own app based on powerful AI. Table 3.3 compares
customer-facing AI apps with foundation models.

Table 3.3 Customer-facing AI apps vs. foundation models

Customer-facing AI apps
Suitable for . . .

Foundation models
Suitable for . . .

• Assistance with a specific task

• End users

• Powering AI-based apps

• Engineers

Model validation, selection, and testing

If you want to accurately compare and select AI models, it’s a
good idea to build a benchmark to assess their respective per-
formances. Also, for reasons that will become apparent soon,
we often overestimate machine learning’s performance, so it’s
good to follow a well-designed assessment process to prevent
bad surprises.

This section describes the ideal protocol to evaluate AI’s per-
formance at a task. In this protocol, AI models are built and
evaluated using three different collections of data, known as
datasets. In the following, we describe the role of each type of
dataset and how it should be used.

Training set

The training set is the dataset used to build the model. It con-
tains a large collection of examples of how to perform the task.
For example, for image generation, it comprises numerous
images paired with captions that describe their content. For
text generation, it comprises a large amount of text. A much
smaller training set is also used to fine-tune a model.

During training or fine-tuning, the training algorithm tries
to find model parameters that minimize the loss on the train-
ing set (see chapter 1). The loss is a mathematical function
that quantifies how far off the model is from performing the
required task well, such as predicting the next token in the case
of LLMs.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 91Model validation, selection, and testing

The loss is usually designed to have nice mathematical prop-
erties, such as differentiability, so it’s not always the most intui-
tive way of understanding a model’s performance. In addition,
the loss does not always quantify how good the model is at your
intended task. For example, if you want to use AI to solve cod-
ing problems, the training loss does not explicitly quantify its
coding abilities; instead, it quantifies how well it autocompletes
text, which is only indirectly related to coding abilities.

You don’t have to worry much about creating a training set
unless you’re fine-tuning a model or training one from scratch.
However, you might need to be mindful of what data was used
for training when creating the validation and test sets (more on
this in a minute).

Validation set

The validation set is used to compare the performance of dif-
ferent models. For example, you could use a validation set to
compare the performance of GPT-4o and Llama 3 at perform-
ing a task. This helps you pick the best model, which is known
as model selection.

The performance on the validation set is usually calculated
using a measure close to your actual business objective. For
example, you could calculate how often the model solves cod-
ing problems correctly. Note this is often different from the loss
function used for training or fine-tuning the model. There’s
a list of common performance measures later in this chapter.

It’s important that data in the validation set is not present
inside the training set. Otherwise, you might overestimate
the model’s performance. This is because a poor model that
overfits the training data (it memorizes specific instances)
may go undetected, as some of the memorized data will also
appear in the validation set it’s evaluated on. If the validation
set is included in the training set, it’s a bit like an exam that
contains questions present verbatim in the textbook—students
could memorize answers without genuinely learning and pass
the exam.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

92 Selecting and evaluating AI tools

You need to be particularly careful about this when using
LLMs as they’re trained on a huge amount of publicly avail-
able data that includes solutions to many problems. Suppose
you want to use an LLM to help you solve crossword puzzles.
You create a validation set by gathering clues from real New York
Times crosswords published in the past. You then count how
often the LLM identifies the right word based on the clues.
The problem is that there are numerous websites that explic-
itly provide the solutions to all past New York Times crosswords,
clue by clue. So, at least in theory, an LLM could memorize the
exact solution to each past clue. Your validation data would
thus assess the LLM’s performance at solving problems whose
solution it had the answer to. A better way of doing this would
be to create a validation set containing new clues that haven’t
appeared in past puzzles. This way, the LLM wouldn’t be able to
“cheat.” Alternatively, you could make sure that the puzzles in
the validation set were published after the LLM’s training data
cut-off date.

The validation set can also be used to help you make high-
level decisions when you’re training or fine-tuning your own
model. For example, you can train two models with different
numbers of layers or different learning rates (how much the
model’s parameters are updated on every training iteration),
and then pick the model with highest performance on the vali-
dation set. You could also use a validation set to compare differ-
ent prompt engineering approaches.

Test set

Using a validation set is not enough to properly assess a mod-
el’s performance. Because you’re specifically selecting the
model that works best on the validation set alone, you might
get an overly optimistic idea of its performance. After all, you
discarded the models that weren’t as good on that specific
piece of data. What if the selected model only works well on
the validation data by chance and is not a better model in
general?

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 93Performance measures

So, after you’re done picking the best model using the
validation set, you must perform a final check using another
dataset, called the test set. The test set gives you an idea of the
model’s performance on data that has genuinely never been
used to make modeling decisions. This final assessment is a san-
ity check.

The test set can only be used once. If after the test you find
performance disappointing and want to update the model or
consider alternatives, you must collect a new test set to perform
a new assessment. Otherwise, you end up using the test set
repeatedly for model selection, so it turns into a validation set.

It is up to you to choose how thorough you want to be when
following this process. I know of hedge funds that are very
stringent about following it, as a lot of money is at stake. For
example, they try not to even look at the data inside the test set
to, say, plot a graph. This way, they prevent knowledge about
the test data from creeping into modeling decisions, so the test
data is as independent as possible.

Performance measures

This section describes some common performance measures
that can be used to evaluate AI’s performance at an intended
task.

Accuracy

Accuracy is the percentage of tasks performed correctly. For
example, 90% accuracy means that 9 out of 10 solutions are
correct, as measured on the validation or test sets.

Accuracy is commonly used for classification tasks. For exam-
ple, it is often used to assess how good AI is at categorizing an
image or detecting a tweet’s sentiment. You can also use it for
other problem-solving tasks. For instance, you could use accu-
racy to measure an LLM’s ability to solve coding problems—
you’d need to count the number of correctly solved problems
and divide it by the total number of problems in your validation
or test set.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

94 Selecting and evaluating AI tools

Precision and recall

In information retrieval, we are interested in identifying rel-
evant instances out of a much larger pool. For example, a
law firm may use a RAG approach to retrieve relevant legal
cases, according to a query, from a large database of past
cases. As another example, a bank may want to identify fraud-
ulent transactions out of a (hopefully) much larger pool of
transactions.

Two common performance measures are recall and preci-
sion. However, as we’ll discuss in a minute, neither can be used
by itself.

Recall measures how many relevant instances are identi-
fied. For example, 90% recall means that 9 out of 10 relevant
instances are retrieved, the remaining being missed.

Precision measures how relevant the retrieved instances are.
For example, 90% precision means that 9 out of 10 retrieved
instances are truly relevant, the remaining being irrelevant or
a false positive.

The challenge is that there is a tradeoff between precision
and recall. Consider a system that retrieves too much stuff. For
example, it could determine that almost every past legal case
is relevant to every query. This system would achieve very high
recall, perhaps close to 100%. However, it would be plagued
with false positives, so its precision would be very low.

In contrast, consider a system that doesn’t retrieve much
stuff at all. For example, it may consider almost every past
legal case irrelevant regardless of the query. This system would
achieve close to 100% precision, but its recall would be very
low.

So, to properly quantify AI’s performance at information
retrieval, you must somehow combine recall and precision
into a single measure. A popular way to do this is to calculate
the F-measure, which is the harmonic mean (a sort of average)
between precision P and recall R :

F = 2(P R)/(P + R)

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 95Performance measures

The higher the F-measure becomes, the higher the recall and
precision. It takes its maximum value when recall and preci-
sion are both 100%.

I’m not a big fan of the F-measure for two reasons. First, it
gives equal importance to recall and precision. This is arbitrary.
In reality, a business may not care equally about them. I advise
you to be wary of any promises of a measure that is universally
good for information retrieval, be it the F-measure or some-
thing else, as the relative appetite for precision and recall is
business specific.

Second, the F-measure is difficult to interpret, as the har-
monic mean is not very intuitive. Technically, the F-measure is
the reciprocal of the average of the reciprocals, which leads to
the above formula after some algebraic manipulation. Good
luck at communicating that to the business!

In my opinion, your best bet is to try to understand the busi-
ness’s preferences with respect to precision and recall and come
up with a custom measure that considers that. In the following
paragraphs, I explain one of my preferred ways of doing this.

The first step is to understand the business’s minimum desir-
able level of recall (it can also be done with precision, but we’ll
use recall here). For example, the business may want to make
sure to always recall at least 95% of relevant legal cases or fraud-
ulent transactions.

Afterward, you tune the system so that it attains the desired
level of recall. One way to do this is to have AI output relevance
as a numerical score, with values ranging from 0 (totally irrele-
vant) to 1 (totally relevant). Instances above a certain relevance
threshold are considered relevant. You pick the threshold that
helps you attain the desired level of recall. For example, it could
be that setting a threshold of, say, 0.7, above which an instance
is considered relevant, helps you attain the required 95% recall
(you can use the validation set to calculate the threshold).

Finally, you use the other measure—precision in this case—
to report performance. You can thus compare different models
(all attaining the desired recall) by how precise they are.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

96 Selecting and evaluating AI tools

Mean absolute error and root mean squared error
If you use AI to make a numerical prediction, such as the
amount of rainfall, you must calculate how far off predictions
are from actual values. One straightforward way of doing
this is to calculate the absolute difference between predicted
and known values in the training or test sets and average the
results. This is known as the mean absolute error, or MAE.

An alternative is to square the differences, which makes
them all positive, average the results, and then take the square
root of this number to (sort of) undo the effect of squaring.
This is known as the root mean squared error, or RMSE. This mea-
sure is quite popular owing to its nice mathematical proper-
ties (in particular, its differentiability) and because it penalizes
larger deviations more due to the squaring of the difference.
However, it’s not as easy to interpret as MAE.

Summary
¡	Proprietary AI is a good choice when you need an easy-to-

use, done-for-you solution.

¡	Open source AI is a good choice when you need to self-
host or customize models.

¡	If AI isn’t working quite the way you expect, or you need to
customize it, it’s usually recommended to still use off-the-
shelf models and enhance your prompts. If that doesn’t
work, you may want to fine-tune a model to your own data.
Fine-tuning is also a good option when you prefer to use a
smaller model.

¡	Customer-facing AI apps are designed to be friendly and
useful to end users. They’re powered by foundation mod-
els behind the scenes, which are large, general-purpose AI
models you can use to build your own AI-based apps.

¡	Make sure to use a validation set (with data not present
in the training set) to compare and select models. You
should also perform a sanity check afterward using a sepa-
rate test set, once you’ve selected your favorite model. Do
not use the test set twice.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 97Summary

¡	The accuracy of a model measures how often it performs
a task correctly. Measures such as precision and recall are
used for information retrieval (e.g., fetching relevant legal
cases according to a query from a much larger pool of legal
cases). Precision and recall cannot be used by themselves;
they must be combined in a way that matches business
preferences about their relative importance. You can use
the mean absolute error (MAE) or the root mean squared
error (RMSE) to evaluate the performance of a model at
predicting a number (such as the amount of rainfall).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

98

4When to use
(and not to use) AI

This chapter covers

¡	Questions that can help you decide whether to
 build a certain AI-based product
¡	Questions that can help you decide whether to
 use conversational AI as an assistant for a certain
 task and the challenges that may arise
¡	Caveats before writing software as an LLM
 wrapper so that an LLM does the heavy-duty work
 under the hood

This chapter includes a short checklist to use when
determining whether AI will work well for you. The list
contains seven questions, which I hope can help you unveil
the challenges and opportunities of using AI. The first three
questions are framed within the context of building an
AI-based, production-level product, such as a travel-planning
app based on a large language model (LLM). I hope these
questions will help you determine whether a certain AI-based
product could be successful before building it.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 99Building an AI-based product

The following three questions are framed within the con-
text of using conversational AI in daily work, such as an LLM to
help you code. I hope they will help you figure out whether AI
is a valuable addition to your workflow.

Finally, the last question concerns the new practice of
building apps in the form of LLM wrappers, in which an LLM
does the job under the hood, and the app manages the LLM.
This question is intended to help you determine whether this
approach will be suitable for your needs.

Building an AI-based product

This section contains three questions to be kept in mind when
building an AI-based product. The first question is business
related. It might seem odd to think about business when decid-
ing whether to use AI. However, in my experience, the failure
to do so leads to many unsuccessful AI projects. So, I think
that wondering whether there’s a business case for AI is a good
place to start. The other two questions are technical.

Am I putting AI before the customer?

An employee of a startup reached out to me once for advice.
His company, which built accounting software, was looking to
add a ChatGPT-based feature to its app, but they didn’t know
what that could be. He asked me if I could help him come up
with possible features based on ChatGPT that they could add.
I asked him why he wanted a ChatGPT-based feature in the
first place, and he explained, “We’re trying to raise funding,
and we cannot tell investors that we’re not using ChatGPT for
something.”

This is how many AI-based projects start—people decide
to use AI due to hype, FOMO, funding opportunities, and so
on, without necessarily knowing what they will use AI for. They
have a hammer, and they’re searching for nails.

The problem with this approach is that you often end up
building products that people don’t really need. A stellar exam-
ple is the fancy AI-powered supermarket checkout technology

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

100 When to use (and not to use) AI

developed by Amazon. This technology, called “Just Walk Out,”
was meant to use AI to analyze videos and automatically pre-
pare shoppers’ receipts—the shoppers didn’t need to visit a
checkout counter.

Amazon first developed a similar technology for its own
warehouses, which helped track items picked by workers from
shelves. After developing this technology, Amazon wondered
what else it could do. The company had a hammer, and it
started searching for nails.

The nail they came up with was the supermarket checkout
process. Instead of responding to an actual shopper need,
Amazon pushed this technology into grocery shopping, as if
the technology by itself would be appealing enough. Here’s an
excerpt from my book, Siliconned (Applied Maths, 2024), where
I discussed the problem:

The reception of the shops by the public was lukewarm. It appeared
that people didn’t care as much about fancy checkout technology
as they cared about finding the best shopping deals. A business
consultant explained, “Retailers must also provide competitive
pricing and an enjoyable customer experience. Just Walk Out
isn’t enough.” … I always struggled to understand what problem
Amazon was trying to solve for shoppers. Were shoppers really that
annoyed about checkouts that they’d flock to Amazon Go shops
just to avoid it? … If it was about reducing the cost of operating a
supermarket and thus offer better deals, it was also unclear how the
technology would accomplish that, as supermarkets with the Just
Walk Out technology required as many employees to run as regular
supermarkets with self-checkout machines, plus the cost of install-
ing and running the complicated technology.

As this technology didn’t seem to meet real needs, Amazon
ended up suspending its development and closing many of its
shops.

The increasing popularity of AI has led many people to
adopt an AI-first approach, in which they try to find use cases
for AI instead of first trying to understand what customers
want. For example, I know a company that created a team
exclusively dedicated to finding things to do with AI within the

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 101Building an AI-based product

organization. I also know companies that hired dozens of peo-
ple for newly created AI teams without knowing exactly what
these teams would do with AI—they thought that, as AI seemed
so promising, they would surely find something to do with it.

Another example of an AI-first approach is a large portion
of the self-driving car industry. Many self-driving car companies
were born because people observed that AI had become much
more powerful at image categorization, thanks to convolu-
tional neural networks. So, they thought it was the right time to
develop self-driving cars, and they raised billions from investors
promising big profits. In many cases, however, these startups
didn’t know which problem self-driving cars would solve for
customers, or how they’d turn them into commercially viable
products. Often, the approach was, “If you build it, they will
come.”

While this approach where AI is put before the needs of cus-
tomers might work sometimes, it goes against prevailing wis-
dom in the fields of entrepreneurship and innovation. These
fields have increasingly adopted a customer-centric approach.
For example, the popular lean movement suggests one should
build a minimal product early on—perhaps a prototype or a
mock-up—to show to customers and learn about their genuine
needs before going all-in on a solution.

Venture capitalist Itamar Novick argues (https://mng.bz/
DMrV):

“If you build it, they will come” is the anti-pattern where startups
make decisions based on their vision of how a solution should look,
ignoring or underemphasizing customer needs and neglecting to col-
lect sufficient product validation from prospective customers.

The origin of this anti-pattern is the allure of “a great idea.”
Entrepreneurs, driven by their passion and conviction, tend to
assume that their product’s brilliance alone will captivate customers
and guarantee success.

Unfortunately, the mere existence of a product doesn’t automati-
cally translate into customers flocking to buy it. The “if you build it,
they will come” mentality often leads to a lack of product-market fit,
a leading cause of early-stage startup failure.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/DMrV

102 When to use (and not to use) AI

Unless you work in pure research or other noncommercial
pursuits, my advice is to adopt an entrepreneurship mindset.
Try to ensure you understand your customers and find the
best solution to their problems—it may or may not be AI. For
example, if you’re asked to build an AI-based product because
AI is trendy, if possible, go back to the drawing board to under-
stand what the real need is and whether an AI-based product is
the best way to address it.

If you can, ask yourself whether you are considering your
customers’ needs, or you are simply trying to find a nail to ham-
mer with AI. If the answer is that you’re putting AI before your
customer needs, chances are that the project will not make it
off the ground. If you are planning to use AI in response to a
genuine customer need, then we can check off the first point
on our list (see table 4.1 at the end of this section). This is an
indicator that AI may be a good solution for you.

Are hallucinations okay?

In some applications, hallucinations aren’t a big deal. An
example is the translation of hotel reviews on websites such
as Booking.com or Tripadvisor, which are done by AI. Travel-
ers prefer to see as many reviews as possible, even if some are
incorrect, so hallucinations aren’t a big deal.

In other applications, hallucinations are not quite accept-
able. We’ve covered many examples of that in this book already.
Just in case, here’s another example explained in The Economist
(https://mng.bz/lY5o):

McDonald’s, a fast-food chain, recently canned a trial that used
AI to take customers’ drive-through orders after the system started
making errors, such as adding $222-worth of chicken nuggets to
one diner’s bill.

Before using AI, I recommend that you ask yourself whether
hallucinations would be a big deal. Maybe they wouldn’t be as
in the example of hotel reviews, so using AI would be just fine.
In other cases, hallucinations might be a problem, as in the
McDonalds story. In this case, you’ll have to decide whether

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/lY5o

 103Building an AI-based product

using AI is such a good idea in the first place, as it might end
up killing the product if customers find it unacceptable. Or,
perhaps, you might be able to reformulate the task in a way
that makes hallucinations more acceptable.

For example, suppose you’re building a tool to proofread
legal contracts. If you frame it as a tool to “automatically cor-
rect contracts,” it may lead to much disappointment (and
potentially disaster) for users when it sometimes hallucinates.
If, however, you frame it as “run your contract through this tool
to help you find mistakes that you may have overlooked,” then
hallucinations might be okay, as users will now understand that
it’s just a tool to double-check the contract and perhaps dis-
cover unnoticed mistakes.

This brings us to the end of our second item on the check-
list. If hallucinations might cause major problems, you may
want to look at other solutions. If hallucinations aren’t a big
deal, or you can frame your AI solution so that they aren’t, then
you can check another point off the list.

Do I need to explain how the output is generated?

Companies love using machine learning to make predictions
about all sorts of things, such as whether a client will buy a
product or an industrial machine will need replacement soon.
This is usually done by training a machine learning model on
historical data. The richest and most complex types of models
often yield the highest predictive performance.

But clients are sometimes very sensitive when it comes to
understanding how predictions are generated. In some cases,
this is because they don’t want to take a leap of faith and trust
the model, even if a metric shows that it’s accurate. In other
cases, they want to understand predictions to derive more
insights from the model. For example, they may want to under-
stand why a product is likely to be bought.

The more complex an ML model is, the more it turns into
a black box and the harder it is to explain how its outputs are
generated. So, the most accurate models are sometimes not

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

104 When to use (and not to use) AI

appreciated much by clients who want to understand the out-
puts. This problem becomes even more pronounced when
using deep learning models, including LLMs and CNNs, which
contain many layers of processing and millions or billions of
parameters.

So, before using AI, I recommend that you try to find out
how much your client requires explainability. If explainability
isn’t important, then using the most advanced AI models might
be the best choice, and you can check this item off the list. How-
ever, if you need explainable outputs, you might have to use a
simpler model, such as a linear one, even if its performance is
worse. Or you may want to formulate the problem differently,
such as conducting an analytical or statistical study instead of
building a predictive model.

Alternatively, if you still want to use a complex model, you
may want to try to use a technique to explain some aspects of
how it works. There’s a whole field of study called explainable AI
or just XAI. Many of these techniques, such as a popular one
called SHAP (https://shap.readthedocs.io/), work by identify-
ing which inputs are the ones the model relies on the most to
generate its output. While these techniques reveal aspects of
how ML models work, they don’t provide a full explanation of
how outputs are generated, so they might be underwhelming
in some cases.

Researchers are now studying specific techniques to explain
LLMs’ outputs. For example, they have developed methods
to analyze attention scores inside transformers (https://arxiv
.org/abs/2401.12874). It’s still very early days though. We still
have no solid understanding of how large ML models produce
outputs.

I wrap up this section with table 4.1, which sums up the ques-
tions we’ve asked so far, along with potential answers and their
associated implications.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://shap.readthedocs.io/
https://arxiv.org/abs/2401.12874
https://arxiv.org/abs/2401.12874

 105Using conversational AI as an assistant

Table 4.1 Checklist for building an AI-based product.

Question Comments

Am I putting
AI before the
customer?

If not (you’re using AI to respond to a known cus-
tomer need), you’re good to go.

If yes (you’re using AI as a hammer and searching
for nails), you may want to take a step back and
try to make sure you understand your customer’s
needs. You can decide afterward whether AI is a
good solution to tackle them.

Are hallucina-
tions okay?

If yes (customers tolerate hallucinations), you’re
good to go.

If not (hallucinations are a big deal), you may need
to reframe the problem in a way that makes them
less of a big deal, or you may need to reconsider
using AI in the first place.

Do I need to
explain how
the output is
generated?

If not (customers don’t need explainable outputs),
you’re good to go.

If yes (explainability is needed), you may need
to consider a simpler, more explainable solution
instead of using the most advanced AI. Or you
could evaluate whether a technique to provide
some explainability to AI, such as SHAP values,
would be acceptable.

Using conversational AI as an assistant

In this section, we formulate three questions that can help
you decide whether to use AI as an assistant to help you per-
form a task. We focus on conversational AI, meaning that you
describe your task as a natural-language prompt. This includes
using an LLM to help you code, or using a text-to-image app
to create a logo.

Can I describe the task succinctly and validate
the output easily?

Conversational AI is most useful when you get “good bang
for your prompt,” meaning that you obtain a useful output

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

106 When to use (and not to use) AI

without having to go to great lengths to write a detailed, step-
by-step prompt. So, before using it, I suggest you ask yourself:

¡	Can I describe the task succinctly?

¡	Can I validate the output easily?

For example, when writing code, there are tasks that can be
described using very brief prompts such as

¡	Summarize what the code in this file does.

¡	Write a function to download a file from an S3 bucket.

¡	Rewrite this function in JavaScript.

¡	Is there a way to optimize this code?

Other tasks are much more difficult to describe as they require
a detailed, step-by-step specification of the solution. In these
cases, writing the prompt might be as cumbersome as writing
the code itself. For example, I once had to use a library called
GraphHopper, which contains algorithms to find the shortest
route between landmarks in a map, but I had to customize it
to measure distances in a nonstandard way. For that, we had to
use a custom formula we had designed together with the client.
The requirements were so specific and custom, that I’m not
sure I would have saved any time by writing a prompt and hav-
ing an LLM write the code. So, if your answer to the question
“Can I describe the task succinctly?” is yes, there are higher
chances that AI will help you solve the problem (see table
4.2 at the end of this section). As AI hallucinates sometimes,
it’s also important that you ask yourself the second question,
“Can I validate the output easily?”, especially if you’re sensitive
about the correctness of the output (see section 4.1.2).

Some tasks can be validated easily. For example, if you
already know how to perform the task, and all you want is to
save time, you can rely on your expertise to quickly validate
AI’s output. For example, I often forget how to use the Boto3
library to read files from S3. So, I often ask ChatGPT how to
do it. Because I’ve already done it before and it just involves a
couple of lines of code, I can easily look at ChatGPT’s code and

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 107Using conversational AI as an assistant

verify that it’s correct. I can also quickly run the code to see if it
fetches the required S3 file correctly.

To cite another example, if you ask an LLM whether a piece
of code can be optimized, you can easily check whether its rec-
ommendations make sense to you, especially if you have cod-
ing experience and have studied things such as computational
complexity. Or if you ask ChatGPT to rewrite a piece of code in
another programming language, you can also verify the output
if you’re familiar with the target language.

In other cases, validating AI’s output is not as quick or easy.
For example, suppose you ask ChatGPT to write a SQL query
that requires plenty of joins and business logic. Understand-
ing the resulting query step by step may be cumbersome and
take as much time as writing the query yourself. Or, if you ask
ChatGPT to write code in a language you don’t know, you
might have a hard time debugging it.

So, if your answer to the second question—“Can I validate
the output easily?”—is also yes, then AI may provide good
assistance.

Has anyone done it before?

A software engineer commented on Twitter, “I sometimes won-
der if coding is going to end up a bit like this” (https://mng
.bz/BXr2), and shared a screenshot of the following code:

import ai from 'ai-thing';
const Select = ai.gen`
 A select dropdown with these options:

 - Podcast
 - Book
 - Movie

Animate the dropdown to slide down from the top
of the page in a distracting manner.
`;

This would be really impressive if the only tools available for
frontend development were plain JavaScript, CSS, and HTML.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/BXr2
https://mng.bz/BXr2

108 When to use (and not to use) AI

But that’s not how most people code nowadays. We use librar-
ies and frameworks that help us do the job. For example, I
often use Material UI for frontend development, which is a
collection of ready-made and visually appealing components.
This is how I would create the required animated dropdown
using Material UI:

import { Select, MenuItem } from '@mui/material';
const Select =
<Select>
 <MenuItem>Podcast</MenuItem>
 <MenuItem>Book</MenuItem>
 <MenuItem>Movie</MenuItem>
</Select>

This code is almost exactly the same as the natural-language
description from the previous code snippet. Although this
code is written using a more structured language, it is as com-
pact and easily readable. The gains from employing AI are
minimal.

So, before using an AI assistant, I recommend you wonder
if some other people may have done the job before, for exam-
ple, by putting together a library that does what you need. If
the task is very common—a select dropdown certainly is—it’s
likely there’s a tool out there that does it for you. These tools
are often very easy to use, mature, and well tested by an active
community of developers. So, they help build software quickly
and robustly.

A few weeks ago, I had to write code to calculate the posi-
tion of the sun in the sky at a certain time and location. Instead
of wrangling trigonometric equations or asking an AI assistant
how to do it, my first instinct was to search for a library for the
task. I thought, “This is such a cookie-cutter task that someone
must have done it before.” I Googled “sun position calculation
library python” and immediately found a library to do that spe-
cific job (and there are others, too). I installed it easily with just
one command:

pip install suncalc

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 109Using conversational AI as an assistant

The library is minimal, and its documentation is brief. You can
quickly learn that it’s used as follows given a datetime, longi-
tude, and latitude:

from suncalc import get_position
get_position(datetime, longitude, latitude)

This returns exactly what I needed:

{'azimuth': -0.014045295626482863, 'altitude':
0.8562684198030407}

A few days after I’d done this, out of curiosity, I asked GPT-4o,
“Write a Python function to calculate the sun position given
a location and time.” The chatbot wrote a complicated algo-
rithm, with 40 lines of code. Here’s a snippet:

n = julian_day - 2451545.0 # Days since J2000.0
 mean_longitude = (280.46 + 0.9856474 * n) % 360
 mean_anomaly = (357.528 + 0.9856003 * n) % 360
 ecliptic_longitude = (mean_longitude + 1.915
 *math.sin(math.radians(mean_anomaly)) +
 0.020 * math.sin(math.radians(2 * mean_
anomaly)))
 obliquity = 23.439 - 0.0000004 * n
 declination = (math.degrees(math.asin(math.sin(
 math.radians(obliquity)) *
 math.sin(math.radians(ecliptic_
longitude)))))

The algorithm was difficult to follow and contained lots of
unexplained constants. Luckily, the chatbot also suggested
that, as an alternative, “We can use a Python library like Astral
or Pysolar.” So, as a follow-up prompt, I asked, “How can I use
the Astral library to do this instead?” It responded with a much
shorter snippet of code, showing me how to use the library.
However, I tried the code, and it didn’t run, as it hallucinated
the correct way to use the said library. (You can find a record of
the conversation at https://mng.bz/dXGw.)

Perhaps running the prompt again or refining it would have
yielded better results. My point, however, is that sometimes
you’re better off by finding out whether someone has already

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/dXGw

110 When to use (and not to use) AI

built a tool for it. A quick Google search and scan of the doc-
umentation might be more effective than using AI, and the
result may be more reliable.

So, try to ask yourself, especially if you’re performing a cookie-
cutter task, whether someone else may have done it before. The
most effective software developers avoid reinventing the wheel
and try to build on other people’s proven work.

What does an excellent job look like?

One of my friends has a very interesting life story—he went
from having little money and living in a hostel in exchange
for a bed, to running a successful online business. A magazine
wanted to share his story and asked him to write an article
about it. He wrote it using ChatGPT.

He then shared the draft of the article with me and asked for
my opinion. The grammar and style were pristine as expected.
However, the article didn’t do justice to his story. For example,
it went too fast over things readers would want to know more
about. Notably, it didn’t say how he’d come up with his busi-
ness idea while living in the hostel; instead, it jumped straight
to how he’d started building the business. In addition, there
were a few digressions, such as a personal opinion on a political
matter, which distracted the reader from the main purpose of
the article. The words were put together nicely, but the writing
wasn’t good because it didn’t tell the story effectively. Had he
submitted the story like that, in my opinion, it would have been
acceptable but not the kind of thing that people read all the
way through the end and recommend to others.

I gave my friend a list of comments about the article. My
comments were mostly high level. For example, I advised him
to slow down and tell the story in more detail sometimes, and
I advised him to remove certain slow passages and digressions.
I also advised him to reorganize some parts of the article that
intertwined different topics.

When he read my comments, he said he’d finally under-
stood why writing took me so much time. He also said he finally

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 111Using conversational AI as an assistant

understood why I spent money on hiring human editors. Until
then, he’d thought writing was mostly about grammar. He
hadn’t realized how much the pacing and organization of an
article could matter to make it compelling to the audience. I
didn’t know that either when I started writing.

It’s very easy to jump to conclusions and think AI can per-
form a task well when we don’t know much about it. We may
miss important things required to do the job well and unknow-
ingly do subpar work.

So, before using AI, I recommend you investigate what it
takes to do the intended job competently. Perhaps it involves
many more things than is apparent at first sight. Afterward,
once you understand the job better, you can decide whether AI
will do a job good enough for what you need.

Consider the task of logo design. Some companies spend a
fortune on hiring top-notch logo designers. But now that AI
can create logos, is it worth hiring an expensive human logo
designer? Well, it depends. If you speak with a high-end logo
designer, you’ll discover that they perform thorough research
about competitors’ logos and the sentiment they convey. After-
ward, they design a logo that is truly original and not a rehash
of previous logos—something AI isn’t great at—but at the same
time somehow matches the style of competitors’ logos. This
helps customers quickly get an idea of what the brand is about
as they recognize the type of logo from competitors, while still
giving your company’s logo a distinctive look.

Depending on your requirements, you may or may not need
the thoroughness of high-end logo design. For example, if
you’re launching a startup, all you may need is a logo to fill
in the space on your website as it may be too early to spend
money on a higher-end design. Once the company grows and
starts having repeat customers, you may want to hire a specialist
to design a logo that will better position your company in the
competitive landscape. Before we move on to the next section,
you’ll find a summary of questions and possible answers, plus
their implications in table 4.2.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

112 When to use (and not to use) AI

Table 4.2 Checklist for using conversational AI as an assistant

Question Comments

Can I describe
the task suc-
cinctly and
validate the
outputs easily?

If yes, an AI assistant, such as a code-writing LLM,
might save you time and effort as you’d be getting
“good bang for prompt.”

If not (the task is difficult to describe or validating
the output is cumbersome), then you may be bet-
ter off doing the job manually without AI’s help.

Has anyone
done it before?

If yes (for example, you’re solving a cookie-cutter
software task, and there’s a library that does just
what you need), it might be easier and more reli-
able to reuse other people’s proven work and tools
instead of asking AI for help.

If not (your task is not very common, and it’s
unlikely other people’s past work will help), then
using AI as an assistant might be helpful to do the
custom work you need.

What does an
excellent job
look like?

If you’re familiar with what it means to do an
excellent job at the required task, you’re in a good
position to determine whether AI can do the job
satisfactorily.

If you don’t know what doing an excellent job
means, you might be missing something and over-
estimate AI’s performance. In this case, it’s best
if you do some research about the task to make a
more informed decision about using AI for it.

Building LLM wrappers

As LLMs can tackle so many tasks, it is now tempting to build
software products in a new way: Your code transforms the task
into a natural-language prompt and makes an LLM do it. For
example, if your app must show a list of nearby restaurants to
the user based on their location, your code automatically crafts
a prompt such as, “Create an HTML table listing the five restau-
rants closest to [the user coordinates are inserted here]. Each
row should represent a restaurant, and the columns should be:
The restaurant name, the cuisine style…” Afterward, your app

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 113Building LLM wrappers

uses an LLM to perform the task, and it parses the LLM’s out-
put before displaying the restaurants to the user.

When coding this way, apps become sophisticated LLM
wrappers—they manage the LLM, which is in charge of doing
the heavy-duty work under the hood. I’ve met many early-stage
startups that built or tried to build their initial products this
way. They thought it wasn’t necessary to code the core function-
ality of their apps when you could just craft a prompt and have
an LLM do the work instead.

Creating LLM wrappers may be a good way of building soft-
ware in some cases. In other cases, however, it’s not the best solu-
tion. This section formulates one single question it may be worth
asking yourself before you decide to build software that way.

Will users interact with my product using natural language?

I know a startup that was building a travel-planning app. The
user would input travel details in a structured format by select-
ing the dates on a calendar and the destination from a list.
The tool would then produce a structured sightseeing itiner-
ary displayed in a timeline and a map. Note that this wasn’t a
chatbot—the user didn’t converse with the app at any point by
writing or reading free-form text.

Due to the popularization of LLMs, the company decided
to build this feature using an LLM under the hood. The user’s
request was first transformed into a natural-language prompt,
such as, “Create a day-by-day itinerary to visit Paris from July 1st
to July 7th…” The overall prompt was lengthy, as it contained
instructions on how to output the itinerary in a specific format
so it could be easily parsed and rendered in the app.

The startup struggled to make this work. One of the reasons
was that the LLM’s output often included outdated informa-
tion, such as a suggestion to visit an attraction that didn’t exist
anymore or at a time during which it was closed. Moreover, the
LLM’s output sometimes didn’t fully respect the required struc-
ture. For example, it would sometimes indicate an attraction’s
street address where its web address should be. In addition,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

114 When to use (and not to use) AI

it all took over a minute to run, which is too long by today’s
browsing standards.

The startup then realized that the problem it was trying to
solve wasn’t related to natural language in any way—the user
didn’t type in the inputs as free-form text (“I’d like to visit
Paris”) and the outputs weren’t shown to the user as text either.
So why use LLMs at all?

The startup ended up solving the problem differently:
after the user made a query, the software searched for rele-
vant attractions in the required destination using the Google
Places API, which provides up-to-date and structured informa-
tion about attractions, such as opening hours and coordinates.
Afterward, the software ran a pathfinding algorithm to create
an ideal sightseeing itinerary from those attractions. The solu-
tion ran much faster and solved the problem better.

If users will interact with your product through natural lan-
guage, using an LLM might be the best choice (see table 4.3
at the end of this section), as LLMs are specially designed to
process and produce natural language. For example, if you’re
building a customer-service chatbot, then using LLMs may be
the best choice because they’re designed to process written,
free-form requests and generate convincing prose. In this case,
you exploit what LLMs are best at.

When users will not interact with your product using natural
language, such as in the travel app, you may want to think twice
before using an LLM to solve it. If you use an LLM, you may not
enjoy its benefits, and you’ll have to cope with its drawbacks,
such as long execution time, hallucinations, and unstructured
outputs. In those cases, old-school software, such as a database
look up, may do a better job. So, if your task does not involve
natural language, analyze first whether other tools could be
more suitable for the job before building an LLM wrapper.

This brings us to the end of the chapter. We’ve covered a few
scenarios of when to use AI. I hope it will prove useful the next
time you’re working on a problem and wondering whether it’s
worthwhile to bring in an AI model.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 115Summary

Table 4.3 Checklist for building LLM wrappers

Question Comments

Does my problem
involve natural
language?

If yes, LLMs may be a great choice, as they’re
specially designed to read and generate natu-
ral language.

If not, you may want to consider alternative,
old-school ways of building your software,
which might be more suited to the job than
LLMs.

Summary

¡	Adopt an entrepreneurship mindset: ensure you under-
stand the customer’s problem and find the best way to
solve it, which may or may not be AI. Try not to decide
you’ll use AI before knowing what you’ll use it for.

¡	Evaluate whether hallucinations are OK for your users. In
some cases, such as the translation of hotel reviews, users
are not too fussy about them. If hallucinations are a deal
breaker, you may need to rethink the task.

¡	If your client wants to understand how AI generates its
outputs, you may find yourself in quite a pickle, as the
most powerful AI cannot be understood in detail. You
might need to use a less performant but more explainable
model or a technique to try to explain some aspects of the
model such as the finding the relative importance of input
features.

¡	If you use AI as an assistant, you can quickly ask yourself,
“Can I easily describe the task and validate the output?” If
so, you get good bang for your prompt, which is when AI is
most effective. If you can’t describe the task succinctly or
it takes a lot of effort to validate the output, using AI may
not be very useful.

¡	When using AI as an assistant, make sure you’re not try-
ing to reinvent the wheel. If you’re performing a common

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

116 When to use (and not to use) AI

task, perhaps there’s a well-documented and proven way
of doing the job. For example, when coding a certain task,
an open source software may already exist that will do
exactly what you need, and it might be easier and more
reliable to use it instead of trying to do the same using an
AI assistant.

¡	Before having AI do a certain job, try to understand what
doing that job in an excellent way entails. It might be more
complicated than it seems. You can then decide whether
an AI assistant will help you do the job to a satisfactory
level, depending on your needs.

¡	Some people are building apps that are LLM wrappers—
the job is done by an LLM under the hood, which is
managed by the app. This is most powerful when you’re
dealing with a natural-language problem, either because
the user inputs free-form text or the system must generate
human-readable text. If your problem doesn’t involve nat-
ural language, maybe using old-school algorithms instead
of building LLM wrappers will be a better choice.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

117

5How AI will affect jobs
and how to stay ahead

This chapter covers

¡	The qualities that will help protect jobs from being
 replaced by AI
¡	How software engineers can future-proof their jobs
¡	How AI can generate new opportunities for
 software engineers
¡	Discussing the effects of AI on the economy and
 whether it could prolong unemployment and misery

Because generative AI can write code, many software
engineers—and aspiring ones—have become worried that
their careers might be in danger. NVIDIA’s CEO argued it’s
no longer necessary to encourage young people to learn how
to code. “In fact, it’s almost exactly the opposite,” he said. “It
is our job to create computing technologies that nobody has
to program and that the programming language is human:
everybody in the world is now a programmer—that is the
miracle” (https://mng.bz/GenJ).

This chapter discusses the possibility that AI may replace the
jobs of software engineers and how to protect such jobs. The

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/GenJ

118 How AI will affect jobs and how to stay ahead

first three sections discuss three qualities that will help them
resist AI: a wide gap between “just fine” and excellent work; the
need for stringent validation of the output; and the need for
tight control over the output.

At the beginning of each section, we discuss the topic in
general—outside software engineering. I hope this gives you
a wider view of the AI affects jobs. At the end of each section,
I relate the topic with software engineering specifically and
share advice on how engineers can protect their jobs.

The remainder of the chapter is more speculatory and phil­
osophical. We first discuss how AI could open new doors. Next,
we discuss whether AI could cause prolonged mass unemploy­
ment and misery, which is something feared by many people.

Excellence gap

Some people have asked me whether I thought TV shows
would soon be written by AI, thus replacing the job of screen­
writers. After speaking with screenwriters, I’ve discovered that
the job is often much more complicated than it may seem at
first, or at least if you want to do it really well. Screenwriting is
not so much about putting words together. Instead, it’s about
choosing what to say and how to say it, and some screenwriters
go to great lengths to perform this task.

Consider the case of the spy show Homeland. One of the rea­
sons the show was so popular was that every season spoke about
things that were taking place in the world as it aired. As the
show was shot months before it aired, the writers had to try to
anticipate the things that would be relevant much later.

For this reason, the writers and crew met intelligence experts
to discuss potential storylines for the following year’s season.
An article in The Guardian (https://mng.bz/zZRA) explains:

The team began attending an annual “spy camp” . . . absorbing the
accumulated insights and knowledge of current and former intelli-
gence agents, diplomatic old hands and, one year, National Securi-
ty Agency (NSA) whistleblower Edward Snowden.

[Claire] Danes has fond memories of the spy camps. “The days
were long and dense. . . . We’d meet at nine and the revolving door

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/zZRA

 119Excellence gap

was in constant motion, depositing one story and then another. . . .
You really did get to look into a crystal ball from all these amazing
sources and get a fairly clear picture of what our reality might be like
in a year’s time.”

To cite another example, consider the sitcom Friends. After the
actors rehearsed an episode for many days, it was shot in a sin­
gle day in front of a live audience. When the audience did not
laugh at a joke, the writers asked the audience why. Based on the
answers, writers rewrote lines on the spot and asked the audi­
ence to pick their favorite alternatives through a show of hands.
That’s how they made sure the lines were genuinely funny.

But not all TV shows are written that carefully. Soap operas,
for example, are known to be produced quickly and cheaply. In
fact, multiple episodes are usually shot every week. The story­
lines across different soap operas are often very similar, as writ­
ers try to recycle proven ideas.

As we can see from these examples, in some jobs, there is a large
gap between seeking to achieve excellence, as in Homeland and
Friends, and producing content that is just fine, as in soap operas.
Let’s call this difference the “excellence gap” (see table 5.1).

Table 5.1 The characteristics of “just fine” and excellent work. The latter
is likely to be safer from AI.

Just fine Excellent

Characteristics Value in doing the
job as quickly and
cheaply as possible

Short-term effects

Rehashed previous
work

Value in doing the
job thoroughly

Long-term effects

Original work

Examples Writing soap operas

Writing SEO-driven
blog articles

Quick translation
of an e-commerce
website

Writing high-end TV
shows

Writing high-end
newspaper opinion
piece

Literary translation

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

120 How AI will affect jobs and how to stay ahead

In the case of high­budget TV series, the creators want the
show to become a legend and stand the test of time—they
want to collect royalties years or even decades later. So, writ­
ing must be done very carefully, and it takes a lot of time and
skill.

In the case of a soap opera, writing quickly and rehashing
existing stories is all that’s needed to do the job effectively. The
goal of a soap opera is to provide light entertainment, and the
producers rarely intend the show to be rerun.

I asked a screenwriter whether he thought the profession
was threatened by AI. He told me that perhaps repetitive, for­
mulaic writing might be affected, the kind you find in soap
operas. However, in higher­profile productions, most of the
work isn’t about writing itself but about conducting interviews,
doing research, trying out ideas with a test audience, and so
on—tasks that the likes of ChatGPT are unlikely to do.

Note that the excellence gap tends to be filled with activi­
ties with a human touch, such as networking, gathering human
feedback, building relationships, and so on, for which current
AI methods aren’t very suitable. You can sometimes detect
these activities by asking someone whether their job can be
easily described as a list of steps or a recipe, which can shed
light on how easy it is to automate with AI or some other tech­
nique. For example, I asked that to a journalist, and she told
me that she spent a lot of time trying to come up with creative
story angles, and she didn’t think there was a recipe for that.
Moreover, a lot of her work involved building good relation­
ships with influential people in her area, so she could reach out
to them for commentary when necessary, and she didn’t think
there was a step­by­step recipe that described how to do that,
either.

It seems that the jobs that are safest from AI are those on the
excellent side of the excellence gap, such as writing higher­end
TV shows. Jobs that might suffer from AI are the ones in which
the worker specializes on the low end of the gap—the “just
fine” part—or there isn’t much of a gap to start with—there

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 121Excellence gap

isn’t a wide difference between doing it just fine and exceed­
ingly well, the tasks being quite mechanic and easily described
as a list of steps.

Consider the case of writing SEO­driven blog articles whose
goal is to drive traffic to a website from Google. For example,
a travel agency may want to publish several articles quickly
about a travel destination to attract traffic and then sell holi­
days to internauts or collect commissions from affiliate links.
These articles tend to be the “just fine” kind, as the goal is to
pack them with relevant keywords, not to provide insightful
analyses. I’m sure you’ve seen articles like that. They often
have titles such as “20 Things to Do in Paris This Summer
(2025).”

Until a couple of years ago, it was common to hire humans
on platforms such as Upwork and Fiverr to write these blog
articles. I now hear that many of these workers are being
replaced by AI. As this job only requires “just fine” work—
it doesn’t need interviews, research, networking, testing
audiences, and similar—AI can do it satisfactorily and faster.

Other jobs at risk are those in which there may be an excel­
lence gap, but excellence doesn’t have much market value—
people are not willing to pay for excellent work because just
fine is good enough. I’ve spoken with many professional trans­
lators over the past few months, who reached out to me due
to concerns regarding their profession. Translators often go to
great lengths to produce an excellent translation, which can
require a lot of research and creativity. In some cases, however,
clients don’t care much about that excellence—they’re okay
with a “just fine” translation. For example, I spoke with a group
of translators who specialize in translating the content of web­
sites, such as online shops. They seemed to be the ones strug­
gling the most due to AI advancements, as many clients didn’t
mind AI translations even if they were a bit flimsy. In other
cases, such as literary translation, clients are much more sensi­
tive about the quality of the work and are less likely to be ready
to replace professional, human translators with AI.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

122 How AI will affect jobs and how to stay ahead

Excellence gap in software engineering

I once worked on a small freelance project where I had to cre­
ate a dashboard so that a company could visualize some pub­
licly available data more easily. I had to make a few API calls
to fetch the data from various sources, transform it a little bit,
and plot it. Most of my time was spent coding. The job was
rather mechanical, and doing it just fine was okay.

Now, consider a different piece of work I did a few years
ago. I was working for a team that wrote algorithms to
put together holiday packages automatically, including
determining their prices. The algorithm was meant to design
packages automatically and make the process more data
driven, hopefully increasing revenue. We built an algorithm
that looked good on paper, but we couldn’t deploy it because
salespeople had concerns about it. They were scared that, by
changing how we put the packages together, we would disrupt
our relationship with customers. Moreover, salespeople often
priced holidays strategically—for example, instead of trying
to make the most revenue, they charged lower­than­revenue­
maximizing prices to promote a new travel destination. They
were afraid our system would make them lose control over
those decisions.

To reduce friction, we had a discussion with the salespeople
to understand their needs, and as a result, we came up with
a mathematical gimmick to insert business constraints to our
algorithm. Salespeople would be able to adjust these con­
straints themselves, which would give them much finer control
over the holiday packages generated by our tool. Only after this
intervention they were happy with it, and we could deploy the
system. The success of the project was not just about coding,
but about understanding what salespeople wanted and finding
a solution that clicked with them.

Just like in screenwriting, there is an excellence gap in many
software engineering projects. In some cases, like the simple
dashboard project I mentioned, just fine is okay. The tasks
involved in doing these jobs can often be written down as a

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 123Excellence gap

step­by­step recipe and delegated cheaply. This is the kind of
work that AI might be able to replace.

Excellent software engineering is much more than that.
Rather than just writing code as asked, the goal is to help a
business solve a problem, as in the case of the package holiday
example. The software engineer will work closely with the busi­
ness to help devise solutions to problems. For example, they
will help businesspeople identify features that provide the most
added value for the least effort. They will also suggest alterna­
tive solutions that the business may have not thought of.

Moreover, excellent software developers help build robust
solutions that stand the test of time. This requires finding the
sweet spot between future­proofing and overengineering. For
example, should your software handle multiple currencies
even if all your users (for now) transact in the same currency?
Or should you wait until you expand internationally to add
support for other currencies? These are questions you can only
answer by discussing and negotiating with the business, which
often requires translating technical ideas to a language non­
technical people can understand so you can collaborate.

In addition, in excellent software development, you must
make important decisions to secure the software and protect
data. I once worked with a company that was particularly sensi­
tive about accidentally letting one of their clients see data that
belonged to another client. Having one isolated database per
client is a way to accomplish that, but it can be overkill in some
cases. After discussing different possibilities with the business,
we settled for having a single database with different compart­
ments in it, or schemas, which provided isolation without so
much added complexity. This decision required negotiating
with businesspeople.

As excellent software engineering is not just about writing
code but about doing business and exercising soft skills, I think
it will be well placed to resist replacement by AI. When busi­
nesspeople work alongside software engineers who genuinely

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

124 How AI will affect jobs and how to stay ahead

help them solve business problems, they’re unlikely to want to
automate them away.

Recommendations

My advice is that, if you want to future­proof your career, you
may want to focus on working at the intersection of technology
and business—try to become the person who helps businesses
attain their goals using technology, not just a person who
writes code. This doesn’t mean you won’t be writing code; it
means you’ll be writing the right code to help the business suc­
ceed. If you’re asked to add a feature to an app that you think
is the wrong one businesswise, you should speak up.

I recommend you learn about business if you haven’t yet.
I’ve found the following books particularly useful:

¡	The Lean Startup by Eric Ries (Crown Currency, 2011)—This
popular book explains a modern innovation process that
relies on experimentation and validation of customer
needs. The author popularized the term minimum viable
product, or MVP, which is a simple product meant to learn
about customers.

¡	Value Investing: From Graham to Buffett and Beyond by Bruce
Greenwald et al. (Wiley Finance, 2020)—While the book is
about investing, the first half describes where the value of
a company comes from. It explains, for example, what a
competitive advantage truly is and how it adds value to a busi­
ness. It also explains the importance of future growth and
when growth adds value, which is particularly relevant to
ambitious, high­growth start­ups.

¡	The E-Myth Revisited: Why Most Small Businesses Don’t Work
and What to Do About It by Michael E. Gerber (Harper Business,
2004)—This classic book helps understand why a solid
business is akin to a system that runs automatically, follow­
ing clearly defined processes.

¡	Venture Deals: Be Smarter than Your Lawyer and Your Ven-
ture Capitalist by Brad Feld and Jason Mendelson (Wiley,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 125Excellence gap

2019)—This book is useful to understand how financing
by venture capitalists works, which is one of the most com­
mon sources of financing for technology companies.

¡	Value Proposition Design: How to Create Products and Services
Customers Want by Alexander Osterwalder et al. (Wiley, 2014)—
One of the main causes of tech product failure is that
people don’t really want the product. This book describes
a process to define your target customer and the added
value of your solution, which can help prevent that.

Once you learn about business, I suggest you work your way
toward roles that involve both technical and business skills. For
example, instead of becoming a deeper specialist on one tech­
nology, such as React, you may want to try to take up respon­
sibilities in product management or design alongside your
coding work. I advise that you to steer clear of jobs where all
you do is pick up a Jira ticket created by someone else and do
the technical work described in it.

You may also want to prioritize working in cross­functional
teams that have defined business rather than technical goals.
You could, for example, work for an agency (or build your
own) that partners up with startups to help them specify, build,
and validate products in exchange for money and equity, as
opposed to just building whatever product the client wants—
no questions asked.

In addition, you could specialize in a technical field aim­
ing to help attain business goals, such as operations research and
data science. One of the main tasks of operations research is
to build mathematical optimization algorithms to help solve
business problems, such as finding the optimal way of allocat­
ing inventory to warehouses based on a demand forecast. This
requires mapping a business goal to a mathematical goal, so
you’re both a business and a technical person. Moreover, as
you can’t efficiently optimize anything, you sometimes need to
negotiate with the business to solve a simpler yet useful prob­
lem instead.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

126 How AI will affect jobs and how to stay ahead

Although a bit hyped up at times, also data science sits at
the intersection between technology and business, as it uses
ML to help answer business questions. This is especially true of
full­stack data scientists, who help all the way from ideation to
building production­level data products. Occupations such as
operations research and full­stack data science, in which cod­
ing and doing business are tightly coupled, may be in the stron­
gest position to survive advances from AI.

If you’re absolutely not interested in business and prefer purely
technical work, you may want to specialize in a niche technology
or problem area and stay up to date with developments—you
could become a guru in your field. This might help you stay
ahead of AI, as AI learns to code from examples of code available
on the internet, which can be outdated or not abundant enough
with the latest and most niche technologies.

Stringent validation

If you use hotel­booking websites such as Booking.com, you
may have noticed that hotel reviews from travelers are often
translated into your language. This helps you see as many
reviews as possible. Instead of hiring humans to translate the
reviews, these companies use AI to do so automatically. The
outputs generated by AI aren’t verified manually one by one.
Sometimes AI hallucinates, so the translations have mistakes
or sound a little funny. I just saw the following review on Book­
ing.com: “Location perfect. Report value for money, nothing
to say.” The strange use of the word “report” came from the
mistranslation of rapport qualité prix in French, which is a com­
mon way of saying “good value for money.”

But travelers don’t care much about these mistakes; they
want to know whether a hotel is clean, well located, and so on,
and they don’t need a perfect translation for that. So, using AI
instead of a human translator, presumably one who doesn’t hal­
lucinate, is just fine.

Another similar example is personalized recommendations
on websites, such as which movie to watch next on Netflix or

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

http://Booking.com
http://Booking.com:
http://Booking.com:

 127Stringent validation

which product to buy on Amazon. Instead of having a market­
ing specialist analyze customers and create tailor­made recom­
mendations, these are generated at scale and automatically
using machine learning trained on past user data. Sometimes
these recommendations aren’t quite right. For example, you
may be recommended to buy another washing machine after
you just bought one, even though washing machines are usu­
ally a one­off purchase. But these mistakes don’t matter much,
as users will probably not be too fussed about poor recommen­
dations and just ignore them.

In these cases, the correctness of the output isn’t all that
important. So, even though AI may sometimes hallucinate,
companies might still choose it instead of hiring human work­
ers (see table 5.2). This is often the case with “nice to have”
features that aren’t critical to a company’s core operations, so
mistakes don’t matter much. It is also common with large­scale
tasks that would be too time­consuming or costly to perform.
For example, I think it’s unlikely Booking.com would hire
humans to translate all hotel reviews on its website. Between
having no translated reviews and unvalidated AI­translated
reviews, Booking.com chooses the latter.

Table 5.2 The characteristics of work that don’t require a stringent
validation of outputs. The latter is likely to be safer from AI.

Lax validation Stringent validation

Characteristics Nice-to-have
features

Things you wouldn’t
do manually due to
poor scalability

Mistakes can be
devastating (due to
legal, safety, or com-
mercial reasons)

Examples Translation of hotel
reviews

Automated product
recommendations

Legal translations

Verification of air-
craft maintenance
records

Preparation of shop-
ping receipts

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

http://Booking.com
http://Booking.com

128 How AI will affect jobs and how to stay ahead

In other cases, it is much more important to make sure that
the output of a job is thoroughly validated. I recently had a
conversation with the manager of a team in charge of verifying
aircraft maintenance records. He explained that every time a
leased aircraft switches hands between different airlines, it is
imperative to make sure that all maintenance has been con­
ducted properly. His team oversees going through all the
records to verify that.

Believe it or not, all maintenance records are still held on
paper—technicians fill forms manually with a pen, and piles
of paper are stored in boxes (yes, in the 21st century). Each
country uses different kinds of forms, and they’re often filled
in inconsistently, which makes the process of verifying them
even more cumbersome.

A startup built a solution to automate the process using AI.
However, the AI system made mistakes sometimes, and this was
very difficult to correct due to scarce training data on edge cases.
Because of that, a user told me they still had to go through all the
papers manually to verify AI’s outputs, so this app didn’t end up
saving much time after all. They ended up unsubscribing from
the AI service and doing it all by hand as usual.

Similarly, I once met intelligence staff in the military who
were thinking of using AI to identify sensitive targets in satellite
images. At that time, they were inspecting the images manu­
ally by visually sweeping them using a “Z” pattern. The person
in charge of the sweeping was held personally responsible
for their observations, so missing a target could compromise
their careers. The images covered huge areas, so this was very
time­consuming.

After discussing AI with them, they soon realized it wasn’t
possible to guarantee that AI would identify targets with 100%
accuracy. Maybe it would identify more targets than humans,
but the possibility existed that it would sometimes ran­
domly miss a target a human could see. To them, this meant
they would still have to sweep the entire image manually to

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 129Stringent validation

double­check that AI hadn’t missed anything. So, AI wouldn’t
speed up the process whatsoever.

Aircraft maintenance and military operations were examples
of work that is too sensitive to leave to AI without double­
checking it (see table 3.2). Other sensitive professions that
require stringent validation are those of lawyers and doctors, as
small mistakes can lead to lost licenses or malpractice lawsuits.

Even in other fields in which mistakes may not be as devas­
tating, they can be harmful commercially, so humans will still
be involved in validating AI’s outputs manually. An example
of this is Amazon’s automated grocery shops. These stores,
which opened in the United States and the United Kingdom,
allegedly used video cameras and AI to automatically detect
what a customer picked from the shelves, so logged­in users
could just walk out of the store without going to the cash desk,
and they received a receipt on their email later.

As is often the case, AI sometimes hallucinated, so the
receipts contained mistakes. But Amazon wouldn’t want those
receipts to ever reach customers, as it would be very harmful
for the business’s reputation. So, Amazon secretly hired an
army of 1,000 people who watched the videos remotely and val­
idated AI’s outputs (https://mng.bz/0Qnv). Thus, instead of
eliminating the jobs of human cashiers, Amazon moved them
elsewhere.

Jobs in which outputs must be thoroughly validated due to
legal, safety, or commercial reasons are safer from being auto­
mated away by AI, as a human expert must still be involved
in the loop. In some cases, there may be productivity gains
from using AI and validating its output instead of doing the
work manually. For example, perhaps AI might help draft
legal contracts quickly, which lawyers will have to verify word
by word (remember the unfortunate story of the lawyer who
filed a document in court rife with AI hallucinations), but
this two­step process will be quicker than writing the contract
without AI.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/0Qnv

130 How AI will affect jobs and how to stay ahead

In some other cases, however, the overall productivity gains
will not be consequential because the validation process will
be cumbersome. As illustrated by the story of aircraft mainte­
nance records and Amazon checkouts, AI often saves much
less time overall—or even makes things worse—than people
initially thought.

Some professionals have told me their clients are pressuring
them to use AI to work more quickly and even charge lower
rates. According to the clients, now AI can do your work and
you just have to validate it, so it should be faster and cheaper.
For example, translators have told me that many of their clients
are now asking them to be editors of AI­translated text instead
of translating the text from scratch, and they want to pay less
for that.

Perhaps in some professions, productivity gains will indeed be
observed. However, there are some early indicators that it may
not be happening as much as expected, and validation may be
the culprit. A survey conducted by Upwork (https://mng.bz/
KGXO) revealed that

Nearly half (47%) of workers using AI say they have no idea how
to achieve the productivity gains their employers expect. Over three
in four (77%) say AI tools have decreased their productivity and
added to their workload in at least one way. For example, survey
respondents reported that they’re spending more time reviewing or
moderating AI-generated content (39%), invest more time learning
to use these tools (23%), and are now being asked to do more work
(21%). Forty percent of employees feel their company is asking too
much of them when it comes to AI.

So, when the correctness of outputs is of paramount impor­
tance, either for safety, legal, or commercial reasons, it is
unlikely that AI will completely replace human work, or at least
it won’t be the case as long as AI isn’t 100% accurate. It might
be the case, however, that some workers will find themselves
being hired for lower rates to validate AI’s outputs instead of
generating them themselves, although the payoff of this may
not always be as good as it may initially seem.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/KGXO
https://mng.bz/KGXO

 131Stringent validation

Validation in software engineering

Compared to other fields in which a small mistake can go
unnoticed, software bugs are often amplified—one minor bug
can break an entire application. Notably, in July 2024, a bug
in an update of security software CrowdStrike caused major
disruption globally, including grounding planes and disabling
fire alerts in buildings. The damages are estimated to be in the
billions of dollars (https://mng.bz/YD0e).

That’s why software is usually validated thoroughly. Com­
panies often ask developers to unit­test their own code and
review one another’s code. They also have automated tests in
the deployment pipeline and separate quality assurance (QA)
teams to independently validate the software.

If AI generated flawless software, then validation would per­
haps no longer be necessary. But is that so?

The code generated by LLMs tends to be syntactically
correct—it compiles just fine. However, it sometimes doesn’t
solve the intended problem correctly, or it crashes at runtime.

A software engineer performed a series of tests to under­
stand LLMs’ code­writing capabilities. In his first experiment,
he asked ChatGPT to fetch publicly available data from traffic
cameras in Singapore and show them on a map (https://mng
.bz/jpRe). This was the prompt:

 You can get JSON data containing traffic images, camera
id and location (longitude and latitude) by calling traffic
images API, https://api.data.gov.sg/v1/transport/traffic
-images. Show on a map (using OpenStreetMaps) where all
cameras are, with the corresponding traffic image, camera
id and the date and time of the image. Call the traffic
images API to refresh the data and repopulate the map
every 1 minute. Only use Javascript embedded within the
map html file for this and nothing else.

In just one attempt, ChatGPT produced a piece of code
that did exactly what it was asked to do. This was certainly
impressive.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/YD0e
https://mng.bz/jpRe
https://mng.bz/jpRe
https://api.data.gov.sg/v1/transport/traffic-images
https://api.data.gov.sg/v1/transport/traffic-images

132 How AI will affect jobs and how to stay ahead

The software engineer then tried to augment the functional­
ity of this map by also showing weather data on it:

 The 2-hour weather forecast for Singapore can be found
through the Weather API, https://api.data.gov.sg/v1/
environment/2-hour-weather-forecast, which returns JSON
data that includes the name of the location, the longitude
and latitude of the location and the weather forecast of the
loca tion in the next 2 hours. Display the information on the
map that was previously returned by modifying it. Use a
marker with a weather icon to indicate the weather station.

This time, ChatGPT’s code didn’t work correctly. After some
debugging, the engineer realized it was because the LLM had
assumed that the weather API returned data in a format that
was not the right one. So, the engineer modified the prompt
to indicate more explicitly the format of the data returned by
the API. It then worked correctly.

The engineer learned from this experience and, in sub­
sequent experiments, he made sure to write more detailed
prompts to prevent ChatGPT from making wrong assumptions.
Even then, the code wasn’t correct all the time. For example, it
persistently outputted the wrong URL to the CDN of a library.

The engineer acknowledged that ChatGPT was useful and
could help you learn how to perform certain tasks. However, he
argued (https://mng.bz/jpRe):

If you make assumptions about ChatGPT, it will make assumptions
too aka hallucinate and make up stuff. The made-up stuff is just as
elaborate and believable. . . . Most of the time, you’ll need to debug
the code, especially if you are not very specific. . . . Using ChatGPT
to debug code can be enlightening or disastrous. It can be enlighten-
ing because it can give you pointers to the issue, even issues it created
in the first place, and sometimes even fix it for you. It can be disas-
trous because it can also lead you down a rabbit hole that never ends
by giving you wrong pointers and red herrings, and it will sound
super-confident at every step of the way.

As we can see from these examples and the author’s reflec­
tions, we can’t completely trust AI­generated code. We still

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://api.data.gov.sg/v1/environment/2-hour-weather-forecast
https://api.data.gov.sg/v1/environment/2-hour-weather-forecast
https://mng.bz/jpRe

 133Stringent validation

need to validate and debug its outputs, and the expertise
of a software engineer is required to do so. In addition, the
prompts that work best are the ones filled with technical
details, so software engineers are the ones who can craft the
most effective prompts.

That’s why I find it unlikely that companies will automate
away software engineers with AI­generated code. However,
it may happen that some companies, persuaded by potential
productivity gains, will try to turn software engineers into vali­
dators of AI­generated code. Just like in the case of translators,
they may expect to pay lower rates to engineers or have them
do more work, as they’d be just proofreading the AI­generated
code instead of writing it. Let’s see ways in which you can avoid
that.

Recommendations

Let’s first go over some observations and recommendations
about traditional software development. I will then add recom­
mendations regarding the validation of AI­based products.

I’ve heard of software development teams that dedicate
most of their time to the implementation of new features, and
they deprioritize testing them or leave testing for later or for
others to do. While these teams produce code, they often do so
unreliably. I wouldn’t be surprised if business managers tried to
automate them away using AI.

To protect your job, I recommend that you specialize in
delivering robust software. This requires many more duties
than just writing code. For example, you may spend a large and
perhaps greater portion of your work making sure that your
code is robust to edge cases and unfortunate situations. Even if
AI can write some code for you, that is only a small portion of
your duties. Your employer will see you as a person who delivers
holistic and robust code that stands the test of time.

For that, I recommend joining modern software develop­
ment teams that are validation driven; they intertwine develop­
ment and testing and try to deliver robust software off the bat.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

134 How AI will affect jobs and how to stay ahead

These teams make validation central and tightly coupled to the
development process, as opposed to a secondary task.

I also recommend that you learn about test-driven develop-
ment, or TDD, which has become extremely popular. In TDD,
you divide your code into small units and spend time to think
of edge cases or things that could go wrong with each unit.
You then write individual tests for all these things that could
go wrong, and you make sure that your code passes the tests
(some people even write the tests before writing the code). I
often advise others to write a test case instead every time they’re
tempted to run the software to see if it works well, perhaps
using a “print” statement. This way, the test stays in the code
base forever and can be helpful in catching problems later.
But you don’t want to overdo it. Part of your responsibility as a
test­driven developer is to find the sweet spot between coding
and testing—you shouldn’t spend too much time writing out­
landish tests to cover scenarios that are extremely unlikely to
happen.

I also recommend you learn about trunk-based development,
which is an increasingly popular way of organizing software
teams. Before trunk­based development, each coder worked
on a separate branch of the main code branch. After finishing,
peers reviewed the software (in a “pull request”) before it was
merged into the main code. Coding and validation were thus
quite separate activities.

In trunk­based development, coders directly push their
updates to the main code branch without peer review (some
may use short­lived feature branches). For this to work, you
must adopt a set of work practices to prevent breaking the pro­
duction app. For example, you may use a mechanism known as
a feature flag to direct most users to the old version of the code
and only a handful of users, such as yourself and the quality
assurance team, to the new version. You only remove the old
code and point every user to the new one once you validate that
your new feature works as expected. Moreover, the deployment

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 135Stringent validation

pipeline must contain plenty of automated tests. You can learn
more about this process on trunkbaseddevelopment.com.

When implementing modern work practices, such as TDD
and trunk­based development, the job of coders is not just to
write code but to help continuously deliver robust software.
This involves a lot more than just writing code that implements
new features, so AI may not affect it all that much.

In addition, you may want to learn how to build and deploy
apps holistically, including DevOps and management of cloud
infrastructure, for example. This will strengthen your position
as a person who delivers robust software end to end and not just
a coder, helping you stay relevant in an era when AI can write
some code.

Let’s now move on to AI­based products, which are all the
rage. These products impose additional requirements in terms
of validation, as AI sometimes hallucinates or produces differ­
ent outputs on different executions. How can you properly
measure the accuracy of an AI­based product in performing a
task? And how can you find opportunities to improve it?

Over the past few months, many people have approached
me to ask for advice about their AI­based products because
they were disappointed with AI’s performance. This included
both developers and entrepreneurs. In addition to the odd
hallucination, they often complained that AI lacked consis­
tency. For example, a company created an AI model to gener­
ate recommendations to improve marketing videos. The users
would implement one of the recommendations and then run
the video again through the app, but now the app would make
completely different recommendations and forget some of the
previous ones. This was frustrating to users.

 In most cases, I soon noticed the developers weren’t fol­
lowing a systematic process to validate and select AI models.
For example, they didn’t have a benchmark to assess the per­
formance of different models at the task or how performance
improved as the prompt changed. Moreover, they summarized

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

http://trunkbaseddevelopment.com

136 How AI will affect jobs and how to stay ahead

the entire task in one single mega­prompt and hoped for the
best. I encouraged them to divide the problem into smaller
units and conduct thorough benchmarking. This would help
diagnose the problem and identify individual subtasks that
could be improved, perhaps bringing in some external data or
even not using AI at all. In addition, benchmarking could help
build realistic assumptions about performance and see how
close you are to what’s acceptable—AI will rarely work just the
way you want 100% of the time. In chapter 3, we discussed the
preferred process for validation and selection of models, which
gives you an idea of how AI could perform in the future and
avoid unfortunate biases that can arise from poor handling of
the validation process.

I expect there will be an increasing need for developers to
work on validating AI’s performance and finding opportunities
for improvement. Why not become a guru of AI­based product
validation to stay ahead of the curve?

 Tight control

A graphic designer told me she was trying to use AI to gen­
erate an image but was struggling to do so effectively as she
couldn’t get it to look exactly the way she wanted. As she had
very specific requirements about the image, the prompt had
become very detailed and long, which made it hard to man­
age. AI sometimes randomly ignored some instructions in the
prompt, so she had to rephrase or rearrange it to try to have AI
heed the requests.

The designer told me, “I must be doing something wrong. I
need to read the user manual.” It is true that the user manual
may have provided her with some useful directions and tricks to
write an effective prompt. For example, Midjourney’s documen­
tation (https://docs.midjourney.com/docs/prompts) explains:

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://docs.midjourney.com/docs/prompts

 137 Tight control

It is better to describe what you want instead of what you don’t
want. If you ask for a party with “no cake,” your image will probably
include a cake. To ensure an object is not in the final image, try
advanced prompting using the --no parameter. . . .Word choice
matters. More specific synonyms work better in many circumstances.
Instead of big, try tiny, huge, gigantic, enormous, or immense. . . .
Plural words leave a lot to chance. Try specific numbers. “Three
cats” is more specific than “cats.” Collective nouns also work, “flock
of birds” instead of “birds.”

While these tips and tricks may have indeed helped the
designer, they’re still rules of thumb that don’t work every
time. It’s unlikely that, just by following these recommenda­
tions, the designer would have easily controlled AI’s output
the way she wanted.

This experience is very different from that of an owner of an
e­commerce website. He explained to me that he sometimes
runs quick ad campaigns on Instagram to test a new product
or refine its sales copy. Until a couple of years ago, he hired
people to create graphics for these ads or did it himself. Now
he uses AI. As he doesn’t care much about the exact look of
these graphics, such as the colors or images in them, he writes
very simple prompts and often obtains an acceptable result in
one go.

Similarly, as I write this book, the editors have been creating
videos to summarize its content. They’ve been using AI for it.
They don’t need full control over the look of the videos, such
as colors, design, layout, and so on. They just need to verify that
the content makes sense. So, AI is very effective because a sim­
ple prompt can take you a long way.

Generative AI works best when we don’t want to tightly con­
trol its output, as you can obtain useful outputs without having
to refine and refine the prompt (see table 5.3). When you’re
not very picky about the end result, you get “good bang for
your prompt.”

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

138 How AI will affect jobs and how to stay ahead

Table 5.3 The characteristics of work that don’t require tight control over
the output. The latter is likely to be safer from AI.

Loose control Tight control

Characteristics You care about core
features but not finer
details (“80/20” work).

Short-lived, experimen-
tal, or add-on features.

Ready to accept AI’s
first output without
much fuss.

No need for very
detailed prompts (you
get good bang for your
prompt).

You know exactly
what you want.

You want the output to
look a certain way, up
to the finest details.

Describing the task
step by step can take
a significant amount
of time (perhaps as
much as doing the
job).

Examples Graphics for ephem-
eral ad campaigns.

Informal videos to
supplement written
content.

Visual effects for high-
end movie production.

Designs for clients
with very precise
requirements.

In other cases, we want to have much more control over AI’s
output, as we have a stronger idea of what we want to produce.
In this case, generative AI may not save that much time, if any
at all, as the process of precisely describing what you want in
the prompt and getting AI to do it might be as complicated as
doing the work manually.

So, jobs in which clients don’t care much about the precise
details of the output are the ones most at risk of being replaced
by AI. For example, a designer who specializes in creating
graphics cheaply for quick ad campaigns may need to worry.
Jobs where clients have very precise requirements about out­
puts are the ones that may resist AI better. In these cases, AI
may be of some assistance, but the worker will still have to do a
lot of work to get the output as intended. For example, a visual
effects artist who works for high­end movie productions, in
which directors are very demanding, is more likely to resist AI.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 139 Tight control

Control in software

A few months ago, I had to quickly come up with a color
palette to display lines using different colors in a line chart.
The palette had to be defined as a JavaScript list of colors
represented by hexadecimal strings. I asked ChatGPT the
following:

 give me a color palette for a graph written as a Javascript
list of hex values. there should be 20 different colors

ChatGPT responded with a list of colors in the right format.
Here’s an excerpt:

 const colorPalette = [
 "#FF5733", // Red-Orange
 "#33FF57", // Green
 "#3357FF", // Blue
 "#FF33A1", // Pink
 "#FF8C33", // Orange
 …
];

It worked like a charm. The colors looked kind of ugly (the cli­
ent said they looked jazzy), but it did the job we needed at the
time, which was to visualize the data as quickly as possible. We
didn’t need it to look particularly well, or not just yet.

When it comes to writing code, AI is most useful when we
can succinctly describe the task and don’t care so much about
the exact output. So, we get good bang for our prompt. Note
how sloppily written my prompt was, yet ChatGPT managed to
produce code I could readily use.

But not all coding tasks are like this. In fact, most often, we
do care a lot about the fine details of the software we write, and
stakeholders have strong opinions of how our software should
tackle a problem, what its interface should look like, and so on.
For example, we may need it to use a specific algorithm or a
specific external API to gather data, or we way need a frontend
interface to respond to different screen sizes in a specific way.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

140 How AI will affect jobs and how to stay ahead

As a software project grows, it often becomes more customized
and unique.

The more requirements you have about your code, the more
writing an AI prompt for it becomes like coding itself, as you
must define the solution step­by­step. This is one of the rea­
sons why no­code, drag­and­drop tools to write software have
never replaced programming. At one point, when you need
to customize a no­code app, you end up having to either code
or write step­by­step instructions using the no­code platform’s
capabilities, which is a lot like coding, thus defeating the pur­
pose of no­code in the first place.

After NVIDIA’s CEO argued that programming will now be
done using human language, technology educator John Crick­
ett pointed out, “How will we ever specify complex software in
a language as imprecise, vague and open to interpretation as
‘Human’? I’ve never met a product owner who has been able
to do it in English. I certainly can’t” (https://mng.bz/W2KW).
AI might be a tool that can aid engineers, but they will still have
to use precise, step­by­step technical language to define what
code must do.

Recommendations
I recommend avoiding software jobs that involve building
experimental products for which details don’t matter much—
we can think of them as toy products. One example is building
quick prototypes for entrepreneurs who want to test an app
idea with potential users. These clients often don’t care about
the scalability or future­proofing of the solution. They want
you to build something quickly so they can show it to users
and gather feedback. If they collect evidence that there’s a real
need for the product, they often throw away the initial proto­
type and hire engineers to build a more serious product after­
ward. Many of these entrepreneurs are now using no­code app
builders such as Bubble or FlutterFlow, without hiring engi­
neers, to build the apps themselves. We could imagine they’ll
increasingly rely on AI tools and become less inclined to hire
engineers for their early­stage projects.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/W2KW

 141A new opportunity: Making the web more human

Instead, try to work on demanding projects for very picky
clients. Some clients are extremely sensitive about small details
and want things done in a certain way. This often derives from
the demands of their own users who are perfectionists and
complain about small things. You might observe this the most
when building software for mission­critical applications, such
as coordinating logistics operations.

A new opportunity: Making the web more human

Do you ever add the word “reddit” to your search queries on
Google? I do that all the time, and it seems that there’s an
increasing number of people who do that, too.

For example, I recently went to the city of Belfast and won­
dered whether it was worth visiting Titanic Belfast, a museum
built on the site where the ocean liner was built. I knew that
an ordinary Google search would send me to countless SEO­
driven articles with titles such as “Top 5 reasons to Visit Titanic
Belfast.” These articles, packed with keywords to drive traffic,
would be poorly curated and filled with affiliate links to try to
sell me something.

Instead, I searched “Titanic Belfast worth visiting reddit,”
as I wanted to know what redditors had to say on the matter. I
knew opinions would differ, and perhaps redditors would fight
and downvote each other, but at least I’d have a higher chance
of discovering what genuine human beings thought about the
museum.

Software engineer Dmitri Brereton argues, “Why are people
searching Reddit specifically? The short answer is that Google
search results are clearly dying. The long answer is that most
of the web has become too inauthentic to trust” (https://dkb
.blog/p/google­search­is­dying).

People seem to be craving more genuine, human con­
tent on the web. I think that, if AI­written content floods the
web, it will make the problem even worse. People will flock
to online venues where they can find more genuine content.
If AI­made content proliferates on platforms such as Google,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://dkb.blog/p/google-search-is-dying
https://dkb.blog/p/google-search-is-dying

142 How AI will affect jobs and how to stay ahead

Medium, and YouTube, they may find themselves in trouble as
users flee them. Some of them, such as YouTube, have already
started cracking down on AI­generated content (https://mng
.bz/8OgD).

So, if you allow me some speculation, I think that the gen­
erative AI revolution may create new types of jobs to help rank
and filter content based on its authenticity. For example, a new
specialty may be in writing software to detect AI­generated con­
tent. This may lead to new developments and interest in the
field of information retrieval.

Philosophical detour: Automation and mass unemployment

Since the rapid development of generative AI, some people
have been concerned about the possibility that it would cause
mass unemployment in the wider economy (https://mng.bz/
EarR). This concern isn’t new—it’s been voiced many times
in history when machines or new techniques that automated
work were introduced. As a technologist, you may often find
yourself discussing the effects of your own work in the grand
scheme of things—does building new technology hurt the
economy?

Indeed, new machines and techniques do cause people to
lose their jobs. This is very unfortunate, as workers find them­
selves with obsolete skills and have to search for new jobs, per­
haps for lower pay. But what is the overall effect of machines
on an economy—do they generate prolonged mass unemploy­
ment and widespread misery? To answer this question, let’s dis­
cuss economics.

We can think of an economy as a process that takes resources
and converts them into real outputs (products and services):

Resources (minerals, energy, workers’ time) —> Products (e.g.,
food, Netflix series) and services (e.g., doctor’s care, haircut).

The total output of an economy is measured by its GDP (more
precisely, the GDP adjusted for inflation, or real GDP). Coun­
tries with a higher per­capita GDP produce more stuff for their
inhabitants. This often means they enjoy a higher standard of

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/8OgD
https://mng.bz/8OgD
https://mng.bz/EarR
https://mng.bz/EarR

 143Philosophical detour: Automation and mass unemployment

living. The GDP of a country grows when it finds ways to pro­
duce more stuff, for example, by using more advanced produc­
tion techniques or by building machines that automate away
part of the manual work.

When an economy doesn’t benefit from machines, many
worker hours are required to produce essential items like food
and clothes. When it accumulates machines, fewer hours are
required to produce the same stuff, so more items can be pro­
duced, and they become cheaper.

The use of technology frees up resources, including human
work hours, which can be used to innovate and produce non­
essential things, such as entertainment and TV series. A 2022
study revealed that “roughly 60% of employment in 2018 is
found in job titles that did not exist in 1940” (https://mng.bz/
N1rd). So, while automation eliminates jobs, ultimately the
economy accommodates the freed­up resources to the pro­
duction of other stuff, perhaps things that weren’t produced
before and that aren’t as essential to survive. Automation,
provided that it uses resources efficiently, makes an economy
richer, not poorer.

In his book Economics in One Lesson (Harper & Brothers,
1946), journalist Henry Hazlitt explained:

If it were indeed true that the introduction of labor-saving machin-
ery is a cause of constantly mounting unemployment and misery,
the logical conclusions to be drawn would be revolutionary, not only
in the technical field but for our whole concept of civilization. Not
only should we have to regard all further technical progress as a
calamity; we should have to regard all past technical progress with
equal horror. . . . Why should freight be carried from New York to
Chicago by railroads when we could employ enormously more men,
for example, to carry it all on their backs? . . . What machines do, to
repeat, is to bring an increase in production and an increase in the
standard of living.

The conundrum is that, even if automation improves eco­
nomic development overall, the transition is harsh for the peo­
ple who lose their jobs in the process. Henry Hazlitt goes on
to argue:

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/N1rd
https://mng.bz/N1rd

144 How AI will affect jobs and how to stay ahead

We should keep at least one eye on Joe Smith. He has been thrown
out of a job by the new machine. . . . Now he has become overnight
an unskilled workman again, and can hope, for the present, only
for the wages of an unskilled workman, because the one skill he had
is no longer needed. We cannot and must not forget Joe Smith. His
is one of the personal tragedies . . . incident to nearly all industrial
and economic progress.

I don’t think generative AI is as big a step as people claim in
terms of helping us produce stuff more efficiently. As we saw,
AI hallucinates and its outputs often need to be thoroughly
validated. In addition, as we’ll discuss later, it consumes quite a
lot of electricity and other natural resources. However, it does
seem to be helping perform certain tasks more efficiently in
a variety of industries. This will create economic growth, not
misery, in the long run, just like so many other machines have
done in the past. Some people will lose their jobs in the pro­
cess, and this will certainly be harsh for them. But we should
not fall prey to the idea that new technology causes widespread
and prolonged misery. It’s quite the opposite.

Summary

¡	Jobs in which excellent work is noticeable and appreciated
are likely to resist AI better. In software engineering, one way
to achieve that is to work at the intersection between tech­
nology and businesses—you partner with businesspeople to
help them build successful products, as opposed to just cod­
ing. Some suggestions to accomplish that are the following:

– Learn about business, for example, by reading popular
business books like Lean Startup.

– Be involved in tasks beyond technical ones, such as
product management or business analysis.

– Specialize in a technical field designed to help busi­
nesses attain their goals, such as operations research
and data science.

¡	Jobs requiring a stringent and detailed validation of the
output, either for safety, legal, or commercial reasons, will

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 145Summary

better resist AI. This tends to be the case with software, but
some people may want to turn engineers into validators of
AI­written code. Some ideas to remain relevant are

– Become a person whose job is to deliver reliable soft­
ware, not just code.

– Work in modern teams that constantly intertwine cod­
ing and testing. If you haven’t already, learn about mod­
ern engineering practices like test­driven development
(TDD) and trunk­based development.

– Learn how to build and software holistically, including
deployment, cloud, and DevOps.

– Learn good practices to evaluate AI­based products
(see chapter 5). Help your clients understand the per­
formance of AI at their intended tasks and help them
find opportunities for improvements.

¡	Jobs that require fine control over the output may resist AI
better, as AI is most helpful when you’re ready to accept its
outputs without having to refine them much. Some ideas
to protect your job are

– Avoid specializing in building rough prototypes or “toy
products,” as required by early­stage entrepreneurs for
idea validation.

– Try to work with picky clients who want things done in
a certain way. You might have the highest chances of
finding this kind of client when building software for
mission­critical applications.

¡	The proliferation of generative AI may create new soft­
ware jobs to build algorithms that will help cope with
the newly generated content (e.g., by helping filter and
retrieve content written by humans).

¡	Those whose professions are affected by AI will suffer
through the transition to a new profession. However, if AI
were to truly automate jobs efficiently, rather than cause
prolonged unemployment and misery, it will make our
economies more efficient and prosperous.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

146

6The fine print

This chapter covers

¡	Controversial and timely discussions around AI
¡	Copyright disputes regarding training data
¡	The economics of AI
¡	Exaggeration about AI’s performance and
 advancements
¡	AI regulation
¡	Consumption of resources, such as electricity and
 water, to train and use AI models
¡	The philosophical debate around AI, biological
 brains, and consciousness

This chapter addresses some of the bigger questions around
AI. It also reveals a less flattering AI side—how the field often
suffers from exaggeration, speculation, and even deception.
I think it’s important to be informed about these topics, so
you can analyze AI announcements and discussions critically.
In addition, if you’re building AI-based products or using AI
intensively, you may want to be aware of the broader effects
and potential controversies that could arise from your work.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 147Copyright

Copyright

Large AI models, such as LLMs and text-to-image models,
have been trained using data collected from the internet, or
scraped, most often without authorization from its owners. This
includes millions of documents, images, and books, which
has made many people angry, and there have been many law-
suits against AI providers. One example is a lawsuit from Getty
Images, a website that sells stock images, against Stability AI,
which creates the Stable Diffusion text-to-image models. Getty
Images argues that Stability AI used images collected from Get-
ty’s website without authorization to train its models. The com-
plaint shows images generated by Stability AI’s models, which
are similar to those sold on Getty. In some cases, the AI model
even generates images with a rough imitation of Getty Images’
watermark (see figure 6.1).

Figure 6.1 Left: Image sold on Getty Images’ website. Right: Image
generated by a Stable Diffusion model. Note the watermark in the image.
These images are reproduced from Getty Images (US), Inc. v. Stability AI,
Inc., 1:23-cv-00135, (D. Del.).

A similar lawsuit was filed by The New York Times against OpenAI
on the grounds that newspaper articles were scraped without
authorization to train OpenAI’s models. The complaint

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

148 The fine print

contains examples of large portions of text outputted by GPT-
4, which are verbatim reproductions of text found in The New
York Times (see figure 6.2).

Output from GPT-4:

Actual text from The New York Times:

Figure 6.2 Example of GPT-4 output (almost) verbatim text
as published by The New York Times. Figure reproduced from
The New York Times Company v. Microsoft Corporation,
1:23-cv-11195, (S.D.N.Y.).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 149Copyright

In addition, a group of artists sued Midjourney, Stability AI,
and other image-generation providers for using images of the
plaintiffs’ work to train their models. They argue this allows
the models to generate images “in the style of” the plaintiffs
(https://mng.bz/ZlKa). It is likely that many other copyright
infringement allegations will be made against AI providers in
the future.

Copyright infringement is usually alleged on two grounds:

¡	AI models sometimes reproduce verbatim content.

¡	AI providers use copyrighted data without authorization
to train models.

Verbatim reproductions happen when a model memorizes
training data, which is a result of overfitting. It is likely that AI
providers will try to minimize this by using techniques to pre-
vent overfitting. It’s hard to guarantee that no memorization
will happen, but it might be mitigated successfully.

The second point—that data is used to train models without
authorization—is more controversial and seems to be the crux
of the problem. Supporters of AI providers argue that it isn’t a
copyright violation. They think it is legitimate to scrape data
to train a model because the goal is for the model to learn pat-
terns and associations from data, not to reproduce a verbatim
copy of the data (even if that has happened in some unfortu-
nate cases).

I’ve even heard some people argue that us humans learn
from reading publicly available data, and we then use that
knowledge to create our own work. So, why wouldn’t AI provid-
ers be able to do the same?

The key to this conundrum hinges on the topic of fair use. In
copyright law, it is considered that copying data without autho-
rization is fair in some circumstances. This includes copying
the data to help build a product that does not replace or com-
pete against the original product. For example, throughout
this book, I have reproduced quotations from other books. I
never reached out to their authors to ask for permission. This

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/ZlKa

150 The fine print

is considered fair use because my quotations don’t make this
book compete against the other books, and the original author
of the quotation is clearly attributed. In chapter 1, for instance,
I quoted a paragraph from the book The Elements of Statistical
Learning. However, this book covers a different topic, so it
doesn’t intend to compete with it, stealing some of its custom-
ers. In fact, I may actually drive some publicity toward that book
by mentioning it. Had I copied an entire chapter of that book,
however, this wouldn’t be considered fair use because my book
could become a replacement for it. There are no exact guide-
lines on what constitutes fair use, such as a precise number of
words in a quotation, so this is usually determined case by case
in a dispute resolution.

The lawsuits by Getty Images and The New York Times
attempted to establish that scraping their data by AI providers
was not fair use because they used it to build competing prod-
ucts. This allegation is particularly easy to visualize in the case
of image generation—one can imagine that customers of Getty
Images may use Stable Diffusion instead to create images.

As Getty Images argues (https://mng.bz/RVgO),

Stability AI has copied at least 12 million copyrighted images from
Getty Images’ websites. . . . Stability AI now competes directly with
Getty Images.

The New York Times lawsuit also tries to establish that OpenAI’s
models act as a replacement to the newspaper’s website
(https://mng.bz/2yvm):

Defendants insist that their conduct is protected as “fair use”
because their unlicensed use of copyrighted content to train GenAI
models serves a new “transformative” purpose. But there is nothing
“transformative” about using The Times’s content without payment
to create products that substitute for The Times and steal audiences
away from it.

As of this writing, these disputes haven’t been settled. We’ll see
what happens in court.

I think one likely outcome from successive disputes is
that regulators will request AI providers to honor opt-out

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/RVgO
https://mng.bz/2yvm

 151Economics of AI

requests—if a data owner doesn’t want their data used to train
AI models, it shouldn’t be used. The data owner will have to
indicate their wish to opt out through machine-readable meta-
data in an agreed format. This is how it works if you don’t want
search engines to scrape and index your content. You must
specify so in a text file called robots.txt, returned upon request
to your root domain (e.g., example.com/robots.txt). In a spe-
cial format, the file describes which sections of the website are
allowed to be scraped and by whom. All major search engines
honor the protocol.

A different controversy is whether AI-generated content is
itself protected by copyright law. For example, if you gener-
ate an image using Midjourney, can you prevent others from
reproducing the AI-generated image, as it’s a violation of your
copyright? The Copyright Alliance argues that work solely gen-
erated by AI is not protected by copyright. However, it clarifies
(https://mng.bz/1Xnn):

If a work contains both AI-generated elements and elements of
human authorship protectable by copyright law—such as human-
authored text or a human’s minimally creative arrangement,
selection, and coordination of various parts of the work—the
elements of the work that are protected by copyright would be owned
by the human author.

I’m not quite sure what this means. If I use Midjourney to gen-
erate an image, is the work solely generated by AI, or am I the
work’s coordinator because I wrote and refined the prompt?
Perhaps the Copyright Alliance doesn’t know yet, as it adds
after that paragraph, “AI and copyright issues will continue to
develop,” and it invites you to sign up for the newsletter on AI
copyright to stay up to date.

Economics of AI

Since the boom of generative AI, we hear a lot about its poten-
tial economic rewards. By the sounds of it, a lot of people will
make a lot of money thanks to AI. But is that so?

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

http://example.com/robots.txt
https://mng.bz/1Xnn

152 The fine print

Some AI providers are already collecting billions in revenue.
In 2024, for example, OpenAI generated $3.7 billion. This is
quite impressive for such a young company.

But revenue is not enough to build a successful business in
the long run. For that, a business must become profitable—it
must collect more revenue than it spends on generating it.
Otherwise, it can’t pay the bills unless there’s a continued injec-
tion of cash from investors to subsidize its losses.

In 2024, OpenAI lost $5 billion. While its $3.7-billion rev-
enue was impressive, it wasn’t enough to cover its even more
impressive expenses (https://mng.bz/PdMv). This was likely
related to the high costs of training and serving large AI mod-
els. Some people have estimated that running ChatGPT might
cost OpenAI $700,000 a day (https://mng.bz/JYna). Training
GPT-4 is said to have cost the company $100 million (https://
mng.bz/wJma). Note that some models are retrained period-
ically with new data, so model training is not always a one-off
expense. The other major AI providers, such as Anthropic and
Mistral, are also still unprofitable.

In addition to becoming profitable, a business is successful
if it generates good profits—investors want good bang for their
buck. In a competitive market, profits tend be eroded over time
because copycats enter the market, pushing costs up and prices
down, so it’s hard to make consistently good profits. The latter
requires a moat, also known as a competitive advantage, which is a
feature that protects a company’s market share from competi-
tors. When a business benefits from a moat, competitors can’t
enter the market on equal terms, so it’s hard or too expensive
for them to eat into your market share.

AI providers don’t seem to have a strong moat protecting
their market shares. In particular, the methodology behind
LLMs (the transformer architecture discussed in chapter 1)
is publicly known, so others can build their own competing
models. AI providers are a bit uneasy about this. In May 2023, a
leaked Google memo said, “We have no moat and neither does
OpenAI. . . . The uncomfortable truth is, we aren’t positioned

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/PdMv
https://mng.bz/JYna
https://mng.bz/wJma
https://mng.bz/wJma

 153Economics of AI

to win this arms race and neither is OpenAI. . . .While our AI
still holds a slight edge in terms of quality, the gap is closing
astonishingly quickly. Open-source AI is faster, more custom-
izable, more private, and pound-for-pound more capable.”
The memo also admitted, “We have no secret sauce,” and it
suggested, “People will not pay for restricted AI when free,
unrestricted alternatives are comparable in quality. We should
consider where our value add really is” (Emmanuel Maggiori,
2024, Siliconned).

Because there’s no secret sauce, the models created by differ-
ent providers are already converging in terms of performance
and capabilities, including open source ones. It is conceivable
that there will be a market shake-up at some point—some com-
panies may go out of business or discontinue their products.
The economic case for developing large AI models is not as
clear as it may seem initially.

In addition to the big players, numerous smaller compa-
nies are building AI-based products, which are built on top of
foundation models—some people call them “AI wrappers.”
For example, there are tens of companies that offer an AI tool
to turn an ordinary picture of you into a professional-looking
headshot. These tools are likely a thin layer added on top of
a publicly available AI model such as Stable Diffusion, or per-
haps a fine-tuned version of one of them. This might seem like
a winning business idea at first because you’re genuinely mak-
ing it easy to create headshots for people. However, there is no
moat—the “secret sauce” of these apps is the prompt which,
unless it’s very special, others will probably be able to come up
with too. So, competition multiplies, as we can already see from
the multiple apps offering similar functionality. It will be hard
for these thin businesses to generate significant profits.

Finally, much has been said about a dramatic increase in busi-
ness productivity thanks to the use of AI tools. In 2023, McKin-
sey shared the following estimates (https://mng.bz/qxz6):

Generative AI’s impact on productivity could add trillions of dollars
in value to the global economy. Our latest research estimates that

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/qxz6

154 The fine print

generative AI could add the equivalent of $2.6 trillion to $4.4 tril-
lion annually across the 63 use cases we analyzed—by comparison,
the United Kingdom’s entire GDP in 2021 was $3.1 trillion.

But productivity increases have been pretty much undetect-
able so far. A 2024 Economist article explains:

Macroeconomic data . . . show little evidence of a surge in produc-
tivity . . . In America, the global centre of AI, output per hour re-
mains below its pre-2020 trend. Even in global data derived from
surveys of purchasing managers, which are produced with a shorter
lag, there is no sign of a productivity surge. (“What happened to
the artificial-intelligence revolution?” 2024, July 2, The Economist)

The article also explains that the rate of adoption of AI in the
business world has been very slow due to “concerns about data
security, biased algorithms and hallucinations.” It concludes,
“So far the technology has had almost no economic impact.”
Indeed, it seems that implementing AI in business is harder
than it may initially seem. Someone recently told me that the
problem was the “last mile”—while AI can help you do the ini-
tial 80% of a job just fine, it’s hard to make it complete the
remaining 20% well because of hallucinations or the need for
painstaking customization. This makes productivity gains less
impressive than promised.

So, I advise you to be cautious when you hear big statements
about AI’s economic benefits. The jury is still out.

Smoke and mirrors

In November 2023, it was revealed that self-driving cars pro-
duced by Cruise weren’t quite driving themselves. An army of
human operators in a remote-control room manually inter-
vened when the cars faced problems. This happened once
every 2.5 to 5 miles of driving. The company had 1.5 employ-
ees doing this job for every car on the streets (https://mng
.bz/7pM7). Business professor Thomas W. Malone said, “It
may be cheaper just to pay a driver to sit in the car and drive it”
(https://mng.bz/mGpW).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/7pM7
https://mng.bz/7pM7
https://mng.bz/mGpW

 155Smoke and mirrors

A few months later, Waymo, which is Cruise’s main compet-
itor, explained in a blog article, “Much like phone-a-friend,
when the Waymo vehicle encounters a particular situation on
the road, the autonomous driver can reach out to a human
fleet response agent for additional information to contextu-
alize its environment” (https://waymo.com/blog/2024/05/
fleet-response/).

Something similar happened with Amazon’s “just walk out”
technology, installed in Amazon’s supermarkets. This technol-
ogy allegedly used AI to automatically prepare your shopping
receipt based on footage from cameras installed on the ceiling.
In April 2024, a reporter revealed that 1,000 remote workers
in India were watching the videos and manually preparing or
adjusting at least 70% of receipts (https://mng.bz/5gX8).

The use of humans to secretly power AI is often compared
to the Mechanical Turk, a fraudulent machine constructed
in 1770, which seemed to play chess by itself when, in reality,
a human secretly powered it. The machine was exhibited on
tours for 84 years.

The AI field is plagued with big promises, hype, and exagger-
ation. Mechanical Turks are just one example of this—exagger-
ation and deception come in different forms. In April 2023, for
example, Google executives claimed that one of their AI mod-
els had learned the Bengali language even though it hadn’t
been trained on Bengali-language text. One of them explained,
“We discovered that with very few amounts of prompting in
Bengali, it can now translate all of Bengali” (https://futurism
.com/the-byte/google-ai-bengali).They argued that this was an
example of AI having “emergent properties.”

The news went viral. An Indian newspaper pondered, “AI
learns Bengali on its own, should we be worried?” (https://
mng.bz/6eyp). Someone who heard about this news reached
out to me asking if I thought we might soon face a “singularity
event”—a dramatic explosion of AI’s capabilities—since now
AI could learn new stuff on its own.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://waymo.com/blog/2024/05/fleet-response/
https://waymo.com/blog/2024/05/fleet-response/
https://mng.bz/5gX8
https://futurism.com/the-byte/google-ai-bengali).They
https://futurism.com/the-byte/google-ai-bengali).They
https://mng.bz/6eyp
https://mng.bz/6eyp

156 The fine print

With an understanding of how current AI works (see chap-
ter 1), it’s hard to believe it could easily learn a new language
that is not part of its training data. As it turns out, Bengali was
indeed one of the languages the model was trained on, con-
trary to what the Google executives had said (https://mng.bz/
oKYy).

More recently, in September 2024, OpenAI launched a new
model called OpenAI o1. The company framed it as a model
capable of “thinking” and “reasoning.” The announcement
explained, “We are introducing OpenAI o1, a new large lan-
guage model trained with reinforcement learning to perform
complex reasoning. o1 thinks before it answers—it can pro-
duce a long internal chain of thought before responding to
the user” (https://mng.bz/nROV). The article used the word
“think” 9 times and the word “reason” 17 times. This framing
made it sound like a major improvement and perhaps a depar-
ture from the usual autocompleting LLMs. It also sounded like
a step toward more human-like AI—the announcement said
the model could spend more time thinking before responding,
“much like a person would.”

But once we look beyond the marketing material, we real-
ize that the o1 system isn’t as novel as it seems. It works as
follows: first, an LLM is used to generate a piece of text with a
suggested list of steps to solve the problem. These instructions
are then added to the end of the original prompt. So, the new
prompt contains the original task followed by a suggested
step-by-step recipe to perform it. Afterward, this extended
prompt is run through an LLM as usual. This mimics the
popular chain-of-thought prompting technique, in which the
user adds a step-by-step guideline of how to solve a problem
to the prompt.

The announcement emphasized that reinforcement learn-
ing was used to train the system: “Our large-scale reinforce-
ment learning algorithm teaches the model how to think
productively using its chain of thought in a highly data-efficient
training process.” This may sound impressive, but it’s probably

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/oKYy
https://mng.bz/oKYy
https://mng.bz/nROV

 157Regulation

nothing new. OpenAI has been using reinforcement learning
with human feedback (RLHF) to refine all its models for quite
some time (see chapter 1). It’s likely that by “reinforcement
learning” they meant that humans manually wrote down a
small dataset of examples of the step-by-step instructions they
wanted the LLM to generate, and the LLM was refined to pro-
duce such instructions more accurately.

I advise you to be cautious whenever you hear impressive AI
announcements. I recommend keeping in mind how current
AI works when you analyze announcements, which makes it
easier to read between the lines and separate the wheat from
the chaff.

Regulation

In August 2024, regulation concerning AI came into force in
the European Union, known as the AI Act. The AI Act applies
to AI that is used, or whose outputs are used, inside the EU,
even if it’s developed and run elsewhere. The regulation has
been controversial, with some people deeming it insufficient
and others excessive. Either way, let’s have a quick discus-
sion about it because you might be affected (e.g., you might
develop an AI-based product used in the EU) and because it
may become the blueprint for future AI regulation elsewhere.

The AI Act contains four special chapters that are especially
relevant to developers and users of AI systems. We briefly com-
ment on each of them below. You can read the full text online
(https://mng.bz/vKWm) or have a look at the official high-
level summary (https://mng.bz/4aQ5).

Prohibited AI practices

This part of the Act describes a list of AI practices that are
outright prohibited as they’re considered serious violations.
These include AI used to manipulate or deceive people, AI
that exploits people’s vulnerabilities “due to their age, disabil-
ity or a specific social or economic situation,” and AI for social
scoring, among other categories.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/vKWm
https://mng.bz/4aQ5

158 The fine print

High-risk systems

This part contains stipulations that apply to high-risk products.
These are products that are already regulated by the EU and
require a third-party conformity assessment, such as certain
vehicles, machinery, and medical devices. It also adds a few
more categories to the list, such as AI for targeted job ads and
AI for visa applications. The Act imposes several requirements
on these high-risk systems, including enabling human over-
sight “to understand its capabilities and limitations, detect and
address issues, avoid over-reliance on the system, interpret its
output, decide not to use it, or stop its operation.”

Transparency obligations

This part requires companies to inform users when they’re
interacting with an AI system (“unless it's obvious or the AI is
used for legal purposes like crime detection”), which specif-
ically applies to “an AI system that generates or manipulates
image, audio or video content constituting a deep fake.” This
is the case even with systems that are not deemed high risk.
Note that if you use AI to generate content but then you thor-
oughly review the content and hold editorial responsibility
over it, you no longer need to inform others about using AI.

By the way, don’t worry about the AI Act ruining your AI
art—you can indicate that you’re using AI “in an appropriate
manner that does not hamper the display or enjoyment of the
work.”

Foundation models

This part imposes requirements on foundation models, which
are denoted by “general-purpose AI models.” The Act requires
the AI provider to write documentation detailing the mod-
el’s development, including “information on the data used
for training, testing and validation” and “known or estimated
energy consumption of the model.”

In addition, there’s a special category of very large founda-
tion models the Act deems to pose “systemic risk.” These are

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 159Resource consumption

models that exceed a certain threshold in terms of the amount
of training (the threshold is currently set to 1025 floating-point
operations during training). The creators of these models must
notify the EU of their work, and the EU might impose addi-
tional requirements to mitigate risk.

In addition, the Act approves training models from scraped
data without authorization, so long as opt-outs are respected.
This was approved indirectly by referring the reader to a direc-
tive that allows web scraping with the goal of data mining for
analytics purposes. Some people have criticized this directive
saying that “data mining” is too broad and could cover pretty
much anything (https://mng.bz/QDa1).

Resource consumption

Training and using AI models consumes electricity and other
resources, the scale of which has been criticized. For example,
a journalist called AI “a disaster for the climate” (https://mng
.bz/Xxzl).

It is difficult to gauge AI’s electricity consumption because
providers haven’t yet reported it consistently. So, we have to
rely on studies made by other people. These studies aren’t
quite standardized, so they’re a bit messy and difficult to fol-
low. Some of them even mix different units within the same
report in a chaotic way, such as kWh, CO2 emissions, and
“equivalent number of smartphone charges” (https://arxiv
.org/pdf/2311.16863). Sometimes researchers rely on hearsay
and loose logical connections to calculate consumption. For
example, one researcher deduced LLMs’ energy consumption
indirectly from the fact that a Google executive said in an inter-
view that LLMs likely consumed 10 times more power than per-
forming a Google search (https://mng.bz/yW57).

In the following, I’ll share some results from a study pre-
sented by a group of researchers from Hugging Face and
Carnegie Mellon University. The researchers used multi-
ple open source models with their own GPUs and measured
consumption.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/QDa1
https://mng.bz/Xxzl
https://mng.bz/Xxzl
https://arxiv.org/pdf/2311.16863
https://arxiv.org/pdf/2311.16863
https://mng.bz/yW57

160 The fine print

Table 6.1 shows electricity consumption reported by the
researchers for text and image generation (https://arxiv.org/
pdf/2311.16863). Consumption figures are the average across
different models studied by the researchers (individual con-
sumption per model was not reported in a consistent manner).

Table 6.1 Average electricity consumption across different models
compared with typical household consumption

kWh / 1,000
responses

% of daily
household kWh

(US)

% of daily
household kWh

(UK)

Text generation 0.047 0.15% 0.5%

Image generation 2.907 9.83% 30%

Note that the figures are per 1,000 uses of the model, such
as generating an entire response 1,000 times with an LLM
or generating 1,000 images with a text-to-image model. One
thousand uses of AI may seem like a lot, but it might easily be
reached by intensive users in less than a day. For example, a
coder using GitHub Copilot might generate hundreds of LLM-
based autocompletions every hour. Moreover, many of our
regular online actions, such as performing a Google search or
browsing an online store, may trigger LLM queries (Google
is already showing AI results with searches), which would add
more LLM usage even if the user doesn’t use LLMs directly. We
can also imagine that a small group of graphic designers might
generate 1,000 images in a short time frame by prompting the
system repeatedly to create images and adjust the result.

In these experiments, image generation was much more
power-hungry than text generation. However, the research-
ers didn’t reveal the prompt used for text generation or how
much text was generated each time. In addition, they only
used text-generation models on the smaller end of the spec-
trum, such as GPT-2 models, which are 100 times smaller than
the generation that succeeded them. The authors reported

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2311.16863
https://arxiv.org/pdf/2311.16863

 161Resource consumption

significant variability across models. In particular, the largest
image-generation model consumed 6,000 times as much power
as the smallest one.

Note that AI models are constantly being optimized, so con-
sumption could be reduced in the future—sometimes a model
can be made much smaller without significantly reducing its
capabilities. For reference, I’ve added two columns to table 6.1
that compare AI consumption with the total daily electricity
consumption by the typical US (https://www.eia.gov/tools/
faqs/faq.php?id=97&t=3) and UK (https://mng.bz/MDQE)
households.

The greatest worry is not electricity consumption itself,
but the CO2 emitted to generate it. Carbon intensity measures
the grams of CO2 emitted per kWh consumed, and it varies
depending on how power is generated. Table 6.2 restates the
above results in terms of CO2 emitted based on typical car-
bon intensity in the US (https://mng.bz/av6x) and the UK
(https://mng.bz/gaXZ; both countries produce electricity
from different sources, so their carbon intensity differs).

Table 6.2 Comparison of the electricity consumption from table 6.1 with
equivalent CO2 emissions of petrol cars

Grams of
CO2 / 1,000
responses

(US)

Miles
driven for
equivalent
CO2 (US)

Grams of
CO2 / 1,000
responses

(UK)

Miles
driven for
equivalent
CO2 (UK)

Text
generation

20 0.05 miles 7.6 0.02 miles

Image
generation

1,200 3.1 miles 470 1.2 miles

To put things in perspective, the table includes the number
of miles you’d have to drive a car to emit the same amount of
CO2 (https://mng.bz/av6x).

In addition to the electricity required to use AI models,
many people have stressed that training them is a power-hungry

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://mng.bz/MDQE
https://mng.bz/av6x
https://mng.bz/gaXZ
https://mng.bz/av6x

162 The fine print

activity. It’s been estimated that training GPT-3 consumed 1,287
MWh (https://arxiv.org/pdf/2104.10350). This amounted to
the electricity consumed in one day by 43,000 US households
or 134,000 UK households. Note that, while models are only
trained sporadically, AI providers train or retrain multiple
models a year.

Using and training AI models also consumes other
resources, such as water for cooling down data centers. An
article in Fortune explained, “Microsoft disclosed that its global
water consumption spiked 34% from 2021 to 2022 (to nearly
1.7 billion gallons, or more than 2,500 Olympic-sized swim-
ming pools), a sharp increase compared to previous years that
outside researchers tie to its AI research” (https://mng.bz/
eyNw).

When you use AI, I recommend you keep in mind that
“cloud computing” actually happens on Earth, inside large
refrigerated buildings, and this can be resource-intensive and
have an influence on the environment.

Brains and consciousness

Let’s finish on a lighter and more philosophical note. It is com-
mon to compare the structure of AI models with our own bio-
logical brains. If you remember from chapter 1, LLMs perform
lots of projections, which are mathematical operations that
involve matrix multiplications. Biological neurons have been
traditionally described as performing a similar calculation, so
many ML models, including LLMs, are categorized as artifi-
cial neural networks. In addition, some ML model architectures
have been compared with the structure of specific parts of our
brains. For example, convolutional neural networks (CNNs)
are often compared with the brain’s visual cortex.

In reality, we still don’t quite understand how brains work.
For example, the traditional understanding of the calcula-
tions made by neurons is too simple (Penrose, R., 1989, The
Emperor's New Mind: Concerning Computers, Mind, and the Laws
in Physics. Oxford University Press, p. 511). Over the years,

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/pdf/2104.10350
https://mng.bz/eyNw
https://mng.bz/eyNw

 163Brains and consciousness

much more complicated models have been developed. How-
ever, these models still cannot predict what scientists observe
when studying the workings of real neurons. For example, in
2020, a group of researchers discovered that the dendrites that
pass signals from one neuron to another may actually carry out
complicated computations (Gidon, A. et al., 2020, “Dendritic
action potentials and computation in human layer 2/3 corti-
cal neurons,” Science, 367[6473], pp. 83–87). So, they aren’t just
wires that carry signals as previously thought. To complicate
things even more, the fluid that surrounds neurons contains
molecules, known as neuromodulators, which affect neurons’
behavior in a way that isn’t fully understood. While progress
has been made, our understanding of neurons and brains is
still quite poor.

As of today, the brain of only one organism has been fully
mapped out, meaning that researchers could create a map of
all connections between neurons, or connectome. The organism
is a tiny worm called C. Elegans, which has around 300 neurons
and 7,000 connections among them. However, it was impossible
to simulate the observed worm’s behavior, as the map just tells
us which neurons are connected to which but not exactly how
they work. Neuroscientist Anthony Movshon concluded that
the “connectome by itself has not explained anything" (Jabr,
F., 2012, “The Connectome Debate: Is Mapping the Mind of
a Worm Worth It?” Scientific American, https://mng.bz/pKaE).

In some cases, AI models are designed without considering
brain structures, and the brain analogy is forced later on. For
example, the initial articles describing CNNs did not say that
these were inspired by the brain. The researchers claimed their
design decisions were “guided by our prior knowledge about
shape recognition” (LeCun, Y. et al., 1989, “Handwritten digit
recognition with a back-propagation network,” Advances in
Neural Information Processing Systems, 2). Years later, when CNNs
became popular, the same researchers claimed that they were
“directly inspired by the classic notions of simple cells and com-
plex cells in visual neuroscience, and the overall architecture is

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/pKaE

164 The fine print

reminiscent of the LGN–V1–V2–V4–IT hierarchy in the visual
cortex ventral pathway” (LeCun, Y., Bengio, Y., & Hinton, G.,
2015, “Deep learning,” Nature, 521[7553], pp. 436–444).

Moreover, analogies are often quite loose. For example, the
comparison between CNNs and the visual cortex only works if
we ignore some known things about the visual cortex that are
not a part of CNNs (see Smart Until It’s Dumb, Chapter 2).

So, be cautious whenever you hear analogies between AI and
brains. We still don’t understand brains, so the connection is
likely to be highly speculative.

In addition to brain-related speculation, the latest AI boom
has also reignited the consciousness debate. Just to cite an
example, in 2022, the news went viral that an AI engineer
claimed Google’s chatbot had become sentient (https://mng
.bz/OBn2).

But, just like with brains, we don’t quite understand con-
sciousness. We do know that some parts of the brain are in
charge of unconscious actions (like controlling heartbeat),
while others are related to conscious perceptions (like vision),
but we don’t understand why some parts contribute to our con-
sciousness, while others don’t. We also don’t understand how
general anesthesia works; we just know from experience that
anesthetics turn off consciousness temporarily, but we don’t
know the mechanism behind it.

In addition, there are many philosophical questions around
consciousness that don’t have an easy answer. For example,
some people think that any computation gives rise to con-
sciousness. Under this view, a thermostat is conscious but in
a different way. Other people, like physicist Roger Penrose,
think consciousness doesn’t arise from computation at all and
thus cannot be created with digital computers. The debate is
still ongoing, and I’m not sure we’ll ever be able to determine
whether a thermostat is conscious.

So, I advise you to be cautious when anyone claims to have a
definitive answer about the link between AI and consciousness.
There is so much we don’t know.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/OBn2
https://mng.bz/OBn2

 165Summary

As we’ve now reached the end of this book, let’s quickly
reflect on the content covered. Throughout this book, we’ve
discussed the power of AI—how ML innovations have pushed
the boundaries of what AI can do. We’ve also discussed AI’s
limitations—how sometimes AI hallucinates or isn’t as useful
as it seems at first sight. Because AI is not all-powerful, its
effects will vary depending on the context—sometimes AI may
automate away jobs, but other times it may not; sometimes it
may be the best tool for a task, but other times it may not; and
so on. In this book, I tried to cover both sides of that debate
and share advice accordingly. The last chapter completed our
analysis by discussing some of the bigger questions surrounding
AI, many of which are still unanswered and are likely to be hot
topics in the future.

Summary

¡	The copyright debate hinges on the interpretation of fair
use. AI providers argue that they scrape data so that their
models can learn general patterns and that they don’t
intend to reproduce the original data, implying it’s a fair
use of that data. Data owners argue that AI providers use
this data to build competing products and steal their cus-
tomers, so this isn’t fair use.

¡	The economic case for AI is not that clear. AI providers
are still largely unprofitable and face fierce competition.
Smaller companies that create thin AI wrappers also face
fierce competition and may struggle to make ends meet.
Productivity gains in the wider economy due to AI have
not yet been observed.

¡	The AI field has a tendency to exaggerate or even deceive.
Many products that allegedly used AI have been revealed
to rely on remote human operators to do the job man-
ually. Big AI announcements are often incorrect (like
Google saying a model learned a language that wasn’t in
its training data) or spruced up (like OpenAI saying its
model “thinks” and “reasons”).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

166 The fine print

¡	The amount of electricity consumption (and other
resources like water) to train and run AI models has
received a lot of criticism, with some people arguing it
will have detrimental environmental effects. Studies and
reports about AI resource consumption are still scarce
and preliminary, but we can see that it isn’t a negligible
amount.

¡	Comparisons between AI models and the structure of the
brain are highly speculative. We don’t quite understand
how brains work yet, so comparisons tend to be forced.
The same goes for AI and consciousness—it’s still an
ongoing debate without clear-cut answers.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

167

appendix A
Catalog of

generative AI tools

This appendix lists many popular generative AI tools available
at the time of writing. I expect some parts of the AI market
to organize as an oligopoly, meaning that there will be a few
key players instead of a multitude. This will be especially true
of companies that build foundation models, as model train-
ing incurs high one-off costs that few companies will be able
to afford. So, the market of foundation models will become
similar to the cloud computing market, which is dominated by
three main competitors.

Furthermore, I expect convergence in terms of models’
capabilities, as different foundation models are becoming
increasingly similar. There also seems to be a tendency toward
building multimodal AI, so you may not need to use different
models to process text, images, and video.

In other cases, such as lighter AI apps (e.g., simple wrap-
pers around LLMs) or smaller specialized AI models, we may
observe a multitude of competitors. This market may become
similar to fitness apps, in which there are thousands of options
to choose from.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

168 appendix a Catalog of generative AI tools

General-purpose conversational AI

Let’s first have a look at the market for general-purpose AI
chatbots, categorized into customer-facing apps, proprietary
foundation models, and open source foundation models.

Customer-facing apps

¡	ChatGPT—An AI assistant developed by OpenAI. It oper-
ates on a freemium basis (free access to some functionality
and a monthly subscription to access additional features).
It can be accessed at https://chatgpt.com.

¡	Claude—An AI assistant developed by Anthropic, an AI
company launched by former OpenAI employees. It oper-
ates on a freemium basis and can be accessed at https://
claude.ai.

¡	Gemini—An AI assistant developed by Google via its sub-
sidiary Google DeepMind. It operates on a freemium basis
and can be accessed at https://gemini.google.com.

¡	Microsoft Copilot—An AI assistant developed by Micro-
soft. It operates on a freemium basis and can be accessed
through various Microsoft apps, such as Word and Excel,
as well as directly through the browser at https://copilot
.microsoft.com. It’s also possible to access Copilot directly
from the Windows 11 taskbar, and some PCs are already
being manufactured with a dedicated Copilot key in their
keyboards.

¡	Perplexity AI—A freemium AI chatbot meant to be used
as a search engine. It relies on various foundation models
under the hood, including some manufactured by other
companies like OpenAI and Anthropic. It can be used at
https://perplexity.ai.

Foundation models (proprietary)

¡	GPT—A family of general-purpose, multimodal models
developed by OpenAI, which includes GPT-4 and GPT-4o.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://chatgpt.com
https://claude.ai
https://claude.ai
https://gemini.google.com
https://copilot.microsoft.com
https://copilot.microsoft.com
https://perplexity.ai

 169General-purpose conversational AI

They can be accessed through the OpenAI API. Some of
these models power customer-facing ChatGPT.

¡	Gemini—A family of general-purpose, multimodal models
developed by Google, which includes Gemini 1.5 Flash
and Gemini 1.5 Pro, the former being faster but less capa-
ble than its Pro variant. Gemini models power Google’s
customer-facing Gemini.

¡	Claude—A family of general-purpose, multimodal models
developed by Anthropic, which includes Claude Haiku,
Claude Sonnet, and Claude Opus (in increasing order of
complexity). They can be accessed through the Anthropic
API. Some of these models power customer-facing Claude.

Foundation models (open source)

¡	Llama—A family of general-purpose, multimodal mod-
els developed by Meta. The model architecture and its
parameters are publicly available, but training data has
not been disclosed. These models are released under a
special-purpose license called Meta Llama Community
License, which imposes some usage restrictions.

¡	DeepSeek—A family of models developed by the Chinese
AI company DeepSeek. Its most prominent model, Deep-
Seek-V3, made headlines for being as performing but
much cheaper to train than competitors, which caused
Nvidia's stock to crash. The code to run the model is pub-
licly available, but training code and training data haven't
been disclosed. Its license is permissive but imposes some
usage restrictions.

¡	Mistral—A family of models developed by French com-
pany Mistral AI, which was founded to become the Euro-
pean contender to OpenAI. The company publishes
text-only models (e.g., Mistral Large 2) and vision-capable
models (e.g., Pixtral 12B). They’re released under the
highly permissive Apache 2.0 license, but the training data
has not been disclosed.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

170 appendix a Catalog of generative AI tools

¡	Gemma—A family of general-purpose models developed
by Google as an open source counterpart to its propri-
etary Gemini models. Some models are text-only (e.g.,
Gemma 2), while others can handle input images (e.g.,
PaliGemma). The models are released under the permis-
sive Apache 2.0 license, but the training data has not been
disclosed.

¡	Phi—A family of lightweight general-purpose language
models developed by Microsoft, including Phi-3 Mini and
Phi-3 Medium. They’re released under the permissive
MIT License, but the training data has not been disclosed.

Coding assistants

The following are popular tools that help software engineers
write code:

¡	GitHub Copilot—An AI coding assistant that can be in -
stalled as a plug-in on multiple popular IDEs. It can be
used mainly in two different ways. One way is to type into
a chat window to interact with a chatbot and ask questions
about the code or ask it to perform tasks. The other way
is for the assistant to autocomplete your code as you type
it—you can accept suggestions by pressing the Tab key on
your keyboard. You must pay a monthly subscription to
use it, but there is a free trial.

¡	Cursor—A standalone, AI-powered IDE, built on top of
Visual Studio. You can chat with the AI assistant or accept
code autocompletions by pressing the Tab key. There is
a free version with a limited number of completions and
paid subscriptions with a higher number or an unlimited
number of completions.

¡	JetBrains AI Pro—The company behind popular IDEs such
as PyCharm and IntelliJ offers an add-on subscription to
access an AI assistant. You can chat with the assistant about
the code, and you can also accept autocompletions by
pressing the Tab key. These autocompletions are powered

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 171Image generation

by their cloud-based LLM, but users not subscribed to the
AI add-on can still benefit from simpler autocompletions
run locally. Users must pay a monthly license to add the AI
assistant to its IDEs.

Image generation

We now discuss AI for image generation, categorized into
customer-facing apps, proprietary foundation models, and
open source foundation models.

Customer-facing apps

¡	Midjourney—A tool to generate images from a textual
description (and optionally reference images to influence
the output). The app is used directly on Midjourney’s web-
site (https://midjourney.com) or through a Discord chat.
The app initially generates four different image variants of
size 1024 × 1024 each. You can then pick your favorite one,
refine it, and increase its size (or upscale it). You must pay
a monthly fee to access Midjourney, with different plans
imposing different usage limits.

¡	Dall-E—OpenAI’s flagship text-to-image app. It has now
been integrated into ChatGPT, so it can be used directly
by asking ChatGPT to produce images (although OpenAI
still offers a dedicated DALL-E interface on https://
chatpgt.com). Only paid OpenAI subscribers can access it.

Foundation models (proprietary)

¡	Dall-E—OpenAI provides API access to its image-
generation models. Users pay per image generated, with
prices varying according to the model’s version and image
size.

¡	Flux.1 Pro—A text-to-image model developed by Black
Forest Labs, which has been praised for its photorealism.
It can be accessed through various APIs from providers

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://midjourney.com
https://chatpgt.com
https://chatpgt.com

172 appendix a Catalog of generative AI tools

that have partnered up with Black Forest Labs, which
include Replicate and Together AI.

Foundation models (open source)

¡	Stable Diffusion—A family of text-to-image models devel-
oped by Stability AI, built using a diffusion approach (see
chapter 1). In addition to making the models publicly
available, the company has released the data used to train
its models and the algorithms used to filter and curate the
data. Stable Diffusion is released under an open source
license with usage restrictions. In particular, users are not
allowed to “generate or disseminate verifiably false infor-
mation,” “harm minors,” or “provide medical advice,”
among other restrictions (https://mng.bz/YDpe).

¡	Flux.1 Schnell and Flux.1 Dev—These models, derived from
proprietary Flux.1 Pro, have been made open source by
Black Forest Labs. Flux.1 Schnell has been released under
the permissive Apache 2.0 license. The more powerful but
slower Flux.1 Dev has been released under a license that
forbids commercial use. Training data has not been made
publicly available.

DIY

We finish with some of the tools and libraries commonly used
to fine-tune or create your own AI models:

¡	Hugging Face—This company hosts the de facto repository
of AI models. Open source models are usually published
there. The company also maintains a suite of libraries,
including Transformers, which helps use pretrained mod-
els. The company also maintains libraries that help fine-
tune models easily.

¡	PyTorch—A popular Python library used to create and
train machine learning models. Historically, PyTorch has
been favored by the academic community, which uses the

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/YDpe

 173DIY

library to quickly prototype and analyze models, although
it seems to be growing in popularity elsewhere. Hugging
Face’s Transformers library is built on top of PyTorch.

¡	TensorFlow—A popular alternative to PyTorch. It is usually
favored by those who deploy high-performing ML models
in production, although it seems to be losing popularity to
PyTorch as of late. The GPT-2 model, whose code was made
publicly available by OpenAI, uses TensorFlow (https://
github.com/openai/gpt-2/). OpenAI has switched to
PyTorch as its preferred library since then (https://
openai.com/index/openai-pytorch/).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://github.com/openai/gpt-2/
https://github.com/openai/gpt-2/
https://openai.com/index/openai-pytorch/
https://openai.com/index/openai-pytorch/

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

175

A
accuracy 93
AI (artificial intelligence) 1

brains and consciousness 162–165
building AI-based product 99–104
controversies and discussions 146
conversational AI 105–111
convolutions 51–53
copyright 147–151
economics of 151–154
embeddings 19–24
impact on jobs, making web more

human 141
LLM wrappers 113–114
(ML) machine learning 36–50,

53–56
multimodal AI 53–56
performance measures 93–96
selecting and evaluating tools 82
self-driving cars 154–157
tight control 136–141
tokens 13–18
transformer architecture 25–35
validation 126–136
when to use 98

AI tools
customer-facing AI apps vs.

foundation models 89

off-the-shelf vs. fine-tuning 86–89
Amazon 155
artificial neural networks 162
attention mechanism 29
automation, mass unemployment

and 142–144
autoregressive 3

B
batches 49
billing by tokens 16
Boto3 library 107
brains and consciousness 162–165
byte pair encoding 14

C
carbon intensity 161
chain-of-thought prompting 76, 156
chat 5
CNNs (convolutional neural

networks) 68, 162
competitive advantage 124, 152
completions mode 6
conditional diffusion model 54
connectome, defined 163
contextualization 29–32

multiheaded attention 32
multilayer architecture 31

context window 27

index

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

176 INDEX

conversational AI 105–111

describing task and validating
output 106

excellent job 110

previous work 107–110

convolutions 51–53

copyright 147–151

cross-entropy loss 48

customer-facing AI apps 89

D
datasets 90

deep learning 37

dimension 19

discriminative model 51

dot product 22

dropout 87

E
early stopping 87

embeddings 19–24

initial 28

LLMs and struggles with analyzing
individual letters 24

machine learning and 20

usefulness of 22

visualizing 21

end of text 5

epochs 50

excellence gap 118–126

in software engineering 122–124

exploitation 42

exploration 42

external software functions 8

F
fair use 150

feature flag 135

few-shot prompting 86

fine-tuning 47, 86

foundation models 89, 158

G
generative AI 51
get_current_weather function 10, 12
Google Places API 114
GPT-2 45
GraphHopper 106

H
hallucinations 59–67

causes of 68–74
impact on products 78–80
incorrect solutions to problems

63–65
living with 80
made-up facts 61
misinterpretation 62
mitigation 75–78
overconfidence 65
unpredictability 66

Hazlitt, Henry 143

I
Illustrated Transformer, The (book) 35
inference time 50
input prompts, subdividing into valid

tokens 14
InstructGPT 46

J
jobs 117

L
languages, other than English 16
learnable parameters 28
limited scope of updates 87
LLMs (large language models) 2–13

calling external software
functions 8

chat 5
end of text 5
hallucinations, will they go

away? 74
need for tokens 18
retrieval-augmented generation 12

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

 177INDEX

struggles with analyzing individual
letters 24

system prompt 7
text generation 4
training 45–47
wrapper 3, 113–114

local minimum 50
loss 48
LSTM (long short-term memory) 25

M
made-up facts 61
MAE (mean absolute error) 96, 97
Maggiori, Emmanuel 60
mass unemployment 142–144
Mechanical Turk 155
minibatches 49
misaligned objectives 70
misinterpretation 62
ML (machine learning) 2, 36–50

architecture 56
deep learning 37
embeddings 20
loss 48
stochastic gradient descent 48–50
training LLMs 45–47
types of 38–45

reinforcement learning 42
self-supervised learning 41
simulated data 40
supervised learning 38
unsupervised learning 43

moat 152
model validation, selection, and

testing 90–93
test set 92
training set 90
validation set 91

multiagent AI 78
multiheaded attention 32
multilayer architecture 31
multimodal AI 53–56

MVP (minimum viable product) 124

N
No Free Lunch Theorem 57
NSA (National Security Agency) 118

O
off-the-shelf vs. fine-tuning 86–89

deciding between 88
OpenAI o1 model 156
open source AI 83–85

deciding between proprietary
and 84

operations research 125
overconfidence 65
overfitting 39, 87

P
parameters (not defined by hand) 36
performance measures 93–96

accuracy 93
MAE 96
precision 94–95
recall 94–95
RMSE 96

predictions 32
price optimization 72
privacy 47
projection 23
prompt engineering 76
prompts 3
proprietary AI 83–85

deciding between proprietary and
open source 84

Q
QA (quality assurance) teams 131

R
RAG (retrieval-augmented

generation) 12, 62, 77
recall, defined 94–95
regularization 87
regulation 157

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

178 INDEX

foundation models 158
high-risk systems 158
prohibited AI practices 157
transparency obligations 158

reinforcement learning 42, 47
reproducible outputs 34
resource consumption 159–162
reward model 43
RLHF (reinforcement learning with

human feedback) 43, 76,
157

RL (reinforcement learning) 42
RMSE (root mean squared error) 96,

97

S
self-driving cars 154–157
self-supervised learning 41
SGD (stochastic gradient descent)

48–50
simulated data 40
singularity event 155
SMOTE (synthetic minority

oversampling technique) 41
software engineering 122–124

validation in 131–133
solutions to problems, incorrect 63–65
subdividing input prompts into valid

tokens 14
supervised learning 38
system prompt 7

T
TDD (test-driven development) 134
temperature 33

Top-k setting 34
Top-p setting 34

test set 92
text generation 4
tight control 136–141

in software 139
recommendations 140

tokens 13–18
billing by 16

languages other than English 16
need for 18
subdividing input prompts into valid

tokens 14
tools, AI

deciding between proprietary and
open source 84

proprietary vs. open source 83–85
Top-k setting 34
Top-p setting 34
training data 39
training set 90
training time 50
transformer architecture 25–35

contextualization 29–32
initial embeddings 28
learning more about 35
predictions 32
reproducible outputs 34
temperature 33

transparency obligations 158

U
underfitting 39
unpredictability 66
unsupervised learning 43

V
validation 126–136

in software engineering 131–133
recommendations 133–136

validation set 91
visualizing, embeddings 21

W
Waymo 155
world models 68–70

X
XAI (explainable AI) 104

Z
zero-shot prompting 86

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

Guidelines for selecting AI tools

Proprietary vs. open source AI

Proprietary AI
Best for…

Open source AI
Best for…

 ■ Done-for-you solution

 ■ Easy to get started

 ■ No specialized knowledge
required

 ■ Small-scale use, in which pay-as-
you-go AI is cheaper than main-
taining your own infrastructure

 ■ Self-hosting, so that you
enjoy better governance and
transparency

 ■ Large-scale use, in which main-
taining your own infrastructure is
cheaper than pay-as-you-go AI

 ■ Model customization (e.g.,
fine-tuning)

Off-the-shelf vs. fine-tuned AI

Off-the-shelf AI
Best when…

Fine-tuned AI
Best when…

 ■ Prompt engineering techniques
work well.

 ■ It is okay to use proprietary AI.

 ■ You can afford large models.

 ■ You prioritize ease of use.

 ■ You want highly customized
outputs, and you’ve exhausted
other options.

 ■ You need to use smaller models
(for example, for self-hosting
them).

 ■ You have ML expertise and
access to computing resources.

Customer-facing AI apps vs. foundation models

Customer-facing AI apps
Suitable for…

Foundation models
Suitable for…

 ■ Assistance with a specific task

 ■ End users

 ■ Powering AI-based apps

 ■ Engineers

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

Emmanuel Maggiori

Y
ou don’t have to know everything about AI
to get a big payoff ! Whether you’re look-
ing to boost your coding speed, generate

ideas for your next project, or just get a helping
hand with your next Medium article, there’s an
AI-powered tool ready to assist. Th is fi t-in-your
pocket guide tells you everything you need to
surf the AI wave instead of drowning in it.

The AI Pocket Book takes a peek inside the AI
black box and gives you just enough on key
topics like transformers, hallucinations, and the
modern ecosystem of AI models and tools. You’ll
get handy techniques to select AI tools, learn
when putting AI fi rst is the smart move, and pick
up some excellent tips for managing the inevi-
table, potentially expensive, screw ups.

The AI Pocket Book
JAVASCRIPT/PYTHON/DATA

ISBN-13: 978-1-63343-575-9

“Helps you profi t
from the AI
 revolution.”

—Toby Walsh, author of
Th e Shortest History of AI

 “Pragmatic and
balanced. I strongly

recommend it!”
—Zubin Pratap
Chainlink Labs

“Packs in a surprising
amount of essential

AI concepts.
A perfect resource!”

—Riddhi Shah
Vicor Corporation

“Your practical guide
to the future.”

—Meghana Puvvadi,
NVIDIA

M A N N I N G

What’s Inside
● Deciphering AI jargon (there’s lots of it!)
● Evaluating AI tools
● Why AI hallucinates and what to do about it
● How and when to use AI

For engineers in all fi elds, from software to security.

Emmanuel Maggiori, PhD, is a software engineer and
10-year AI industry insider. He is also the author of
Smart Until It’s Dumb and Siliconned.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

	The AI Pocket Book
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	liveBook discussion forum

	about the author
	about the cover illustration
	1 How AI works
	How LLMs work
	Text generation
	End of text
	Chat
	The system prompt
	Calling external software functions
	Retrieval-augmented generation

	The concept of tokens
	One token at a time
	Billed by the token
	What about languages other than English?
	Why do LLMs need tokens anyway?

	Embeddings: A way to represent meaning
	Machine learning and embeddings
	Visualizing embeddings
	Why embeddings are useful
	Why LLMs struggle to analyze individual letters

	The transformer architecture
	Step 1: Initial embeddings
	Step 2: Contextualization
	Step 3: Predictions
	Temperature
	Can you get an LLM to always output the same thing?
	Where to learn more

	Machine learning
	Deep learning
	Types of machine learning
	How LLMs are trained (and tamed)
	Loss
	Stochastic gradient descent

	Convolutions (images, video, and audio)
	Multimodal AI
	No free lunch

	2 Hallucinations
	What are hallucinations?
	Made-up facts
	Misinterpretation
	Incorrect solutions to problems
	Overconfidence
	Unpredictability

	Why does AI hallucinate?
	Inadequate world models
	World models: Theory vs. practice
	Misaligned objectives
	Toy hallucination example: Price optimization

	Will hallucinations go away?
	Mitigation
	Hallucinations can kill a product
	Living with hallucinations

	3 Selecting and evaluating AI tools
	Proprietary vs. open source
	How to decide

	Off-the-shelf vs. fine-tuning
	How to decide

	Customer-facing AI apps vs. foundation models
	How to decide

	Model validation, selection, and testing
	Training set
	Validation set
	Test set

	Performance measures
	Accuracy
	Precision and recall
	Mean absolute error and root mean squared error

	4 When to use (and not to use) AI
	Building an AI-based product
	Am I putting AI before the customer?
	Are hallucinations okay?
	Do I need to explain how the output is generated?

	Using conversational AI as an assistant
	Can I describe the task succinctly and validate
the output easily?
	Has anyone done it before?
	What does an excellent job look like?

	Building LLM wrappers
	Will users interact with my product using natural language?

	5 How AI will affect jobs and how to stay ahead
	Excellence gap
	Excellence gap in software engineering
	Recommendations

	Stringent validation
	Validation in software engineering
	Recommendations

	 Tight control
	Control in software
	Recommendations

	A new opportunity: Making the web more human
	Philosophical detour: Automation and mass unemployment

	6 The fine print
	Copyright
	Economics of AI
	Smoke and mirrors
	Regulation
	Prohibited AI practices
	High-risk systems
	Transparency obligations
	Foundation models

	Resource consumption
	Brains and consciousness

	Appendix A Catalog of generative AI tools
	index

