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preface
In the 2010s, a methodology known as machine learning 
became extremely popular. The novelty of machine learning 
was that, instead of writing every detail of a computer program 
by hand, some parts were determined automatically by having 
a computer analyze data. While machine learning wasn’t new, 
it rose to prominence during this period thanks to increased 
computing power and an unprecedented amount of data 
ready to be exploited. 

Machine learning soon became the favorite methodology 
of artificial intelligence, which is a more general research field 
that tries to have computers perform tasks similarly to humans. 
Notably, AI researchers used machine learning to reach record 
performance in automated analysis of images, video, and 
text. They also used machine learning to build the famous 
game-playing software AlphaGo, which beat a human player at 
the difficult game of Go.

Machine learning also boomed in the business world. For 
example, companies started using it to automatically analyze 
online shoppers’ data and generate personalized product 
recommendations. 
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Due to machine learning’s success and wide adoption in the 
AI field, people soon started using the terms “machine learn-
ing” and “AI” interchangeably. The business world became 
highly enthusiastic about AI’s prospects and made big prom-
ises. However, while AI expanded steadily in academia and 
business, it was not massively adopted by the general public. 
This was probably because general-purpose AI tools weren’t all 
that useful yet (think of Alexa and Siri) and because AI was still 
not that great at analyzing natural language.

But in the late 2010s and early 2020s, a series of methodolog-
ical innovations made AI much better at analyzing written lan-
guage and generating new content. This led to a race to build 
AI tools that could be used as high-performing assistants by the 
general public. 

AI exploded in 2022, with the launch of a number of remark-
able customer-facing AI apps. One of them was ChatGPT, which 
reached a hundred million users in three months. Another one 
was Midjourney, a powerful tool for creating realistic images 
from a textual description. 

Enthusiasm about AI soared and so did dramatic predictions 
about its effects. Some people predicted extreme productiv-
ity gains. Others predicted massive unemployment due to AI 
replacing people’s jobs. In particular, many people argued that 
software engineers would become obsolete.

I’m a software engineer who specializes in AI. I did my PhD 
in AI and have been involved in the field for over a decade. 
Early in my career, while I was impressed by AI, I became a bit 
frustrated by the amount of hype around it—I kept stumbling 
upon failed AI projects that were swept under the rug, and I 
had the impression that AI’s limitations were often overlooked. 
In 2023, I published a book on the subject, titled Smart Until It’s 
Dumb (Applied Maths Ltd, 2023). As opposed to other books 
on AI, which were either very positive or negative about it, I 
wanted to share a more nuanced view. As the title implies, I 
think AI can be really cool sometimes, but it can be less cool 
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other times—think of those pesky hallucinations that AI often 
suffers from.

After I wrote that book, people started asking me ques-
tions about all things AI related. For example, they asked 
me whether I thought machines would become conscious or 
whether self-driving cars would soon roam every street. But the 
most common topic was the future of work. Specifically, aspir-
ing software engineers seemed particularly concerned about 
their future careers. People asked me, “Is it even worth becom-
ing a software engineer, now that AI can code?” A teacher told 
me a few of her students had dropped out because they thought 
AI would make their skills irrelevant. In addition, numerous 
software engineers started to use AI at work and build AI-based 
products, but they often told me they couldn’t make it work as 
intended. For example, they said AI often generated inconsis-
tent outputs, and users didn’t appreciate it.

This book is intended to help you ride the AI revolution, 
both in terms of using AI effectively and making sure your job 
stays ahead of what AI can do. The book is based on my own 
experience in the AI field and also on the numerous conver-
sations I’ve had with people about it. You’ll read stories, reflec-
tions, and general advice, which I hope you’ll find useful. 

After you finish the book, I hope you’ll feel that you under-
stand AI better, including its limitations, and that you’ll dis-
cover new ways of using AI effectively and future-proof your 
career against it. 
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about this book
This book will help you navigate the AI revolution, using AI 
effectively in your work and making sure your job won’t be 
replaced by AI. The book was primarily written for software 
engineers, but its content was designed to be accessible to 
other audiences, too. So, there are no prerequisites to read 
this book, and anyone should be able to understand it. It is 
helpful, however, to know the basics of coding and math to 
fully understand all the examples. 

The book starts with a plain-English overview of how AI 
works. It then covers a wide range of timely and controversial 
AI-related topics such as hallucinations, the future of work, and 
copyright. 

Who should read this book?

Two main groups of people should read this book. The first 
one is software engineers—aspiring, novice, and seasoned 
ones—who want to understand the effects of AI on their 
careers and prepare for it.

The second group includes people related to or interested 
in the software industry, even if they’re not engineers them-
selves. For example, these are product managers and startup 
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entrepreneurs. One of this book’s reviewers said he thought 
the book would be useful not just for software engineers but 
also for “software sympathizers,” which I thought was a good 
way to put it.

How this book is organized: A road map

The book is divided into six chapters:

¡	Chapter 1: How AI works—This chapter explains how large 
language models and other types of AI work and how AI 
is built.

¡	Chapter 2: Hallucinations—This chapter explains the rea-
sons for AI’s pesky mistakes (known as hallucinations), 
whether they will be fixed soon, and what we can do about 
them.

¡	Chapter 3: Selecting and evaluating AI tools—This chapter 
explains a method to select and compare different AI 
tools and avoid common biases in your evaluation.

¡	Chapter 4: When to use (and not to use) AI—This chapter is a 
checklist that will help you decide whether it is a good idea 
to use AI to assist you with a certain task or as the building 
block of a customer-facing product.

¡	Chapter 5: How AI will affect jobs and how to stay ahead—This 
chapter explains three characteristics of jobs that will help 
them resist AI advancements and how software engineers 
can stay relevant in the AI era.

¡	Chapter 6: The fine print—This chapter covers the less flat-
tering side of AI, such as exaggeration, copyright disputes, 
and dubious comparisons of AI models with the human 
brain. It is meant to help you get up to speed with some of 
the bigger questions around AI.

liveBook discussion forum

Purchase of The AI Pocket Book includes free access to live-
Book, Manning’s online reading platform. Using liveBook’s 
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exclusive discussion features, you can attach comments to 
the book globally or to specific sections or paragraphs. It’s 
a snap to make notes for yourself, ask and answer technical 
questions, and receive help from the author and other users. 
To access the forum, go to https://livebook.manning.com/
book/the-ai-pocketbook/discussion. You can also learn more 
about Manning’s forums and the rules of conduct at https:// 
livebook.manning.com/discussion. 

Manning’s commitment to our readers is to provide a venue 
where a meaningful dialogue between individual readers and 
between readers and the author can take place. It is not a com-
mitment to any specific amount of participation on the part of 
the author, whose contribution to the forum remains voluntary 
(and unpaid). We suggest you try asking the author some chal-
lenging questions lest their interest stray! The forum and the 
archives of previous discussions will be accessible from the pub-
lisher’s website for as long as the book is in print.
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1How AI works

This chapter covers

¡	The way LLMs process inputs and generate   
 outputs
¡	The transformer architecture that powers LLMs
¡	Different types of machine learning
¡	How LLMs and other AI models learn from data
¡	How convolutional neural networks are used to   
 process different types of media with AI
¡	Combining different types of data (e.g., producing  
 images from text)

This chapter clarifies how AI works, discussing many founda-
tional AI topics. Since the latest AI boom, many of these topics 
(e.g., “embeddings” and “temperature”) are now widely dis-
cussed, not just by AI practitioners but also by businesspeople 
and the general public. This chapter demystifies them.

Instead of just piling up definitions and writing textbook 
explanations, this chapter is a bit more opinionated. It points 
out common AI problems, misconceptions, and limitations 
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based on my experience working in the field, as well as discuss-
ing some interesting insights you might not be aware of. For 
example, we’ll discuss why language generation is more expen-
sive in French than in English and how OpenAI hires armies 
of human workers to manually help train ChatGPT. So, even if 
you are already familiar with all the topics covered in this chap-
ter, reading it might provide you with a different perspective. 

The first part of this chapter is a high-level explanation of 
how large language models (LLMs) such as ChatGPT work. Its 
sections are ordered to roughly mimic how LLMs themselves 
turn inputs into outputs one step at a time. 

The middle part of this chapter discusses machine learning, 
which is the technique that makes computers learn from data 
to create LLMs and other types of AI. Note that AI and machine 
learning don’t mean the same. AI is a research field that tries 
to create computer programs to perform tasks in a way similar 
to humans. Machine learning may or may not be used for that 
goal. However, machine learning has been the preferred meth-
odology in AI for at least two decades. So, you might hear peo-
ple use the terms AI and machine learning interchangeably. 
When I speak of AI in this book, I mean current AI methods, 
and these methods involve the use of machine learning.

The last third of this chapter discusses how AI works out-
side language generation. Specifically, I give an overview of 
how AI analyzes and generates images or combinations of text 
and images. We also comment on current developments in 
AI-based video generation.

Enjoy the ride!

How LLMs work

Language models are computer programs that try to represent 
the structure of human language. A large language model, or 
LLM, is a language model on steroids. Its sheer size lets the 
LLM perform complex analyses of sentences and generate 
new text with impressive performance. Examples of LLMs are 
Open AI’s GPT-4o, Meta’s Llama-3, Anthropic’s Claude 3.5 Son-
net, Google’s Gemini 1.5 Pro, and Mistral AI’s Mixtral 8x7b.
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 3How LLMs work

Current LLMs are designed to perform one specific task—
guess the next word given an input sentence. The input sen-
tence is known as the prompt. Suppose I asked you to predict 
the word that comes after the incomplete sentence “The Eif-
fel.” You’re very likely to suggest that “Tower” is the most logical 
choice. This is the exact job LLMs are designed to do. So, we 
can think of LLMs as sophisticated autocomplete programs. 
Officially, we say that LLMs are autoregressive, which means that 
they’re designed to produce a single extra piece of content 
based on previous content.

The autocomplete task may seem simple at first, but it is 
far-reaching. Consider the following prompt: “How much is 
2 + 5? It is. . .” Autocompleting this kind of sentence requires 
knowing how to perform arithmetic operations. So, the task of 
performing arithmetic operations is included in the autocom-
plete task.

Now, consider the following prompt: “How do you say 
‘umbrella’ in French?” To accurately autocomplete this kind 
of sentence, you’d need to be capable of translating French to 
English. So, at least in theory, the autocomplete task encom-
passes all sorts of tasks. 

LLMs are created using machine learning, a process in which 
a computer analyzes a huge amount of data—pretty much 
a snapshot of the entire public internet—to automatically 
put the LLM together. The resulting LLM is a self-contained 
piece of software, meaning that it doesn’t access any external 
information to generate its outputs. For example, it doesn’t 
browse the web to make its next-word predictions. In addition, 
the LLM is static, so it must be periodically updated with new 
data if we want it to speak about recent events.

When we interact with LLMs, we don’t usually do so directly. 
Instead, we use an intermediary piece of software that pro-
cesses our requests and manages the underlying LLM. Let’s call 
it the LLM wrapper. The wrapper uses tricks to provide further 
functionality to the user than just guessing the next word like 
the bare LLM would do. For example, the wrapper generates 
entire sentences, responds in a chatty way, and answers with 
real-time information, such as the current date. 
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4 How AI works

An example of an LLM wrapper is ChatGPT, which is 
OpenAI’s customer-facing application. This application 
manages our interactions with the underlying LLM, such as 
GPT-4 and GPT-4o. Note that it is common to just use the term 
LLM to refer to the whole AI system, including the wrapper. 

The next few sections discuss examples of how LLM wrap-
pers use tricks to enhance the capabilities of their underlying, 
next-word guessing LLMs. 

Text generation

We typically use LLMs to output entire sentences instead of 
just guessing a single word. The LLM wrapper achieves this 
through a simple trick: it makes the LLM eat its own output 
repeatedly. Suppose we give an LLM the prompt “The Eiffel.” 
The LLM guesses the most likely continuation of the sen-
tence: “Tower.” The LLM wrapper then attaches this word to 
the initial prompt, which leads to the new prompt: “The Eif-
fel Tower.” It then uses the LLM to guess the following word, 
say, “is” and attaches it to the prompt again. The process is 
repeated (see figure 1.1) to generate entire sentences such as 
“The Eiffel Tower is in Paris.”

The EiffelThe Eiffel TowerTower
Language 

model

The Eiffel TowerThe Eiffel Tower isis
Language 

model

The Eiffel Tower isThe Eiffel Tower is inin
Language 

model

The Eiffel Tower is inThe Eiffel Tower is in ParisParis
Language 

model

Figure 1.1 To generate full sentences, the LLM wrapper used the LLM 
to generate one word, then attached that word to the initial prompt, then 
used the LLM again to generate one more word, and so on.
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 5How LLMs work

End of text

In addition to outputting regular words, LLMs are designed 
to output a handful of special code words. One of them, often 
stylized as “<|end of text|>” in the literature, is a code word that 
signals the end of the text. When the LLM is built, it is exposed 
to examples of sentences containing this special code word to 
indicate their end. So, the LLM gains the capability of guessing 
that the next best word is actually an indication of its ending. 

When the LLM wrapper encounters this special code word, 
it stops the process of having the LLM eat its own output to gen-
erate more text, as explained in the previous section. 

Chat

Have a look at what happened when I inputted the prompt 
“The Eiffel” to ChatGPT:

 It seems that your sentence was cut off. Were you asking 
about the Eiffel Tower?

The Eiffel Tower is one of the most iconic landmarks in the 
world, located in Paris, France. It was designed by Gustave 
Eiffel and completed in 1889 for the Exposition Universelle, 
a world’s fair held to celebrate the 100th anniversary of the 
French Revolution. Originally criticized by some of Paris's 
leading artists and intellectuals for its design, the tower 
has become a global cultural icon of France and one of the 
most recognizable structures in the world.

By the looks of it, the LLM is not just autocompleting my 
input, or else it would have continued with “Tower” instead of 
telling me that my sentence was cut off.

What happened here was that, behind the scenes, the LLM 
wrapper inserted a special code word to indicate the end of my 
prompt. This code word is often stylized as “<|end of prompt|>” 
in the literature. So, the actual input sent to the LLM by the 
wrapper was “The Eiffel<|end of prompt|>”. During its con-
struction, the underlying LLM was fed examples of dialog end-
ing with “<|end of prompt|>”, which is why it recognized that 
in my sentence, the code word was located at an unusual place. 
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6 How AI works

As we continue chatting back and forth with ChatGPT, the 
wrapper sends the LLM a history of the entire conversation 
each time, filled with “<|end of prompt|>” and “<|end of text|>” 
code words to clearly delimit the beginning and end of each 
interaction. This helps ChatGPT converse effectively.

OpenAI lets software developers use a more naked version of 
the LLM wrapper, which doesn’t insert the “<|end of prompt|>” 
code word after the user’s prompt. This is available through 
the API (an API is a way to connect two pieces of software—in 
this case, your software with OpenAI’s software) or the online 
platform for software developers (see https://platform.openai 
.com) by using the completions mode of the API instead of the 
default chat mode.

NOTE OpenAI’s documentation contains a warning 
sign telling us that the completions mode is “now con-
sidered legacy,” but it is still available for use as of this 
writing.

Let’s see what happened when I inputted “The Eiffel” to the 
LLM using the completions mode instead:

 Tower was inaugurated on March 31st in 1889. It was orig­
inally built as the entrance arch for the 1889 World’s Fair, 
and was only intended to stand for 20 years. However, its 
unique design and popularity among Parisians and tourists 
alike led to its preservation and it has become an iconic 
symbol of France and one of the most recognizable mon­
uments in the world. The idea for the Eiffel Tower came 
from businessman Gustave Eiffel, who wanted to create a 
structure that would showcase the advancements in engi­
neering and design during the Industrial Revolution. He and 
his team spent two years designing and constructing the 
tower, using over 18,000 individual pieces of wrought iron 
and 2.5 million rivets.

We can see that the API simply autocompleted my input with 
a sensible continuation, which is why it started with “ Tower” 
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(the word Tower with a leading space) instead of telling me that 
my prompt was incomplete. 

The system prompt

I asked, “What is today’s date?” The response was

 Today’s date is May 30, 2024.

This was the correct response at the time of me asking. This is 
a bit surprising because, as LLMs simply analyze sentences to 
guess the next word, they don’t have access to real-time data. 

What happened here was that ChatGPT secretly inserted 
additional text before my prompt to provide contextual infor-
mation to the LLM. This is known as the system prompt. We don’t 
know the exact details, but the rumor is that ChatGPT’s system 
prompt is as follows (see https://mng.bz/RVOv):

 You are ChatGPT, a large language model trained by Open­
AI. Answer as concisely as possible. Knowledge cutoff: 
[knowledge cutoff] Current date: [current date and time]

This prompt is secretly inserted every time you start a chat 
with ChatGPT. Because the date appears in ChatGPT’s system 
prompt, the chatbot can answer questions about the current 
date, as in the previous example. Note that the knowledge cut-
off date is also inserted, which helps ChatGPT inform the user 
that it cannot answer questions about events that took place 
after a certain date.

Software developers can interact with OpenAI’s LLMs via 
an API instead of using the customer-facing ChatGPT. The API 
lets you define what the system prompt is, which is inserted 
before your initial interactions with the LLM. Figure 1.2 shows 
a visual interface provided by OpenAI to help developers try 
out the API. We can see a box dedicated to the system prompt.

I asked the GPT-4o LLM about the current date using 
OpenAI’s API, while leaving the system prompt empty. In 
figure 1.2, we can see that the LLM refused to answer about 
the date.
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Figure 1.2 OpenAI’s API lets users define a system prompt, which is a 
piece of text inserted into the beginning of the user’s prompt. 

Figure 1.3 shows that the LLM does answer with the date if it 
is given as part of the system prompt, like ChatGPT would do.

Calling external software functions

I asked ChatGPT about the current weather in London. 
ChatGPT’s user interface showed a sign that said, “Search-
ing the web.” A second later, the sign turned into “Searching 
current weather in London.” Afterward, it told me what the 
weather in London was like (see figure 1.4).
The trick here is to describe in the system prompt a list of 
software functions that the LLM can suggest the wrapper to 
call if it needs to gather external information. If the LLM sug-
gests calling one of those functions, it is the job of the LLM 
wrapper to call it and then insert the result into the prompt. 
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Figure 1.3 When the current date is supplied as part of the system 
prompt, the LLM can answer questions about the current date.

Suppose a developer wants to create a chatbot app that can 
seamlessly answer questions about current events, such as the 
weather, the value of stocks, and trending news topics. The 
developer could explain in the system prompt that, if the cur-
rent weather in London is required, the LLM should output 
"current_weather(London)", if the value of Apple stock 
is needed, it should output "stock_value(Apple)", and so 
on. When these special messages are outputted, the developer 
will call software functions to gather the necessary informa-
tion and add it to the prompt. This will give the end user the 
impression of seamless access to real-time data.
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Figure 1.4 ChatGPT called a function to search the web behind the 
scenes and inserted the results into the user’s prompt. This creates the 
illusion that the LLM browses the web.

OpenAI has created a framework that lets a developer easily 
define a list of functions that the LLM could suggest calling. 
Here’s an example of how to define a "get_current_
weather" function, as described in the official documentation 
(see https://mng.bz/2y4a):

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and 
state, 
                         e.g. San Francisco, CA",
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                    },
                    "format": {
                        "type": "string",
                        "enum": ["celsius", 
"fahrenheit"],
                        "description": "The temperature 
unit 
                         to use. Infer this from the 
users 
                         location.",
                    },
                },
                "required": ["location", "format"],
            },
        }
    }
]

Note that the code of the weather-fetching function is not part 
of this declaration. Only a description of the function and its 
inputs is provided. The LLM wrapper inserts the description 
of this function into the system prompt so that the underlying 
LLM can suggest calling it if needed.

When the wrapper detects that the LLM suggests calling 
the function, it notifies the user. Here’s an example of the API 
response object, using OpenAI’s Python SDK, that resulted 
after the user asked about the weather in London:

ChatCompletionMessage(
    content=None, 
    role='assistant', 
    tool_calls=[
    ChatCompletionMessageToolCall(
        id='call_Dn2RJJSxzDm49vlVTehseJ0k', 
        function=Function(
            arguments='{"location":"London, United 
Kindgdom",
             "format":"celsius"}', 
            name='get_current_weather'
        ), 
    type='function')
    ]
)
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The software developer must code the "get_current_
weather" function, run it, and then insert the response into 
the following prompt (“Weather in London, United Kingdom: 
20 degrees Celsius, rainy”). The LLM can then use this newly 
added information. The app end user gets the impression that 
the LLM itself was capable of answering about the weather in 
real time. In reality, the LLM is still a self-contained program; 
the enhanced functionality is achieved outside the LLM.

Retrieval-augmented generation

Sometimes users want the LLM to analyze documents that 
aren’t present in the training data. For example, a business 
may want to answer questions about its internal documents, 
or an app may want to analyze the content of up-to-date web-
pages. Retrieval-augmented generation, or RAG, is a popular 
way of doing that (you can learn more in A Simple Guide to 
Retrieval Augmented Generation by Abhinav Kimothi, available at 
https://mng.bz/yWpe). When the user submits a prompt, the 
LLM wrapper first searches for relevant documents in a data-
base. For example, it may extract keywords from the prompt 
and find documents that match the keywords. This is known 
as retrieval.

Afterward, the LLM wrapper inserts the content of these 
documents into the prompt. So, the prompt is said to be aug-
mented with additional, relevant information.

When the LLM generates text, it has access to these doc-
uments as part of the prompt, so it can use their content to 
enhance its predictions. RAG is a popular approach to creat-
ing an in-house chatbot adapted to a specific business. In addi-
tion, it is commonly used to create the illusion that an LLM can 
access up-to-date web content in real time. RAG can also help 
identify specific sources used by the LLM to generate its output 
and thus cite references. 

One of the challenges of the RAG approach is finding rele-
vant documents based on the prompt. Many algorithms have 
been used for a long time by search engines to index and 
retrieve content, and researchers are studying specific retrieval 
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techniques for RAG (see https://arxiv.org/abs/2405.06211). 
Another challenge is that prompts can become quite long with 
the added documents. LLMs only accept a maximum prompt 
length (more on this in the following), so you must make sure 
that the documents inserted into the prompt fit the maximum 
allowed length. In addition, longer prompts incur higher costs 
as AI providers charge fees that depend on the amount of text 
inputted and outputted.

The concept of tokens

We’ve been saying that LLMs guess the next word from an 
input prompt, but this isn’t quite accurate. Let’s now refine 
our understanding. 

LLMs contain a fixed-size internal vocabulary. These are the 
words that LLMs can read and generate. An LLM’s vocabulary 
typically contains 

¡	Common words (e.g., “dog”)

¡	Common pieces of words (e.g., “ish”)

¡	Common Latin characters (e.g., “a” and “b”)

¡	Special symbols from a text-encoding standard called UTF-
8, which are combined together to represent non-Latin 
characters and other symbols (e.g., “á,” “æ,” and “你”)

¡	Special code words such as “<end of text>” and “<end of 
prompt>”

Each element in the vocabulary is known as a token. We can 
think of a token as a common piece of text. Using tokens 
instead of entire words, lets LLMs read and produce words 
that aren’t in the dictionary (e.g., “hungryish”) by combining 
common pieces of words (“hungry” + “ish”). It also lets LLMs 
read and produce non-Latin text and invent new words. 

Current LLMs’ vocabularies contain roughly 100,000 dif-
ferent possible tokens. For example, some of OpenAI’s LLMs, 
including GPT-3.5 and GPT-4, have a vocabulary with 100,261 
possible tokens. 
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Note that many tokens represent common words with a lead-
ing space attached to them. For example, both “dog” and “ dog” 
are tokens in the vocabulary of OpenAI’s LLMs. So, the LLM 
is often spared from having to use the dedicated whitespace 
token. From now on, whenever I speak of an individual token 
in this book, such as the “dog” token, bear in mind there might 
be a leading space attached to it. (I won’t be writing the space 
every time, as it’s a bit ugly to read.)

The vocabulary of an LLM is created by running an auto-
mated analysis over thousands of documents to identify the 
most common text patterns (the algorithm usually used for 
this is called byte pair encoding. You can find more details 
and a step-by-step example in a blog article I wrote at https:// 
emaggiori.com/chatgpt-vocabulary/). OpenAI stopped dis-
closing how it creates LLMs’ vocabularies, but we do know how 
they did it with older models. For example, GPT-3’s vocabulary 
was created by automatically following links from popular Red-
dit discussions, collecting the text from the linked webpages, 
and identifying the most common words and combinations 
of characters in them (Redford et al., “Language Models are 
Unsupervised Multitask Learners,” 2019).

One token at a time

LLMs are designed to read a sequence of valid tokens from 
their vocabulary. So, the LLM wrapper first subdivides the 
input prompt into valid tokens. For example, when using GPT-
3.5, the prompt “The dog’s bark was barely” is subdivided as 
follows by the LLM wrapper before passing it to the LLM:

The| dog|'s| bark| was| barely

The subdivision is performed using an algorithm that roughly 
tries to split the input using the largest possible tokens from 
the vocabulary.

OpenAI provides a webpage where you can input text and 
see how it’s tokenized before being fed into a model. You can 
find it at https://platform.openai.com/tokenizer. 

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://emaggiori.com/chatgpt-vocabulary/
https://emaggiori.com/chatgpt-vocabulary/
https://platform.openai.com/tokenizer


 15The concept of tokens

LLMs don’t read raw text. Instead, the LLM wrapper first 
converts the input prompt into a list of integers indicating the 
ID of each token, which is its position in the vocabulary:

[791, 5679, 596, 54842, 574, 20025]

Afterward, the wrapper uses the LLM to predict the ID of the 
most likely next token. In the previous example, the LLM out-
puts that the token with ID 80415 is the most likely continua-
tion of the input prompt. This token corresponds to “audible”.
The LLM wrapper then attaches that token to the input:

The| dog|'s| bark| was| barely| audible

Next, the LLM wrapper feeds this new prompt (as a list of inte-
gers, [791, 5679, 596, 54842, 574, 20025, 80415]) to the 
LLM to have it “eat its own output” and generate one more 
token. This process is repeated many times to generate more 
tokens:

The| dog|'s| bark| was| barely| audible| above| the| 
roar| of| the| city| traffic|.

In this example, after a few more paragraphs of mumbo 
jumbo regarding dogs and noise, the LLM decided that the 
token with ID 100276 was the most likely continuation of the 
prompt. This token is code for “<|end of text|>”. So, the LLM 
deemed this a good place to end the text. Upon stumbling on 
this token, the LLM wrapper heeded the LLM’s recommenda-
tion and stopped generating more text. 

Have a look at how GPT-3.5 explained to me the meaning of 
the word “hungryish”, token by token:

If| you| say| "|I|'m | hungry|ish|,"| you| mean| 
you|'re | feeling| somewhat| hungry|,| but| not| 
extremely| so|.| It|'s | a| mild|er| form| of| hunger|.

We can see that, even though the word “hungryish” isn’t 
part of GPT-3.5’s vocabulary, it managed to generate it using 
a sequence of two tokens, “hungry” and “ish.” Note that the 
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words “milder,” “I’m,” “you’re,” and “It’s” were also produced 
using two tokens each.

Billed by the token

Most LLM APIs, which let software developers use LLMs pro-
grammatically, bill users by the number of tokens inputted 
and outputted to the LLM. Thus, longer prompts and longer 
responses incur higher costs.

As of today, for example, GPT-4o costs US$5 per million 
input tokens plus US$15 per million output tokens. For refer-
ence, the entire Shakespearean play Romeo and Juliet requires 
40,000 tokens, so inputting it to GPT-4o would cost $0.20, and 
generating it would cost $0.60. This doesn’t sound like a lot, but 
bills can easily add up if you use LLMs repeatedly. For example, 
if you send a long prompt to an LLM every time a user visits 
your website, you could spend thousands a month.

Note that when you chat back and forth with an LLM, you 
must include your entire chat history on every interaction with 
it, or at least you must do so if you want the LLM to be able to 
analyze the previous conversation when generating new out-
puts. So, the prompt becomes increasingly expensive as your 
chat history becomes longer.

What about languages other than English?

LLM’s vocabularies tend to be optimized for the English lan-
guage. For example, they contain a “dog” token but not one 
to represent the French word for dog. So, words not in English 
tend to be split into many tokens, often covering one or two 
letters at a time, as the vocabulary doesn’t contain as many 
tokens to represent entire words.

Have a look at how the preamble of the U.S. Constitution is 
tokenized before being inputted into GPT-4:

We| the| People| of| the| United| States|,| in| Order| 
to| form| a| more| perfect| Union|,| establish| 
Justice|,| insure| domestic| Tran|qu|ility|,| provide| 
for| the| common| defense|,| promote| the| general| 
Welfare|,| and| secure| the| Bless|ings| of| Liberty| 
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to| ourselves| and| our| Poster|ity|,| do| ord|ain| 
and| establish| this| Constitution| for| the| United| 
States| of| America|.

And now, have a look at its French translation:

Nous|,| le| Pe|uple| des| É|t|ats|-Un|is|,| en| vue| 
de| former| une| Union| plus| par|fa|ite|,| d|'é 
|tabl|ir| la| justice|,| de| faire| rég|ner| la| 
pa|ix| int|érie|ure|,| de| pour|voir| à| la| déf|ense| 
commune|,| de| dévelop|per| le|  bien|-être| général| 
et| d|' |ass|urer| les| bien|fa|its| de| la| libert|é| 
à| nous|-m|ê|mes| et| à| notre| post|é|rit|é|,| nous| 
dé|cr|é|tons| et| é|tab|lis|sons| cette| Constitution| 
pour| les| É|t|ats|-Un|is| d|' |Am|érique|.

The French text takes more than twice the number of tokens 
than its English counterpart. In addition, the subdivision 
of words in French doesn’t make much sense. For exam-
ple, “États-Unis d’Amérique” (United States of America) is 
chopped up into many meaningless pieces such as “ats” and 
“-Un.”

This problem gets even more serious with non-Latin alpha-
bets. An extreme example, widely discussed around the inter-
net, is the word for “woman” in Telugu, one of the languages 
spoken in India: స్త్రీ�.ీ This word is made up of a combination 
of six characters arranged horizontally and vertically. GPT-4 
requires a whopping 18 tokens to represent this word using 
special UTF-8 tokens. 

As LLMs are billed by the token, the higher number of 
tokens can make them more expensive to use in other lan-
guages compared to English. In addition, it can be more chal-
lenging for the LLM to analyze the prompt because individual 
inputs, such as an “é” token, don’t carry much meaning by 
themselves; the LLM must work extra hard to contextualize 
adjacent tokens and derive meaning from them.

The bias toward a specific language—English in the most 
popular LLMs—may not be easily removed. To better tokenize 
words in other languages, the vocabulary would have to be 
extended to include words or common pieces of words in, say, 
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French, Chinese, Telugu, and so on. This would multiply the 
vocabulary size, well beyond the current 100,000 mark, which 
could turn LLMs ineffective and slow. 

OpenAI has been working on improving its LLMs’ internal 
vocabularies to better handle non-English text. The details 
haven’t been disclosed yet as of this writing, but its creators 
shared a few illustrative cases with the new vocabulary used by 
GPT-4o (see https://openai.com/index/hello-gpt-4o/). For 
example, a snippet of text in Telugu requires 3.5× fewer tokens 
than before, but it still requires twice as many as its English 
counterpart. 

Why do LLMs need tokens anyway?

One may wonder why tokens are needed at all; that is, why 
not have the LLM directly read and generate individual char-
acters instead? As we’ll discuss soon, LLMs try to internally 
describe the meaning of each individual input. Describing the 
meaning of a token such as “Paris” is quite easy. For instance, 
we could describe it as “capital of France.” However, describ-
ing the meaning of a token such as “P” is much harder, as we 
don’t know what the letter refers to unless we analyze the con-
text. That’s why it’s much more straightforward to take “Paris” 
as a single token in one go. The same goes for generating 
text—it’s much more straightforward to let the LLM output a 
token such as “Paris,” which carries a strong meaning by itself, 
instead of having it output the same word one character at a 
time. 

We could take this idea to the extreme and create a huge 
vocabulary that includes all sorts of words and their deriva-
tives, such as “Parisian,” “Parisians,” “Parisian weather,” and 
“Emily in Paris.” But this would go too far—the vocabulary 
would become huge, and it would be wasteful because many 
tokens would represent closely related ideas. The current 
setup, with tokens representing the most common words and 
pieces of words, is an in-between solution that works well in 
practice. 
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Embeddings: A way to represent meaning

One of the greatest challenges of AI is finding an effective way 
to represent high-level concepts, meaning, and ideas. When 
designing an LLM, we want the model to internally represent 
the meaning of a token instead of its letters. For example, we 
want the token “dog” to be represented by a description of 
what a dog is (say, a friendly, four-legged animal). 

An embedding is one of the most common ways of repre-
senting meaning. It is used by LLMs and other types of AI. An 
embedding is a list (or “vector”) of numbers. The number of 
elements in the vector is known as the embedding’s dimension.

We can think of each position in this vector as a measure of 
how much a token matches a certain topic. Let’s have a look 
at an example. Imagine an embedding vector of length five 
represents the following five topics: “Animal,” “Cat,” “Large,” 
“Scary,” and “Four legs.” Suppose we want to represent the 
meaning of the “dog” token using these topics. Figure 1.5 pro-
vides an (imagined) solution.

33 −1−1 00 11 33

dog

Animal

Cat
Large

Scary
Four legs

Figure 1.5 Each token is mapped to 
a vector of numbers. We can imagine 
that each number in the vector 
represents a topic. Here’s an imaginary 
list of topics and their respective 
numbers for the “dog” token.

In this illustration, the token was mapped to five numbers, 
each of them indicating how much the meaning of the token 
matches each topic. We can see that the token scores a high 
value with respect to the “Animal” topic, as a dog is certainly an 
animal. The token scores a negative value with respect to the 
“Cat” topic, as a dog is sometimes seen as the opposite of a cat. 
It scores a neutral value of zero with respect to “Large” because 
we don’t typically think of a dog as being a particularly large 
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or small object. Figure 1.6 shows how we could imagine the 
embedding for the “elephant” token.

33 00 55 22 33

elephant

Animal

Cat
Large

Scary
Four legs

Figure 1.6 An imaginary embedding 
vector for the “elephant” token

In this case, the embedding vector is neutral with respect to 
“Cat” and highly positive with respect to “Large.”

LLMs are all about embeddings. LLMs go to great lengths to 
try to find a good, contextualized representation of tokens by 
using embeddings. At the end of many layers of processing, the 
embeddings are very good at representing the true meaning of 
the input tokens, which makes it easy for the LLM to do the job 
of guessing the next token. 

LLMs use much longer embedding vectors than in the 
above example, which lets them represent a huge number of 
topics. For example, GPT-3 uses 12,288-dimensional embed-
dings, so each input token is represented by 12,288 numbers. 
The smallest model in the Llama 3 family, developed by Meta, 
uses embeddings of 4,096 dimensions, and the largest one 
uses embeddings of 16,384 dimensions (https://arxiv.org/
abs/2407.21783).

Machine learning and embeddings

Designing long embeddings by hand would be very difficult. 
Thus, we use machine learning to do the job instead. This means 
that we make a computer analyze a large amount of data, such 
as text collected from the internet, to come up with useful 
embeddings. 

When AI engineers use, say, 12,288-dimensional embed-
dings inside an LLM, what they do is leave room for 12,288 
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topics. However, it is up to the machine to select and organize 
the topics to best attain its objectives.

As embeddings are created automatically, it is very hard to 
know which topics are represented by each of their dimensions. 
In addition, the topics may not be as clear-cut as “Large” and 
“Cat.” So, by using machine learning, we can create effective 
embeddings—the proof being that LLMs work well—but 
we can’t understand exactly how they work. Explainability is 
sacrificed in the name of predictive power.

Visualizing embeddings

A location on Earth can be determined by its latitude and 
longitude. We can equally think of each number inside an 
embedding vector as coordinates that help us figure out where 
the token is inside a space of meaning. Figure 1.7 illustrates 
an example of the space of meaning defined by a 2D embed-
ding vector with the topics “Scary” and “Large.” Every token is 
placed inside this space according to its “Scary” and “Large” 
values in the embedding vector. 

Large

Scary

capybara

snake

anaconda

mouse

spider

dog

hamster

ladybug

beetle

Figure 1.7 We can 
think the numbers in 
an embedding vector 
as coordinates that 
place the token in 
a multidimensional 
“meaning space.”

You can see that similar objects tend to group together; that’s 
why the tokens “anaconda” and “snake” are close together in 
this space and so are “beetle” and “ladybug,” but “anaconda” 
and “ladybug” are far apart.
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Well-designed, useful embeddings are such that tokens that 
are closely related in terms of meaning are also placed close 
together within this imaginary embedding space. If embed-
ding vectors do a bad job at representing the true meaning of 
tokens, then related tokens will not be close together in this 
imaginary embedding space.

As embedding vectors are usually very long, the embedding 
space is high-dimensional. We can’t draw it, but we can still 
imagine that, in this high-dimensional space, related tokens 
are physically clustered together.

Why embeddings are useful

Embedding vectors are particularly useful because it’s possible 
to compare them or extract information from them very eas-
ily, just by performing simple, linear calculations. Suppose you 
want to compare the meaning of two tokens. You can do that 
by calculating their physical distance in the imaginary embed-
ding space. One popular way of doing that is calculating the 
dot product between the two vectors, which produces a sort of 
“signed distance” between them. If the result is positive, the 
tokens are close enough in the embedding space and thus 
their meanings are related. If it’s zero, they are unrelated. If 
it’s negative, their meanings are opposed, such as in “large” 
and “small.” 

NOTE The dot product is calculated by multiplying the 
numbers in one vector by their corresponding numbers 
in the other vector (at the same position) and then add-
ing the results.

Now, suppose you want to extract a limited amount of 
information of interest from a much more expressive 
embedding vector. For example, you may want to extract 
animal-related topics and dump everything else. We can think 
of this as squashing the multidimensional embedding space 
into a lower-dimensional space, such as flattening the 3D space 
to turn it into a thin plate, thus discarding uninformative 
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dimensions. We could imagine, for instance, squashing the 
entire 12,288-dimensional space into, say, a 100-dimentional 
space that only focuses on animal-related topics (e.g., “Barks,” 
“Mammal,” “Pet”). The mathematical operation to perform 
such a squashing is known as a projection.

A projection is performed by multiplying a matrix by the 
embedding vector. The matrix represents the direction in 
which we want to squeeze the embedding space. Note that, as 
we don’t usually understand how embeddings encode mean-
ing, we don’t understand how meaning is represented in the 
squeezed embedding space. Just like with the embeddings, the 
projections into squeezed spaces are also determined through 
machine learning and not designed by hand.

In addition to their use within LLMs and other types of AI, 
it has become popular for engineers to use third-party tools to 
generate embeddings for all sorts of content-retrieval applica-
tions. For example, you can use an embeddings API to gener-
ate embeddings that represent the meaning of text documents, 
and then you compare documents by calculating the dot prod-
uct of their embeddings. Specifically, OpenAI provides an 
embeddings API that helps generate an embedding for a text 
document.

In addition, some APIs generate embeddings for different 
input modalities, such as text and images. One example is Goo-
gle Clouds’ embeddings API (see https://mng.bz/1Xvq). The 
generated embeddings can be directly compared. For exam-
ple, a piece of text speaking about cats and a picture of a cat 
are mapped to closely related embedding vectors. Thus, you 
can use dot products to find the image that best matches a 
description. 

Why LLMs struggle to analyze individual letters 

LLMs are notorious for struggling to correctly analyze the indi-
vidual letters in words, such as counting the number of occur-
rences of a letter. They also struggle to follow instructions that 
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require generating text with certain letters in it. Figure 1.8 
shows an example of this problem using GPT-4o.

Figure 1.8 LLMs often struggle to analyze individual letters in words.

If you remember, LLMs receive tokens as inputs, not letters. 
So, the exact letters of a word are not inputted to the model. In 
the example of figure 1.8, the token “berry” is inputted to the 
LLM in one go.

Each token is then mapped to an embedding vector to rep-
resent its meaning. So, any references to individual letters are 
likely to be completely lost at this stage, as it’d be wasteful to 
devote space in the embedding vector to represent topics such 
as “token with two times the letter a,” when there are much 
more useful topics to represent instead.

As people have been widely mocking LLMs’ terrible perfor-
mance at analyzing letters, it’s likely AI engineers will take ad 
hoc measures to directly address this problem. For example, 
the LLM wrapper may augment the prompt with words’ spell-
ings if it detects that there are questions about individual let-
ters. Maybe some of this has already been done, as newer LLMs 
seem to struggle less to analyze individual letters. However, the 
problem persists in even the most recent LLMs as of this writ-
ing, so it hasn’t been fully solved yet. 
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The transformer architecture 

The methodology that powers current LLMs was invented by 
a group of Google researchers. It was described in a famous 
paper, published in 2017, titled “Attention Is All You Need” 
(available at https://arxiv.org/abs/1706.03762). The paper 
proposed a new way of designing language models, which 
became known as the transformer architecture or just transformers. 

If you remember, when I asked an LLM to complete the 
sentence “the dog’s bark was barely,” it correctly outputted 
“audible.” Despite its apparent simplicity, this sentence is chal-
lenging because the word “bark” has two distinct meanings—
the noise made by a dog and the coating of a tree. If I asked an 
LLM to continue the sentence “the tree’s bark was barely,” then 
“audible” would be a poor choice. I tried it, and the LLM out-
putted “visible” instead of “audible.” The LLM managed to cor-
rectly disambiguate the word “bark” based on whether “dog” 
or “tree” appeared earlier in the sentence. The transformer 
architecture was especially designed to effectively disambigu-
ate tokens based on their context. 

Before the transformer architecture, the most popular 
language models were based on a type of AI model known as 
LSTM (long short-term memory). LSTMs try to predict the 
next token based on the following two things:

¡	The last token in the input prompt (“barely” if the input is 
“the dog’s bark was barely”)

¡	A single embedding that summarizes the meaning of all 
the previous tokens (a single embedding vector that rep-
resents “the dog’s bark was”)

These two pieces of information are used to predict the next 
token (“audible” in this case). As the entire context before the 
last token is squashed into a single, fixed-sized embedding vec-
tor, LSTMs can process inputs of varying lengths without any 
complications. This is one of the reasons they became so pop-
ular. But this is also LSTMs’ Achilles’ heel—by squashing such 
a large context into a single vector, they often lose important, 
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fine-grained contextual information necessary to properly 
guess the next word. 

The transformer architecture solved this problem by pro-
cessing the previous tokens in a different way, without squash-
ing them all. The process, which follows three steps, is depicted 
in figure 1.9. 

dog ’s bark

00 −1−1 −1−1 11 00 11 00 −1−1 33 11

Step 1

is

Initial
embeddings

Input tokens

Contextualized
embeddings

Next-token 
prediction

Step 2

Step 3

33 −1−1 22 33 0.50.5 −1−1 00 0.50.5 0000 22 00 00 22 22

33 −1−1 22 3300

Figure 1.9 LLM overview. In step 1, the tokens are mapped to 
embeddings one by one. In step 2, each embedding is improved by 
contextualizing it using the previous tokens in the prompt. In step 3,  
the much-improved embeddings are used to make predictions about  
the next token.

First, the model maps each token in the input prompt to an 
embedding vector that seeks to represent its meaning. This is 
performed on each token separately, so no contextual infor-
mation is used—each token is processed as if the other ones 
didn’t exist. While these embeddings can be okay sometimes, 
they can’t be too good because in many cases, it’s hard to know 
the true meaning of a token without looking at the context. 
For example, the embedding generated for a token such as 
“bark” will be poor because the model can’t know if it refers to 
dogs or trees. 

In the second step, the LLM improves the embedding of 
each individual token by analyzing its previous tokens—each 
token is transformed by taking its context into account. Note 
that, compared to LSTMs, the transformer architecture does 
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not squash embeddings together to summarize the entire 
prompt. 

The LLM uses a fixed number of previous tokens to contex-
tualize each token, which is known as the context window. For 
example, suppose an LLM has a context window of 10,000 
tokens. Each token is contextualized by analyzing its previous 
9,999 tokens. If the user’s prompt is shorter than 10,000 tokens, 
then the beginning of the prompt is padded with dummy values 
like zeros until it reaches 10,000 tokens. If the user’s prompt is 
longer than 10,000 tokens, then the LLM wrapper rejects the 
user request or drops the beginning of the prompt.

You need to carefully consider the context window before 
using an LLM. If you want to, say, ask an LLM to summarize 
an entire novel, you need to make sure that it fits within the 
context window, or the LLM won’t be able to summarize the 
entire novel at once. In addition, if you use a RAG approach to 
insert the content of relevant documents into a user’s prompt, 
you also need to make sure the context window can fit them all. 
Moreover, when you chat back and forth with an LLM-based 
app, the entire history of the conversation is usually included 
in each prompt, making the prompt longer as you converse 
with the chatbot.

Earlier LLMs had very limited context windows. For exam-
ple, GPT-3’s context window was 2,048 tokens. Therefore, their 
capabilities to analyze long inputs were limited.

Over time, the context window has grown. As of this writ-
ing, OpenAI’s latest model, GPT-4o, has a context window of 
128,000 tokens. And one of Google’s models, Gemini 1.5 Pro, 
offers a context window of 1 million tokens to its enterprise cus-
tomers. The size of the context window is specified in an LLM’s 
official documentation.

After the end of this contextualization step, the embeddings 
associated with each input token are much more accurate and 
thus useful than the initial ones, thanks to contextualization. 
For example, we could imagine that the embedding for “bark” 
becomes more animal-like at the end of step 2 if the word “dog” 
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appears before. Conversely, its embedding would become 
more tree-like if the context contains tree references.

The third step in the transformer architecture (see figure 
1.9) is to predict the next token based on the enhanced, con-
textualized embeddings generated in step 2. This is performed 
through a very simple mathematical operation because it is 
assumed that step 2 produced really good embeddings that can 
help guess the next word very easily. 

In the next few sections, we describe each of the three steps 
in more detail, and we explain how machine learning enters 
the picture.

Step 1: Initial embeddings

The initial embeddings are obtained very easily. The LLM con-
tains an internal dictionary that maps each possible token to 
its corresponding embedding. We could imagine it as follows:

"a"        -> [0, -1, 2, 3, 1, …]
"b"        -> [1, -2, 0, 4, 0, …]
…
" bark"    -> [1, 0, -1, 3, 1, …]
…
" dog"      -> [3, -1, 0, 2, 3, …]
…

The initial embeddings are created by looking up each token 
in the dictionary and replacing it with its corresponding 
embedding. The result is an initial set of embeddings, cre-
ated one by one without context, which concludes step 1 (see  
figure 1.9).

The numbers inside the dictionary are not defined by hand. 
These numbers are all learnable parameters of the model. This 
means that the AI engineer leaves them as blanks in the code 
and lets the computer fill in their values later, when the learn-
ing algorithm runs. We can think of the previous dictionary as 
follows from the point of view of the AI engineer: 

"a"     -> [?, ?, ?, ?, ?, …]
"b"     -> [?, ?, ?, ?, ?, …]
…
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"bark"    -> [?, ?, ?, ?, ?, …]
…
"dog"     -> [?, ?, ?, ?, ?, …]
…

When the computer fills in the blanks, which is known as learn-
ing or training, it designs its own embedding space. So, the 
computer is free to organize tokens and pick topics as it wishes 
to attain its goal of effectively guessing the next word.

Consider a model whose vocabulary contains 100,000 differ-
ent tokens and whose embeddings contain 10,000 dimensions, 
as is the case with many LLMs. The dictionary would contain 
100,000 entries, and each entry would contain 10,000 num-
bers, which are question marks. The total number of learnable 
parameters (the question marks) would be 100,000 × 10,000 = 
1 billion. That’s a lot of learnable parameters! And it’s just the 
beginning.

Step 2: Contextualization

In the second step, the LLM contextualizes each of the input 
tokens, one by one, by considering its previous tokens (within 
the context window). Let’s see, for example, how the LLM 
would contextualize the token “bark” in “dog’s bark”.

Contextualization starts by calculating an attention score for 
each token in the context. The attention score indicates how 
it’s best to divide attention among all the tokens in the context 
window to disambiguate the last one. For example, to contex-
tualize “bark”, it’s worth focusing most of your attention on 
“dog,” followed by “bark” itself, and finally by “’s”. Figure 1.10 
represents this operation.

The calculation of attention scores, known as the attention 
mechanism, is performed through a series of mathematical 
operations, such as projections on the embedding vectors (see 
section 1.3.3). We won’t cover the details here, so let’s just say 
that these operations are specially designed to let the LLM 
extract meaning from the embeddings and compare them.  
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dog ’s bark
33 −1−1 11 33 00 −1−1 −1−1 00 0000 11 00 −1−1 33 11

Attention
mechanism

Attention
mechanism
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80%

’s
1%
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19%

Figure 1.10 The attention mechanism calculates the relative relevance 
of all tokens in the context window to contextualize or disambiguate the 
last token.

The AI engineer determines the type of number of oper-
ations but leaves blanks that are determined later using 
machine learning. For example, the numbers inside projec-
tion matrixes, which configure what projections do, are left as 
blanks. Thus, we can picture a projection matrix as

[[ ? ? ? ... ?],
[ ? ? ? ... ?],
...
[ ? ? ? ... ?]]

So, the AI engineer tells the computer how to disambiguate 
tokens—by using projections to compare embeddings, and 
so on—but lets the machine fill in the details. The machine 
discovers by itself useful ways of analyzing the embeddings to 
disambiguate problematic tokens like “bark”. Projection matri-
ces are rather large, so this step can easily add a few hundred 
million, if not billions of learnable parameters to the model. 

Once the LLM has calculated attention scores, it uses the 
resulting values to guide the contextualization of tokens’ 
embedding vectors. We can think of this step as letting 
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information from tokens rub off onto other tokens using the 
attention score for guidance. 

For example, a lot of information from “dog” rubs off on 
“bark”, as its attention mechanism determined that the token 
“dog” was relevant to the meaning of “bark”. As a consequence 
of this step, the embedding for “bark” becomes more animal-
like, as opposed to tree-like. Conversely, very little information 
from “’s” rubs off on “bark”, as the attention score deems it 
rather irrelevant. The process of updating the embeddings 
based on the context is known as the feed-forward step of the 
transformer.

In the previous example, the end result of the attention and 
feed-forward mechanisms is an improved version of the embed-
ding for “bark”. The same process is applied to contextualize 
all the tokens in input the prompt, using their previous ones, 
which leads to a new generation of improved embeddings, as 
illustrated in step 2 of figure 1.9.

At the end of this process, the LLM is in a much better posi-
tion to make a guess about the next token, as it contains an 
improved, contextualized representation of the meaning of 
the entire input prompt.

multilayer architecture

The contextualization step we just described (step 2) is usu-
ally applied multiple times. So, the embedding vectors are 
improved many times. This is known as a multilayer trans-
former. Most LLMs contain at least a few tens of layers of trans-
formers applied in sequence. Each transformer layer has its 
own set of learnable parameters, so each layer can specialize in 
different contextualization tasks. 

GPT-3, for example, has 96 transformer layers. This leads to 
a whopping total of 175 billion learnable parameters inside the 
model. 

multiheaded attention

The attention mechanism is often subdivided into differ-
ent heads, meaning that it analyzes different parts of the 
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embedding vectors separately, one chunk at a time. This forces 
the LLM to design embedding vectors with highly specialized 
segments. For example, we could imagine that one segment is 
dedicated to all things animal related and another one to all 
things tree related, although we still can’t usually understand 
the embedding vectors. This has been observed to work better 
in practice than having a single head that processes the entire 
embedding vector at once.

Step 3: Predictions

The last step, step 3 in figure 1.9, is to make a prediction about 
the most likely next token, which is the LLM’s ultimate job. 
This is performed through projections over the contextualized 
embeddings generated in step 2.

While we’ve been saying that LLMs predict the most likely 
next token, that’s not quite accurate. In reality, they calculate a 
probability value for each possible token in the vocabulary. So, 
the LLM’s output is a vector with as many numbers as tokens 
in the vocabulary. Each position refers to one possible token, 
as shown in table 1.1. In this example, the token “audible” 
receives a high probability of 0.8, meaning that the LLM deems 
it a highly likely next token. 

Table 1.1 In the last step, the LLM assigns a probability value  
for each possible token in the vocabulary. All the values add to 1.

0.01 0.0 0.05 … 0.8 …

“a” “b” “c” “audible”

The LLM wrapper picks the next token based on the LLM’s 
output probabilities. One way to do this is to pick the token 
with the highest probability according to the LLM (in the 
unlikely event that two tokens have the exact same probabil-
ity, either one can be picked at random). However, there are 
other ways to do this, which lets the LLM get more adventur-
ous. We will discuss this next.
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Temperature

As discussed in the previous section, LLMs output a probabil-
ity for each token that describes how likely it is to come right 
after the input prompt. One way to select the next token from 
the vocabulary is to pick the one with the highest probability 
according to the LLM. However, this encourages the LLM to 
play it a bit too safe—sometimes we want a more adventurous 
output. So, instead, the next token is often selected by ran-
domly sampling a token from the vocabulary using the LLM’s 
output probabilities. For example, if the LLM outputs a prob-
ability of 0.9 for the “audible” token, then the sampler picks 
that token with 90% probability and other ones with 10% 
probability.

The user can usually regulate how adventurous the output 
should be by adjusting a setting known as the temperature. This 
setting squeezes or smooths out the LLM’s output probabili-
ties. A low temperature pushes the highest sampling probabil-
ities upward and lowers the others. For example, a probability 
of 0.9 may be transformed into 0.95, while a probability of 
0.05 may be transformed into 0.01. This makes it more likely 
for the LLM wrapper to pick tokens at the top of the ranking. 
We can think of this as making the LLM wrapper more con-
servative, as it becomes more prone to select the most obvious 
tokens at the top of the ranking and less prone to pick alter-
native ones. 

Conversely, a high temperature smooths out probabili-
ties. For example, a probability of 0.9 may be transformed 
to 0.8, and a probability of 0.01 may be transformed to 0.05. 
This makes the output more creative by making lower-ranked 
tokens more likely to be picked. Each LLM wrapper offers its 
own range of temperature values. OpenAI’s API, for example, 
allows users to set the temperature to a value between zero 
(conservative) and two (creative).

In the following paragraphs, we describe two alternative 
ways of setting how adventurous we want our output to be. 
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top-p

An alternative setting known as Top-p is a cutoff level of cumu-
lative probability. If we set Top-p to, say, 0.8, then we only 
sample from the top tokens that cover 80% of the probabil-
ity. The tokens covering the bottom 20% of probability are 
ignored.

top k

The Top-k setting imposes a limit on the number of top tokens 
we can sample from. For example, if we set Top-k to 20, the 
LLM wrapper is only allowed to pick a token among the top-20 
tokens. If we set Top-k to 1, we force the LLM to pick the top 
token every time.

Note that not all LLM wrappers let users configure all these 
settings—sometimes only one or two of them are available. For 
example, as of today, OpenAI lets users set temperature and 
Top-p but not Top-k. The available settings are described in the 
documentation. 

Can you get an LLM to always output the same thing?

It is sometimes desirable to generate reproducible outputs with 
an LLM, meaning that the LLM generates the exact same out-
put every time it’s given the same input prompt. This can be 
useful to benchmark the performance of LLMs or share exam-
ples of LLMs’ outputs that others can replicate. 

It is theoretically possible to have an LLM generate repro-
ducible outputs. For example, this could be achieved by using a 
top-1 sampling strategy, in which we always pick the token with 
the highest probability, thus making sure that all mathematical 
calculations inside the LLM are performed exactly the same 
way on different runs.

However, while this is theoretically possible, it is not always 
the case in practice. As of today, for example, it’s not possible 
to guarantee that OpenAI’s LLMs will generate the exact same 
output on different runs. There is official guidance on how to 
configure settings to produce mostly reproducible outputs, but 
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they’re not guaranteed to be exactly alike (see https://mng 
.bz/PdeR).

This probably happens because popular AI and arithmetic 
libraries divide a calculation into multiple threads which can 
be executed in different orders every time (see https://news 
.ycombinator.com/item?id=37006224). This can cause slight 
differences in outputs due to round-off errors when adding the 
same numbers in different orders (see https://mng.bz/JYQZ). 
In the future, if these problems are fixed, it will be possible to 
generate reproducible outputs with popular LLM APIs.

Where to learn more

In this section, we’ve covered the gist of how LLMs work. We 
haven’t discussed the implementation details, such as the exact 
calculations performed inside the LLM, but we did discuss the 
overall process LLMs follow to make their predictions.

If you want to know the details, I recommend you to directly 
have a look at the publicly available source code of GPT-2 
(https://mng.bz/wJR5). The file called models.py is the most 
important one; it defines the entire model in a very compact 
way (just 174 lines). The code is moderately easy to follow if you 
understand some Python coding and the TensorFlow library 
and start from the bottom of the file. I also recommend you 
read a guide called The Illustrated Transformer (https://mng.bz/
qxlx) to learn the details of the architecture.

Even if you don’t want to go through all the code, a quick 
skim through it reveals that the LLM is genuinely just a 
sequence of simple mathematical operations. As you can see in 
the code, each layer (called a “block”) first calculates the atten-
tion scores (“attn”) and then uses them to update the embed-
dings (“mlp”). Projections (“matmul”) are among the most 
common operations performed by the model.

We’ve now covered how LLMs generate their predictions 
and mentioned that their details are filled in using machine 
learning. We haven’t, however, described how learning unfolds. 
That’s where we move next.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/PdeR
https://mng.bz/PdeR
https://news.ycombinator.com/item?id=37006224
https://news.ycombinator.com/item?id=37006224
https://mng.bz/JYQZ
https://mng.bz/wJR5
http://models.py
https://mng.bz/qxlx
https://mng.bz/qxlx


36 How AI works

Machine learning 

In traditional software development, the engineer writes every 
single line of code to tell the computer exactly what to do. 
Machine learning, or ML, is a different way of creating pro-
grams (these programs are known as models in ML jargon).

The ML approach comprises two steps. The first step is 
designing the architecture of the solution, which in ML means a 
template of the steps the program will follow to accomplish the 
task. Have a look at a piece of Python code using the popular 
ML library PyTorch:

import torch
embedding = torch.nn.Embedding(num_embeddings=100000, 
embedding_dim=10000)
projection = torch.nn.Linear(10000, 2000)
model = torch.nn.Sequential(embedding, projection)

In the first line, the engineer defines an embedding operation 
that maps a vocabulary of 100,000 tokens to embedding vec-
tors of length 10,000, similar to what LLMs do. In the second 
line, the engineer defines a projection to transform an embed-
ding vector of length 10,000 into one of length 2,000. The 
third line applies each of those operations sequentially, first 
the embedding and then the projection. 

We can see that the engineer puts together the building 
blocks of the model manually. However, the model has blanks 
in it, known as parameters, which are not defined by hand. In the 
above example, the embedding block contains 1 billion param-
eters (100,000 × 10,000) which are not defined by hand. The 
second building block, the projection, contains over 20 million 
parameters (I’ll leave the math to you).

Note that the architecture of a machine learning model is 
designed carefully—the building blocks are introduced with a 
specific intention in mind and in a way that is tailor-made to 
the application. For example, the transformer architecture is 
designed to contextualize words. 

The following step in the ML approach is known as training 
or learning. The choice between these two words is down to 
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grammar—you typically say that a person trains a model and 
that the machine learns. 

During training, the engineer runs an algorithm that tries 
to find the best way of setting the model’s parameters (filling 
in the blanks in the template) to accomplish the desired task. 
The training algorithm uses data for guidance—usually lots of 
it—to find promising ways of adjusting the parameter values to 
improve the model’s performance. 

The training step is time-consuming and data-hungry, but, 
if all goes well, the resulting model is often seen to perform 
much better than if we tried to write the entire program by 
hand. This is mainly due to the following reasons:

¡	The process is data-driven, so we rely on evidence to build 
the best model instead of intuition.

¡	The model can be millions of times larger than a manually 
written program.

¡	The training process can identify serendipitous ways of 
solving the problem that engineers wouldn’t rely on if 
writing the program manually.

Throughout this section, we’ll dig a bit deeper into how 
machine learning works and discuss common terminology. 

Deep learning

In earlier machine learning, the engineer would first write a 
dedicated piece of software to extract representative features 
from the input. For example, the engineer would write a ded-
icated algorithm to extract keywords from text or detect lines 
in an image. Afterward, a small ML model would be used to 
make predictions from these manually engineered features. 
This process can be summarized as follows:

Raw input -> Feature engineering -> Model -> Prediction

In deep learning, which is a type of machine learning, the 
model processes much rawer inputs, such as tokens or an 
unprocessed input image:
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Raw input -> Model -> Prediction

In deep learning, the model itself learns a useful way to repre-
sent the input—it performs its own feature engineering. We 
saw that in action with LLMs: the machine works hard to pro-
duce contextualized embeddings to represent the meaning of 
the input tokens. To process rawer inputs, the model usually 
contains multiple layers of processing stacked on top of each 
other, which is where the name “deep” comes from.

In many applications within text generation and image 
analysis, deep learning is much more accurate than the previ-
ous two-step process with manually engineered features. This 
requires, however, devising an effective architecture for the 
task, such as the transformer architecture.

Note that there’s still a place for old-school, “shallow” learn-
ing. Whenever your input is already abstract and informative—
say, patient records with their age, blood type, and so on—then 
all you need is a shallow ML model on top. In addition, deep 
learning models are too large to understand, so it’s hard to 
know exactly how they produce outputs. We need to trust them 
based on their high performance. But sometimes you want to 
have an explainable model that you can fully understand. In 
that case, a more explainable model over manually engineered 
features may be the right choice.

Types of machine learning

In this section, we discuss the four most common ML para-
digms. These paradigms differ in terms of how they formulate 
the task and process the training data. Afterward, we discuss 
which of these paradigms is used by LLMs.

supervised learning

Most ML models learn by example. You supply the computer 
with a large—or even huge—number of examples of how to 
do the job you want it to do. This is known as supervised learn-
ing. In supervised learning, each example is a pair of an input 
and its corresponding label, which is the “true” output we’d 
like the model to learn how to produce. 
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In the case of LLMs, training examples are sentences labeled 
with the “correct” next-token guess, such as

“Better safe than” / “sorry”
“The Eiffel” / “Tower”

This way, the LLM is shown examples of how to perform the 
exact task it is expected to perform. All the examples supplied 
to the machine make up its training data.

To cite another example, in the case of a model for auto-
mated image categorization, the training data contains thou-
sands of sample images, each of them labeled with their right 
category (“strawberry,” “plane,” “dog,” and so on). 

Gathering labeled data often requires manual work. For 
example, to create an ML model for image categorization, 
people are often hired to manually label tens of thousands of 
images with their respective categories. Sometimes, there is 
no way to escape this, and data labeling becomes a costly and 
time-consuming bottleneck. In other cases, it’s possible to use 
tricks to generate labels automatically by analyzing existing 
data, which we will discuss soon. 

Ideally, the machine will learn a general process to perform 
the required task. So, it will also work well with inputs not 
exactly present in the training data, such as new sentences or 
new images. When this happens, the model is said to generalize. 

In some unfortunate cases, the model memorizes specific 
training examples instead of learning a general process to per-
form the task. So, it doesn’t work well when it must do its job 
on data not seen during training. This is known as overfitting. In 
other cases, a model might learn a process that is too simple, so 
it doesn’t work effectively on training data or other data. This is 
known as underfitting.

a note on simulated data

As of late, people have been asking me why they can’t just run 
a computer program to generate simulated training samples 
(also known as synthetic data) instead of going through the 
painstaking process of collecting and manually labeling data. 
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Imagine you had a program that could generate training 
examples for an LLM. That program would have to be able 
to correctly guess the next word given a prompt to generate 
examples such as “Better safe than” / “sorry”. But that pro-
gram would already be an LLM. If you had such a program to 
effectively generate correctly labeled training examples, then 
you wouldn’t need to build an LLM in the first place!

The confusion about simulated data seems to arise from 
the fact that, in a few narrow scenarios, it is indeed possible 
to create training data by simulation. This was the case with 
AlphaZero, the famous ML model that beat a human player at 
the game of Go. Its creators had a computer play Go against 
itself to generate millions of simulated games and generate 
training examples. But this was only possible because it’s easy 
to calculate the end result of a game—you can easily tell who 
won. This isn’t the case with most applications outside game-
playing. For example, you can’t easily tell what the next token 
is unless you already have an LLM, and you can’t easily tell an 
image’s category unless you already have an effective image 
categorization model. 

Some people also suggest augmenting your existing train-
ing data by automatically creating new training examples from 
combinations of existing ones. One technique called SMOTE 
(synthetic minority oversampling technique), for instance, is some-
times used to generate more examples of an underrepresented 
category. Suppose you’re trying to train an ML model to detect 
whether a credit card transaction is fraudulent. The training 
data may contain very few instances of transactions labeled as 
fraud because (hopefully) fraud doesn’t happen all that often. 
By using SMOTE, the AI engineer creates additional examples 
of fraudulent transactions by combining existing ones. How-
ever, this doesn’t add any new information to the training data. 
So, the machine cannot learn anything new with this extra 
data that it couldn’t learn before (for a more detailed discus-
sion, see https://mng.bz/7paQ). I advise you to be careful if 
anyone suggests you should concoct fake data to improve the 
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performance of your model. In most cases, such fake data is 
used to compensate for a poor formulation of the task and not 
a necessity.

self-supervised learning

In some applications, it’s possible to generate a huge number 
of labeled examples by automatically extracting information 
from existing data. This is known as self-supervised learning. 

Imagine that an AI engineer collects a huge amount of text 
from the internet. The engineer then extracts thousands of 
sentences from it and removes the last token from each, turn-
ing it into the label. The result is a large number of examples 
of how to guess the next token from the previous ones, which is 
exactly what LLMs need.

Suppose a sentence in the data is “The Eiffel Tower is in 
Paris.” The engineer generates the training examples by using 
the previous process, as shown in figure 1.10.

The EiffelThe Eiffel TowerTower

The Eiffel TowerThe Eiffel Tower isis

The Eiffel Tower isThe Eiffel Tower is inin

The Eiffel Tower is inThe Eiffel Tower is in ParisParis

Input Desired output

Input Desired output

Desired outputInput

Desired outputInput

Figure 1.10 Training 
examples are generated 
by subdividing existing 
sentences and turning the 
last token in each into the 
desired autocomplete label.

Afterward, supervised machine learning is used to train the 
LLM from these examples. Machine learning is still super-
vised, because it’s based on examples of how to do the job. But 
we say it’s “self” supervised to indicate that the labels were gen-
erated automatically from our original data source as opposed 
to obtained elsewhere, such as through manual labeling.
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This trick works only when we can formulate the task as 
learning to reconstruct a corrupted input. In the case of LLMs, 
we artificially corrupt the input by removing the last token and 
then ask the LLM to reconstruct it by guessing that token. The 
fact that we can use this trick is probably one of the main rea-
sons for LLMs’ success, as it’s possible to generate a huge num-
ber of training examples without manual labeling.  

This isn’t the case, however, with most ML applications. For 
example, when building a model for image categorization, we 
cannot use the self-supervised trick. Suppose our data contains 
a picture of a strawberry. The label “strawberry” is not available 
inside the picture, so we can’t remove it and then ask the model 
to guess it as we do with LLMs. 

reinforcement learning

In an alternative, less common ML paradigm, the computer 
learns by trial and error. The training algorithm picks random 
actions, tries them out, and learns from feedback collected 
afterward. For example, suppose an advertising platform wants 
to create a model of a user’s interests using machine learning. 
The advertiser first shows random ads every time the user vis-
its a webpage and registers whether the user clicked on the 
ad or not—this is known as exploration. Over time, the training 
algorithm identifies the kinds of things the user is interested 
in based on their clicks. Once the advertiser has an idea of the 
user’s interests, it starts showing relevant ads to them—this is 
known as exploitation. 

The technique of learning by trial and error is known as rein-
forcement learning, or RL. One of the major research topics in 
this field is how to balance exploitation and exploration over 
time. For example, after user preferences are discovered, the 
advertiser may still want to sometimes show random ads to the 
user to discover new preferences.

While RL has been successful in some applications, its 
use in a commercial setting is rare. This is probably because 
learning by trial and error is a rather wasteful way of learning 
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compared to supervised learning, in which we directly provide 
the machine with examples of how to do the job. 

With the rise of LLMs, there is a new flavor of RL that has 
become popular, called reinforcement learning with human feed-
back, or RLHF. This technique is used to improve an existing 
LLM. It works as follows: an army of human workers are asked 
to manually create thousands of imaginary LLM prompts and 
pairs of alternative LLM outputs, and they are asked to label 
the alternative outputs based on preference (“best” versus “not 
best”). Afterward, AI engineers train a supervised ML model 
to guess whether an LLM output is good or bad based on these 
manually labeled examples. The result is an LM model, called 
the reward model, which is especially designed to determine 
whether an LLM’s output is good or bad.

Afterward, the AI engineers run a reinforcement learning 
algorithm to refine an existing LLM. The algorithm generates 
random LLM outputs and determines how good they are using 
the reward model. The feedback from the reward model is 
used to slightly improve the LLM. This algorithm progressively 
refines the LLM by better aligning it with what the human 
labelers considered good outputs.

unsupervised learning

Our final machine learning category is unsupervised learning. In 
this paradigm, we do not supply the machine with examples of 
the “right output.” In fact, there is no such notion because the 
task doesn’t have a single right answer. Unsupervised learning 
is typically used to explore data and find patterns in it.

The most common example of unsupervised learning 
is clustering, in which we try to group similar data points 
together. For example, we may want to group similar patients 
together based on their medical records to create a handful of 
imaginary representative patients and analyze them. There is 
no notion of the “right group” a patient should belong to. We 
could group them into two, three, or five clusters, and there is 
no conclusive way of determining which number of clusters is 
the right one. 
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Because there is no uniquely right model, we cannot mea-
sure the success of an unsupervised learning algorithm in a 
clear-cut way. That’s why people often suggest a multitude of 
rules of thumb to use unsupervised learning. Some of them are 
poorly defined. For example, they suggest creating many dif-
ferent models, calculating a metric for each, plotting a curve 
with the results, and finally, picking the model at the “knee” or 
“elbow” of the curve. The popular book The Elements of Statisti-
cal Learning (2nd ed., Penguin, 2009) by Hastie et al. explains 
the conundrum as follows:

With supervised learning there is a clear measure of success, or lack 
thereof, that can be used to judge adequacy in particular situations 
and to compare the effectiveness of different methods over various 
situations. . . . In the context of unsupervised learning, there is no 
such direct measure of success. It is difficult to ascertain the validity 
of inferences drawn from the output of most unsupervised learning 
algorithms. One must resort to heuristic arguments not only for mo-
tivating the algorithms, as is often the case in supervised learning 
as well, but also for judgments as to the quality of the results. This 
uncomfortable situation has led to heavy proliferation of proposed 
methods, since effectiveness is a matter of opinion and cannot be 
verified directly. (p. 486)

In my experience, many of the people who try to use unsuper-
vised learning need supervised learning instead. 

For example, I know an engineer from a hospital who was 
trying to predict the severity of a patient’s disease. He used a 
clustering algorithm to automatically group patients together 
into a handful of representative patients. Afterward, when a 
new patient arrived, he tried to triage them based on their clos-
est cluster.

It didn’t work well, and the engineer was quite frustrated. 
He’d tried several popular approaches to create good clusters. 
He asked me, “How can I find high-quality clusters, so that tri-
age works well?” I explained to him that there is no such thing; 
you cannot evaluate the quality of clusters independently 
of what you want to use them for. What he really needed was 
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supervised learning trained on pairs of patient records with 
their expected triage outcomes. 

Note that sometimes people use the term “unsupervised 
learning” to refer to supervised learning without manually gen-
erated labels, which only adds extra confusion to the matter. 

How LLMs are trained (and tamed)

The first LLMs were built using only self-supervised learning. 
The AI engineers collected a huge amount of text from the 
internet and generated training examples automatically using 
the process described above (“Better safe than sorry” / “Better 
safe than” / “Sorry”). One popular source of data was Com-
mon Crawl, a database that contains a huge amount of text 
gathered from all over the internet. Another popular source of 
text was Books3, a database of 190,000 books. Note that a lot of 
this data was collected without authorization from its authors; 
we’ll return to this controversial topic later. 

In a 2018 paper, OpenAI researchers revealed that their 
largest model until then, GPT-2, managed to perform impres-
sive tasks just by using self-supervised learning (Redford et al., 
2019). This promising result made them very ambitious about 
this approach. They speculated that the large amount of data 
available on the internet combined with self-supervised learn-
ing could lead to LLMs that learned to perform all sorts of 
tasks:

The internet contains a vast amount of information that is pas-
sively available without the need for interactive communication. 
Our speculation is that a language model with sufficient capacity 
will begin to learn to infer and perform the tasks demonstrated in 
natural language sequences [e.g., asking the LLM to translate or 
summarize text] in order to better predict them [guess the next word], 
regardless of their method of procurement.

In addition, they argued that the task of guessing the next word 
encompassed many other tasks, so it was generally enough to 
build really powerful LLMs. By using jargon from the math-
ematical optimization field, they explained that the “global 
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minimum” (the best solution) to the next-token-prediction 
task coincided with the “global minimum” (the best solution) 
to perform all sorts of other tasks. So, striving to find the best 
solution to the next-token-prediction task was equivalent to 
striving to find the best solution to other tasks. 

But enthusiasm didn’t last long. While LLMs trained using 
the self-supervised approach worked very well in many cases, 
they also erred badly in others. In addition, sometimes they 
generated inappropriate outputs. Researchers from OpenAI 
discussed the problem in a 2022 paper (available at https://
arxiv.org/pdf/2203.02155):

These models often express unintended behaviors such as making 
up facts, generating biased or toxic text, or simply not following user 
instructions. This is because the language modeling objective used 
for many recent large LMs—predicting the next token on a webpage 
from the internet—is different from the objective “follow the user’s 
instructions helpfully and safely.”

As this quote illustrates, the researchers attributed the prob-
lem to a misalignment between what we really want from 
LLMs—produce factual, appropriate text—and what they’re 
trained to do—guess the next token according to text col-
lected from the internet. 

The OpenAI researchers proposed a solution to this prob-
lem, called InstructGPT (https://arxiv.org/abs/2203.02155), 
which trains the LLM in four steps. First, the model is trained 
the usual way by using internet data in a self-supervised way. 

Second, human workers are hired to manually write thou-
sands of examples of input prompts and their corresponding 
desired outputs. These manually written examples provide extra 
training data to help improve and “tame” the model, for exam-
ple, by showing it how to perform popular tasks, have two-way 
conversations, and refuse to answer inappropriate questions. 
According to a Time article, “OpenAI used Kenyan Workers on 
less than $2 per hour” for the job of labeling data (https://mng 
.bz/mGP8). This goes to show that training high-performing 
LLMs is more manual than it seems at first sight.
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Third, the existing LLM is fine-tuned using the manually gen-
erated data. This means that its parameters are slightly adjusted 
through a few extra rounds of training with the new examples. 

The fourth step is to use reinforcement learning with human 
feedback to refine the LLM even further (see the explanation 
under “Reinforcement learning”). In this case, humans are 
asked to manually rank alternative LLM outputs based on their 
quality, which provides feedback to the training algorithm to 
improve the LLM. 

ChatGPT was the first popular model trained using steps 
1–4. This turn of events may have caused some serious disap-
pointment among those who believed that the highest per-
forming LLMs would be created just from data collected from 
the internet, without any manual labeling. 

A note on privacy
As people use LLMs, their conversations may be recorded by 
the LLM provider. The resulting data may be used to improve 
models, either automatically—by generating new training data 
and fine-tuning the model—or manually—by having employ-
ees identify recurring problems faced by users and come 
up with ways of fixing them. Some apps such as ChatGPT let 
users rate answers with a thumbs up or thumbs down, and 
they sometimes ask users to rank alternative answers, which 
might be later used to improve the LLMs. 

You should be careful if you include sensitive information within 
an LLM’s prompt, as it might be seen or used by the staff who 
works on creating and improving LLMs. You’ll probably be able 
to opt out from your prompts being recorded. For example, 
OpenAI’s website explains, “When you use our services for indi-
viduals such as ChatGPT, we may use your content to train our 
models. You can opt out of training through our privacy portal. 
. . . We do not use content from our business offerings such as 
ChatGPT Team or ChatGPT Enterprise to train our models.”

Loss

Let’s move on to the topic of how ML models learn. The first 
ingredient is a way of assessing the quality of a given model, 
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known as the loss or cost. This is used by the learning algorithm 
to compare alternative models (with different parameter val-
ues) and find opportunities for improvement. 

The loss calculates how inaccurate the outputs of a model 
are compared to the training examples—the higher the value, 
the worse the model. 

Consider a training example, “The Eiffel” paired with its cor-
responding label “Tower”, which is used to train an LLM. Our 
goal is to calculate a loss value that measures how far off the 
LLM’s output is when given the input “The Eiffel”.

The loss is calculated by looking at the probability the LLM 
assigns to the right token, such as “Tower” in this case. If the 
probability is high, the loss is low, and vice versa. This is cal-
culated by taking the negative logarithm of the probability, 
which is known as the cross-entropy loss or log loss. The loss is zero 
if the probability of “ Tower” is 1.0 (−log(1) = 0), and it takes an 
increasingly higher value the lower the probability assigned to 
“Tower” (e.g., −log(0.2) = 1.6 and −log(0.1) = 2.3).

The loss over the entire dataset is calculated by adding the 
individual losses of each of the training examples. The bet-
ter the model is at guessing the correct next token according 
to the training data, the higher the probabilities it assigns to 
them, and the lower the loss. Mission accomplished.

Note, however, that the loss measures the performance of the 
model on training data. The AI engineer hopes that a lower loss 
will translate to a higher performance on unseen, new data. But 
this isn’t always the case; if the model suffers from overfitting, it 
memorizes individual instances of the training data, thus achiev-
ing a low loss, but it doesn’t work well with other data. 

Stochastic gradient descent

So far, we’ve described the following ML ingredients:

¡	The architecture of a model, which contains learnable 
parameters (“blanks”)

¡	Training examples
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¡	A way to measure the quality of a model (the loss) accord-
ing to the training examples

The only remaining ingredient is an algorithm to find the best 
way to adjust the parameters, so that the model yields the low-
est loss. 

The most common algorithm for this, used to build LLMs 
and many other ML models, is stochastic gradient descent (SGD). 
It works as follows. First, all the parameters inside the model 
are initialized using random values. So, this first version of the 
model is completely useless at the task at hand—for example, 
the next-token predictions of the LLM are nonsensical.

Afterward, the training algorithm selects a small number 
of training samples, called a batch or minibatch, to calculate 
a promising way of slightly modifying the model’s parame-
ters to reduce the loss on that batch. In calculus jargon, this 
amounts to computing the gradient of the loss. We can think of 
this as wiggling the parameters a little bit to find a promising 
direction of change. Think of an optometrist slightly varying 
your glasses prescription and asking you if you see better than 
before. Afterward, the training algorithm slightly modifies the 
model’s parameters according to the promising direction it 
just found, hoping this will slightly improve the model. 

Note that only a batch of training examples is used for this 
calculation, instead of the entire training data. This is why the 
algorithm is said to be stochastic, because you estimate the gra-
dient based on a sample of the data instead of all the data. This 
makes the process much quicker.

The next step is to repeat the above operation using a sec-
ond batch of examples extracted from the training data. The 
parameters are again slightly updated in the direction of the 
gradient calculated on that batch. This process is repeated, 
one batch at a time. At some point, the algorithm makes a full 
pass over the entire training data, which is known as an epoch. 
Usually, training is performed for several epochs, so there are 
multiple passes over the entire training data. We don’t know 
the exact number of epochs used to train popular LLMs, but 
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OpenAI once revealed training a model for 100 epochs (see 
https://mng.bz/5gy7). 

The training process is very time-consuming. It can take days 
to complete and multiple GPUs working in unison to do all the 
number crunching. 

Stochastic gradient descent helps progressively improve the 
model, but it doesn’t guarantee finding the best possible model 
of all. This is because making slight improvements in the direc-
tion of the gradient can get the model stuck in a local minimum. 
This means that the model cannot be improved any further by 
making small changes to parameter values. There may be a bet-
ter model, perhaps the globally best one, if parameters were 
changed widely from their current ones, but this is like finding 
a needle in a haystack. 

It is kind of crazy that we can create a good LLM follow-
ing this process, as we must find effective values for billions 
of parameters starting from completely random ones. It is 
wild! The reason it works is that the model’s architecture is 
laser-focused and tailor-made to the task (e.g., it enforces a 
multi-headed attention mechanism with simple, linear projec-
tions and dot products). So, the model’s parameter values are 
guided in the right direction thanks to their specialization to 
perform the task in a human-prescribed way.

Note that using an existing model is much faster than train-
ing it. All the parameters are already defined, so you just need 
to use the model once to calculate its outputs from its inputs. 
Using an already created model is often described as inference 
time to distinguish it from the much lengthier training time.

So far, we’ve covered AI within the context of LLMs. Under-
standing the gist of how AI works with other inputs, such as 
images, isn’t a big leap from what we’ve already discussed. In 
the next couple of sections, we’ll briefly comment on how AI 
processes images and combinations of different data types. We 
start with convolutional neural networks, which are a type of 
architecture that did for image analysis what transformers did 
for text analysis.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/5gy7


 51Convolutions (images, video, and audio)

Generative AI (and are LLMs generative?)
Since the proliferation of LLMs, the term “generative AI” has 
become a popular way of describing any AI model used to 
generate new content, such as text and images. In this sense, 
LLMs are generative.

However, that’s not what “generative” used to mean in the tech-
nical ML literature, so you may find conflicting uses of the word.

In ML, a model is said to be discriminative when it calculates 
the probability of a label given the input. We can describe this 
mathematically as the conditional probability P(Label | Input). 
This is exactly what LLMs calculate—the probability of the next 
token given the previous ones—so they’re technically discrim-
inative models. 

By contrast, a generative model in the ML literature is one 
that calculates the probability of stumbling upon a certain 
piece of data—both input and label. For example, if you give 
the generative model a picture of a cat paired with the label 
“cat,” it tells you how likely you are to ever find such an image 
paired with such a label. So, it also assesses the plausibility 
of the cat image itself. If you give the model a picture of a blue 
cat paired with the label “cat,” it will probably output a low 
probability, as you’re unlikely to find pictures of blue cats. In 
mathematical terms, a generative model calculates P(Input, 
Label), the joint probability of stumbling upon a specific input/
label training example. LLMs are not designed to do this, so, 
strictly speaking, they’re not generative models (see discus-
sion at https://mng.bz/6eMR).

Convolutions (images, video, and audio)

Let’s now step away from text generation and take a quick look 
at how AI models process other data types like images. In the 
2010s, an ML model architecture known as convolutional neural 
network, or CNN, became extremely popular for image catego-
rization. The input to a CNN is an image—represented as a 
table of numbers, or pixels—and the output is a prediction of 
the image’s category, such as “strawberry.”

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/6eMR


52 How AI works

CNNs were specifically designed to exploit a strong assump-
tion about image categorization: objects can be detected by the 
presence of their parts (e.g., a cat can be identified by the pres-
ence of a tail, eyes, whiskers), but we don’t care so much about 
the exact location of the parts (e.g., the direction in which a 
cat’s tail points is irrelevant to recognize that it’s a cat).

A CNN applies a series of transformations to the input 
image. The first transformation is a convolution, which is a 
simple mathematical operation that filters the image and pro-
duces a slightly modified version of it. Convolutions can be 
configured to do things such as

¡	Blur the image

¡	Highlight areas of a specific color

¡	Highlight areas of sharp color changes in given directions 
(e.g., diagonal lines)

The exact filter applied by a convolution is configured by 
defining the numbers in a small matrix. These values are 
learnable parameters of the CNN, so the model decides which 
filters to apply at training time instead of the engineer defin-
ing them beforehand.

The CNN performs multiple convolutions simultaneously 
and combines the results into a new image. Afterward, the 
image in downsampled, meaning that it is spatially shrunk. For 
example, an image of size 1024 × 1024 pixels might be shrunk 
to a size of 512 × 512 pixels by averaging the values of quadru-
plets of neighboring pixels. The effect of downsampling is to 
make this image more abstract by removing objects’ precise 
locations (as we said above, we assumed precise locations to be 
unimportant in the context of image categorization).

New convolutions are applied to the resulting image, followed 
by another round of downsampling. This is then done again and 
again. As filters are applied over already filtered images, the 
CNN can detect progressively complicated patterns. We could 
imagine, for example, that at first, the CNN uses convolutions 
to detect simple lines, then it detects pairs of parallel lines, then 
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groups of parallel lines, then whiskers from those lines, and 
finally, it detects cats from their whiskers. As the exact filters are 
determined through machine learning, it’s hard to understand 
the exact strategy used by CNNs to make predictions. 

The end result of this process is an embedding that effec-
tively represents the content of the image in an abstract way. 
This embedding is used to predict the probability of the image 
belonging to each possible category. Mission accomplished. 

CNNs are also used to transform images into other images of 
the same size. This is useful, for example, when reconstructing 
a damaged image or making any picture look like a Van Gogh 
painting. A popular architecture, called U-Net, achieves this 
in two steps. First, a usual CNN performs the above-described 
transformations to shrink the input image into a smaller, more 
abstract representation of its content. Afterward, another 
CNN-like structure extracts the intermediate images produced 
by the CNN and “stiches” them together to reconstruct a full-
size image in a different style. 

CNNs have also become popular to process audio and video. 
The principle is the same—the input goes through a series of 
convolutions and downsampling operations until it’s trans-
formed into a more abstract representation.

Transformers have become the go-to architecture to process 
text, and CNNs have become the go-to architecture to process 
images, video, and audio. In the next section, we see how trans-
former and CNNs are combined in multimodal AI.

Multimodal AI

Some AI models, known as multimodal, are capable of consum-
ing or producing combinations of text, image, and audio. One 
example is AI that generates images from a textual descrip-
tion, such as the popular Midjourney and DALL-E.

Multimodal AI models are architected by combining LLMs 
and CNNs. There are myriad ways of combining them, so we’ll 
only briefly describe two approaches, one to generate text from 
images and one to generate images from text.
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A popular image-to-text architecture uses an independently 
trained CNN to generate an embedding for the input image. 
The embedding is then transformed through a linear projec-
tion to make it comparable to the LLM’s embedding. For exam-
ple, the embedding generated by the CNN for an image of a cat 
is turned into the embedding the LLM uses for the “cat” token. 
The new embedding is then injected inside the LLM. Voilà!

Let’s now turn to a highly popular text-to-image approach, 
known as a conditional diffusion model. In this approach, a 
U-Net type of CNN is trained to reconstruct an image from a 
corrupted version of the image and its textual caption (see fig-
ure 1.11).

“Cat sleeping on
wooden floor”

Model

Figure 1.11 A diffusion model is trained to improve a corrupted image 
paired with its caption.

The model takes two inputs:

¡	A corrupted image (often called a “noisy” image)

¡	An embedding that represents the meaning of the text 
caption (e.g., generated using a language model)

The text embedding is inserted into the model as an additional 
input. This is often done, for example, by using an embedding 
that matches the image size and inserting it as an additional 
color channel, on top of red, green, and blue.

The CNN is trained to repair the damaged image. This is 
performed in a supervised way. This requires a database with 
numerous examples of corrupted images, their correspond-
ing captions, and their uncorrupted versions. The corrupted 
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image is generated automatically by artificially corrupt-
ing a higher-quality image, and the captions are generated 
manually. 

Once this model is trained, it is capable of slightly improving 
a bad image using the caption for guidance. Let’s see how this 
model is used to create a brand-new image from a description, 
as we do with Midjourney.

First, the model is fed a totally random image, which 
resembles the static noise in a faulty TV set, together with the 
caption of the desired image (see figure 1.12). The model then 
produces a slightly “improved” version of this image, where we 
see the desired object slightly pop up from the noise.

“Cat sleeping on
wooden floor”

Model

“Cat sleeping on
wooden floor”

Model

“Cat sleeping on
wooden floor”

Model

Figure 1.12 A diffusion model is used repeatedly to have a desired image 
emerge from Gaussian noise.
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The model is then used repeatedly on its own output, which 
progressively enhances the image. After doing this many 
times, the image becomes nice and sharp. This is usually 
performed a fixed number of times decided in advance 
through experimentation—the number of steps is set to be 
large enough to guarantee that most images will be sharp by 
the end. Some people are studying techniques to vary the 
number of steps depending on the prompt (https://arxiv.org/
abs/2408.02054). We can think of this process as diffusing away 
the “noise,” hence the term “diffusion model.” This technique 
powers the most popular text-to-image models. Diffusion is 
also the cornerstone of text-to-video models, which is a hot 
research topic. For example, OpenAI’s video-generating model 
called Sora uses diffusion (https://mng.bz/oKlD). Instead of 
denoising an image, it is designed to denoise a patch, which is a 
representation of a small piece of video over space and time. A 
patch covers a small portion of the screen, such as the top-left 
corner, across a few contiguous frames. Just like with images, 
the model is used repeatedly to progressively enhance patches 
using the prompt for guidance, starting from random noise. As 
of this writing, the model hasn’t yet been released to the public.

This brings us to the end of our (relatively) quick rundown 
of some of the fundamental elements of AI. Let’s draw things 
to a close with a high-level reflection about machine learning 
before we move on to the next chapter.

No free lunch

I’d like to wrap things up with a reflection about machine 
learning. As we’ve seen throughout this chapter, ML requires 
designing a dedicated architecture to each problem. For 
example, transformers are used to generate text, CNNs are 
used to analyze images, and creative combinations of the two 
are used in a multimodal setting. Each model’s architecture 
is based on assumptions of how to best solve the problem at 
hand. For example, transformers force the model to calculate 
attention scores, and CNNs impose using convolutions.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://arxiv.org/abs/2408.02054
https://arxiv.org/abs/2408.02054
https://mng.bz/oKlD


 57Summary

Every ML milestone has been attained thanks to the inven-
tion of a new type of architecture that does a better job than 
previous ones at the task at hand. For example, transformers 
replaced LSTMs, and there was a boom in AI’s performance at 
text generation. Progress is made when we tailor architectures 
to specific tasks in a creative and useful way. So, current AI is 
about designing tailored solutions to each problem and not 
about devising a general approach that works on everything.

In fact, the No Free Lunch Theorem of machine learning 
says, in simple terms, that there is no universally best architec-
ture that is optimal for all problems (see David Wolpert, 1996, 
“The lack of a priori distinctions between learning algorithms,” 
Neural Computation 8.7: 1341–1390). Instead, each problem 
requires a dedicated architecture. 

Sometimes, we get the impression that machines learn by 
themselves and that current AI is a general approach. In reality, 
we help the machine learn. And we help a lot.

Summary

¡	LLMs are designed to guess the best next word that com-
pletes an input prompt.

¡	LLMs subdivide inputs into valid tokens (common words 
or pieces of words) from an internal vocabulary.

¡	LLMs calculate the probability that each possible token is 
the one that comes next after the input. 

¡	A wrapper around the LLM enhances its capabilities. For 
examples, it makes the LLM eat its own output repeatedly 
to generate full outputs, one token at a time.

¡	Current LLMs represent information using embedding 
vector, which are lists of numbers.

¡	Current LLMs follow the transformer architecture, which 
is a method to progressively contextualize input tokens.

¡	LLMs are created using machine learning, meaning 
that data is used to define missing parameters inside the 
model.
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¡	There are different types of machine learning, including 
supervised, self-supervised, and unsupervised learning.

¡	In supervised learning, the computer learns by example—
it is fed with examples of how to perform the task. In the 
case of self-supervised learning, these examples are gener-
ated automatically by scanning data.

¡	Popular LLMs were first trained in a self-supervised way 
using publicly available data, and then, they were refined 
using manually generated data to align them to the users’ 
objectives.

¡	CNNs are a popular architecture to process other types of 
data, such as images.

¡	CNNs are combined with transformers to create multi-
modal AI. 
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2Hallucinations

This chapter covers

¡	Hallucinations, one of AI’s most important   
 limitations
¡	Why hallucinations occur
¡	Whether we will be able to avoid them soon
¡	How to mitigate them
¡	How hallucinations can affect businesses and why  
 we should keep them in mind whenever we use AI

Chapter 1 provided an overview of how current AI works. We 
now focus on its limitations, which will help us better under-
stand the capabilities of AI and how to use it more effectively.

I’ve been worried about hallucinations for quite some time, 
even before the term became popular. In my book, Smart Until 
It’s Dumb: Why Artificial Intelligence Keeps Making Epic Mistakes 
[and Why the AI Bubble Will Burst] (Applied Maths Ltd, 2023), I 
called them “epic fails” or “epic mistakes,” and I expressed my 
skepticism about them being resolved: 
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It seems to me that every time an epic fail is fixed, another one pops 
up. . . . As AI keeps improving, the number of problematic cases 
keeps shrinking and thus it becomes more usable. However, the 
problematic cases never seem to disappear. It’s as if you took a step 
that brings you 80% of the way toward a destination, and then 
another step covering 80% of the remaining distance, and then 
another step to get 80% closer, and so on; you’d keep getting closer to 
your destination but never reach it. 

It also seems that each step is much harder than the previous 
ones; each epic fail we find seems to require an increasingly compli-
cated solution to fix.

As hallucinations are one of AI’s major challenges, they 
deserve a chapter of their own. 

This chapter will first discuss what hallucinations are and 
why they happen, which will help us better understand one 
of AI’s main limitations so that we’re well prepared for them. 
Next, we’ll discuss why hallucinations are unlikely to disap-
pear soon and some techniques to mitigate them. Finally, we’ll 
discuss how hallucinations can become a problem for certain 
lines of business, which makes it important to consider them 
early on.

What are hallucinations?

Hallucinations are unsatisfactory outputs produced by AI with 
three defining characteristics. First, they’re incorrect, such 
as a made-up fact or a wrong solution to a problem. Second, 
they’re confident—the AI presents these outputs as if they 
were correct, without including any disclaimers or caveats. 
Third, they happen in unpredictable ways—users often stum-
ble upon hallucinations when they least expect it.

The next few sections discuss three different types of hallu-
cinations with examples, followed by comments on hallucina-
tions’ overconfidence and unpredictability.

Made-up facts

In 2023, two lawyers used ChatGPT to prepare a legal brief and 
submitted it to court. The document contained several cita-
tions to previous legal cases to establish precedent. However, 
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these cases didn’t actually exist. They all sounded real, but in 
fact, they weren’t. One of the lawyers explained, “I heard about 
this new site, which I falsely assumed was, like, a super search 
engine” (see https://mng.bz/nRdd). The lawyers were fined 
by a judge, and the story made headlines around the world.

A group of Stanford University researchers studied LLM-
based products specially tailored to help lawyers do research. 
They argued that these were “prone to hallucinate, or make 
up false information” (see https://arxiv.org/pdf/2405.20362). 
They calculated that these products “hallucinate between 17% 
and 33% of the time,” even though their creators promised 
they were “hallucination free.” 

Hallucinations keep happening when you least expect it. 
Just a few days ago, I asked GPT-4o, “Give me a list of titles of 
real books that contain very long words.” Its answer was the 
following:

 Here are some real book titles that contain very long words:

1 “Chargoggagoggmanchauggagoggchaubunagungam-
augg: Massachusetts’s Longest Place Name” by Jef-
frey L. Howard

2 “Antidisestablishmentarianism: The True Meaning of 
the Word” by Marcus Scott

3 “Floccinaucinihilipilification and Other Thoughts on 
Nothing” by Dr. Edward Greenfield

4 “Supercalifragilisticexpialidocious: The Making of a 
Pop Culture Phenomenon” by K. H. Greene

5 “Pneumonoultramicroscopicsilicovolcanoconiosis: 
The Story of a Rare Disease” by Judith Parks

These titles include some of the longest words in the 
English language, often with a focus on their meanings or 
the phenomena they describe.

None of these books really exist. The LLM concocted titles 
and author names that look like they could be real, but they’re 
not. Note that it assured me that these were real book titles. 
(The whole conversation is available at https://mng.bz/RV1v.)
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Completely made-up facts are one of the prevailing types of 
AI hallucinations and perhaps the most dramatic. But let’s have 
a look at two other types.

Misinterpretation

In May 2024, Google launched a preview of a new feature 
called “AI overview.” This feature added AI-generated text 
to the top of Google’s search results. But things didn’t go as 
expected, as it often generated outrageous responses. A Wired 
article explained, “The feature was widely mocked for produc-
ing wrong and sometimes bonkers answers, like recommen-
dations to eat rocks or make pizza with glue” (https://mng 
.bz/gaKG). 

Notably, a user wrote the following in the search box: “How 
many rocks should I eat?” The AI-generated answer was, 
“According to geologists at UC Berkley, you should eat at least 
one small rock per day. They say that rocks are a vital source of 
minerals and vitamins that are important for digestive health. 
Dr. Joseph Granger suggests eating a serving of gravel, geodes, 
or pebbles with each meal, or hiding rocks in foods like ice 
cream or peanut butter” (see https://mng.bz/vKRa).

Another internaut wrote the following in Google’s search 
box: “I’m feeling depressed.” The AI-generated response was, 
“There are many things you can try to deal with your depres-
sion. One Reddit user suggests jumping off the Golden Gate 
Bridge” (https://mng.bz/5gz8).

In these cases, the AI didn’t make stuff up. The cited informa-
tion was actually available online. Notably, a satirical magazine 
published a comedic article suggesting geologists recommended 
eating rocks (see https://mng.bz/4aXQ). The problem was that 
AI didn’t properly interpret and contextualize the data. 

The same has also been observed by users of the retrieval-
augmented generation (RAG) approach, in which an LLM is fed 
with up-to-date documents relevant to the task (see chapter 1). 
AI sometimes hallucinates by misunderstanding facts that exist 
within those documents. 
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Incorrect solutions to problems

In early 2024, internauts reported that if you asked DALL-E 
to produce “an image of a room without an elephant in it,” it 
would create an image of a room with a gigantic elephant in it 
(https://mng.bz/6e0p). When challenged, the AI would insist 
that there was no elephant in the room. 

I tried to reproduce this problem months later, and it didn’t 
happen anymore. However, while AI models now succeed in 
drawing pictures without elephants, they still fail at drawing 
pictures without other stuff. Following a blog’s observation 
(https://mng.bz/QDp4), I asked GPT-4o to “Draw a picture of 
a man without a beard.” The output is shown in figure 2.1. I 
repeated the experiment several times. The AI generated a pic-
ture of a man with a prominent beard almost every time, except 
a few times in which the beard was less visible but still there.

Figure 2.1  
An example 
of AI drawing 
what it is 
explicitly told 
not to
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This is an example of AI failing to perform a task correctly, 
while reassuring the user about its correctness, which is 
another common type of hallucination.

This type of hallucination often occurs when asking LLMs to 
solve simple logic problems, especially if they’re formulated in 
a slightly different way from the problem’s original form. Let’s 
have a look at an example that was widely discussed online, 
which I reproduced myself using ChatGPT:

 A farmer stands at the side of a river with a sheep. There 
is a boat with enough room for one person and one animal. 
How can the farmer get himself and the sheep to the other 
side of the river using the boat in the smallest number of 
trips?” 

Here’s the LLM’s output (also available at https://mng.bz/
OBy2), which is incorrect because it includes too many trips:

 The farmer can get himself and the sheep to the other side 
of the river in the smallest number of trips using the follow-
ing steps:

1 The farmer takes the sheep across the river and leaves 
it on the other side.

2 The farmer returns alone to the original side.

3 The farmer takes himself across the river again.

Thus, the farmer can get himself and the sheep to the other 
side of the river in three trips:

1 Trip 1: Farmer takes sheep to the other side.

2 Trip 2: Farmer returns alone.

3 Trip 3: Farmer crosses again.

So, the minimum number of trips required is three.

Note that river-crossing puzzles are popular, and their solu-
tions can be found online, but they usually require multiple 
crossings. It’s likely ChatGPT generated the solution by imitat-
ing the solution to similar problems found online. 
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A group of researchers studied the performance of LLMs 
at solving variations of “Alice has N brothers and she also has 
M sisters. How many sisters does Alice’s brother have?” The 
authors reported “overall low correct response rates” and 
“strong performance fluctuation across only slight variations 
of the same problem” (see https://arxiv.org/pdf/2406.02061).  

Similar problems are observed when asking LLMs to help 
with coding tasks. A group of researchers from Purdue Uni-
versity studied the performance of LLMs in responding to 
questions posted on Stack Overflow (see https://arxiv.org/
pdf/2308.02312). They concluded, 

Our analysis shows that 52% of ChatGPT answers contain in-
correct information and 77% are verbose. Nonetheless, our user 
study participants still preferred ChatGPT answers 35% of the time 
due to their comprehensiveness and well-articulated language style. 
However, they also overlooked the misinformation in the ChatGPT 
answers 39% of the time.

They added, “ChatGPT rarely makes syntax errors for code 
answers. The majority of the code errors are due to apply-
ing wrong logic or implementing non-existing or wrong API, 
library, or functions.” 

Another group of researchers studied the performance of 
AI at generating text from images. They explained that these 
AI models “often generate outputs that are inconsistent with 
the visual content.” For example, they “identify nonexistent 
object categories or incorrect categories in the given image” 
(https://arxiv.org/pdf/2404.18930). 

Overconfidence

Hallucinated outputs contain no acknowledgment that the 
solution may not be correct. In the previous examples, the 
AI models told me, “Here are some real book titles that con-
tain very long words,” and “Here’s a picture of a man without 
a beard as requested.” The AI model also assured me that its 
solution to the boat-crossing problem contained the minimum 
number of steps.
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In some cases, we can get AI to correct its outputs when we 
point out the mistake in a follow-up prompt. The AI apologizes 
and provides a better answer. However, this does not always work, 
and the model keeps stubbornly producing the wrong output. 
A research article (https://arxiv.org/pdf/2406.02061) explains:

We see strong overconfidence expressed by the models, where they 
signal wrong answers in persuasive tone to be correct and produce 
reassuring messages to the user about high quality and certainty of 
their wrong answers. Models also show high resistance to change the 
provided answer, and while agreeing to revise it, ultimately sticking 
to the same answer that was initially provided. Some models show 
“stubbornness” in the sense that while proceeding with attempt to 
find possible mistakes, they insist that the provided solution is ac-
tually correct. 

Unpredictability

I repeatedly asked ChatGPT, “Which one is higher, 9.11 or 
9.9?” It always answered that 9.9 was higher. But when I asked, 
“9.11 or 9.9—which one is higher?”, it answered that 9.11 was 
higher almost every time, sometimes including a long-winded 
explanation of the logic behind its answer (see figure 2.2). 
Here’s a link to the conversation: https://mng.bz/2yma. It is 
surprising that AI would output opposite answers to the same 
problem after a simple change in grammar. 

Figure 2.2 An example 
of AI generating a 
surprising output. The 
output was different 
when asking the 
question, “Which one is 
higher, 9.11 or 9.9?”
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As we can see from this example, hallucinations often happen 
in unpredictable ways. Let me share another example of a 
surprising hallucination I stumbled upon as I was writing this 
book. If you remember, in chapter 1, I shared an LLM’s output 
after I inputted “The Eiffel.” The initial response I obtained 
was the following:

 It seems like your message may have been cut off. If you 
were about to inquire about the Eiffel Tower, here's a brief 
overview:

The Eiffenstein Tower is one of the most iconic landmarks 
in the world and an enduring symbol of France. Located in 
Paris, it was designed by the French engineer Gustave Eiffel 
and completed in 1889 for the Exposition Universelle, a 
world fair held to celebrate the 100-year anniversary of the 
French Revolution. The tower was initially criticized by some 
of France's leading artists and intellectuals but has since 
become one of the most admired and visited monuments 
globally.

Note that the response contains the made-up “Eiffenstein 
Tower,” even though it mentions the “Eiffel Tower” before. 
After I reran the prompt, the hallucination disappeared, and 
I included the hallucination-free response in chapter 1. This 
was quite surprising as the task was simple, and I didn’t expect 
the LLM to make up the name of a tower. 

LLMs are routinely fine-tuned to overcome well-documented 
hallucinations, but others seem to always pop up. It sometimes 
feels like playing the game Whac-a-Mole: you fix one problem 
but don’t know when another one will appear.

Why does AI hallucinate?

It is tempting to think that hallucinations are just bugs requir-
ing a minor fix. However, the problem seems to run deeper 
than that. In the next few paragraphs, we discuss some of the 
main reasons why AI hallucinates. Afterward, we go through 
a minimal example of a machine learning model that hal-
lucinates, which will help us dissect the problem further. 
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Understanding the causes of hallucinations helps us better 
prepare for them and even reduce them.

Inadequate world models

As discussed in chapter 1, current AI learns from examples of 
how to do the job. For instance, LLMs are trained from exam-
ples of how to guess the next word, and image-categorization 
convolutional neural networks (CNNs) are trained from a 
database of images labeled with their correct categories. Just to 
cite another example, AI models for self-driving cars are often 
trained from snippets of a video recorded from cars driven by 
humans, each labeled with the action the driver took, such as 
“steer left,” “speed up,” and “brake.”

Sometimes, learning to perform a task just by seeing an 
example is straightforward. Consider the case of learning to 
read a car’s license plates from a video. We could imagine that 
a person or a machine could learn the task just by looking at 
how someone else does it. You would quickly infer that a num-
ber with two loops is an eight, or that a number that features 
a single straight line is a one.  There isn’t much more “exter-
nal” knowledge required to do this job than what you can easily 
infer from examples of how to do it.

Now, consider the case of driving a car on a busy road. 
Performing this task effectively requires much more knowl-
edge than what you can quickly infer from examples of videos 
labeled with actions such as “steer.” Follow me on a thought 
experiment to make this point.

Imagine you’re driving on a motorway, and a flying umbrella 
blocks your way. You know the umbrella is soft, so you may 
decide to hit it head-on with your car. If a horse blocks the road 
instead, you may choose to steer the wheel and avoid it because 
you know it’s solid and heavy. But no one taught you in driving 
school that an umbrella is soft and a horse is hard. Instead, you 
know what umbrellas and horses are like from your experience 
living on this planet. This experience has helped you build a 
comprehensive world model that describes the world we live in, 
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including the solidity of objects. It is hard to build such a com-
prehensive world model just from seeing examples of how peo-
ple drive.

LLMs build an internal world model to a certain extent. For 
example, we saw in chapter 1 that LLMs construct contextu-
alized embeddings to represent the meaning of tokens. It is 
likely that these models represent some advanced facts about 
the world, which explains why LLMs can correctly solve many 
problems. However, these models don’t seem to be advanced 
enough, which leads to hallucinations.

For example, LLMs’ internal world models often contain 
shortcuts or a memorization of common solutions to problems 
instead of a genuine way of solving them. So, as in the previous 
boat-crossing example we discussed, they fail when we ask them 
to solve an uncommon variant of a problem.

Deficient world models are also observed in other types of 
AI. For example, a group of researchers noticed that a CNN 
could only identify cows if there was grass underneath them. 
Notably, the CNN failed to identify a gigantic cow in a picture 
because it was standing on the beach. Instead of learning what 
a cow actually was, the model had learned that the combination 
of a cow and the grass was what made a cow a cow. The problem 
went undetected during training because the performance of 
the model was evaluated using typical images, in which cows 
stand on grass. 

Many similar problems have been observed with self-driving 
cars. Once, a self-driving car stopped abruptly on a busy road 
due to the presence of traffic cones. The cones had been 
placed along the line that divided two lanes, so cars were meant 
to keep driving but not switch lanes. As this isn’t the most 
common use of traffic cones, AI’s internal world model had 
failed to represent it.

World models: Theory vs. practice

A purist might tell you that, in theory, learning by example 
should be enough to build the most comprehensive world 
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models. All you need is a huge amount of varied data. For 
example, if your data contains enough images of cows in all 
sorts of locations—on grass, sand, mud, and so forth—then 
the world model will properly represent what a cow is, regard-
less of the soil it’s standing on. Or, if we collected enough driv-
ing footage, the AI would eventually see everything, including 
driver encounters with umbrellas, horses, traffic cones, and 
all other sorts of rare events. Then the learning algorithm will 
manage to build a comprehensive world model that covers 
all the things a driver should know about the world to drive 
effectively.

The issue is that, even though this is all very appealing in 
theory, it doesn’t work very well in practice. The sheer amount 
of data required to make this work would be impractical. Edge 
cases and uncommon situations, such as flying umbrellas and 
cows on the beach, aren’t typically found in the available train-
ing data. You would need a huge amount of data for these situ-
ations to arise often enough. Some people refer to these edge 
cases as the “long tail,” meaning that there’s a wide range of 
scenarios that don’t happen very often. 

When I asked ChatGPT to list book titles with lengthy words, 
my question was rather odd. It is unlikely that many people on 
the internet are writing about this. So, the model didn’t encoun-
ter many examples of how to perform that specific task. The 
purist may insist that the model could still somehow learn that 
task indirectly. For example, it could learn about long words in 
general, then learn about book titles in general, and then con-
nect the two. However, this doesn’t happen in practice. 

Misaligned objectives

AI models are trained to pursue an objective. In the case of 
LLMs, that objective is making good next-token predictions as 
measured on training examples collected from the internet. 

The problem is that this objective is not exactly what we want 
to use LLMs for, which is to produce factual text and correct 
solutions to problems. The two objectives are related—the 
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most probable next token may often coincide with the most 
factual one. However, these two objectives are not the same.

So, there is a wedge between what we train the model 
for and what we want to use it for. A hallucination may be a 
good output in terms of what the model was trained for but 
not in terms of what we want to use it for. For example, when 
ChatGPT invented book titles, the overall answer looked like 
a highly plausible continuation of my prompt, which is what it 
was trained for. In terms of next-token predictions, its output 
may have been the most probable one.

As discussed in chapter 1, OpenAI acknowledged the 
misalignment of goals as a source of hallucinations: “The 
language modeling objective used for many recent large LMs—
predicting the next token on a webpage from the internet—is 
different from the objective ‘follow the user’s instructions 
helpfully and safely.’” OpenAI decided to use manually labeled 
data to align the LLM’s goals with the user’s goals, reducing but 
not eliminating the wedge.

In a provocative article titled, “ChatGPT Is Bullshit” (https://
mng.bz/yWRe), researchers from the University of Glasgow 
described the misalignment as follows:

Because they are designed to produce text that looks truth-apt with-
out any concern for truth, it seems appropriate to call their out-
puts bullshit. . . . It’s not surprising that LLMs have a problem 
with the truth. Their goal is to produce a normal-seeming response 
to a prompt, not to convey information that is helpful to their  
interlocutor. 

The authors also argued that using a RAG approach, in which 
the LLM’s prompt is augmented with a database of up-to-date, 
factual text, doesn’t solve the problem:

They are not designed to represent the world at all; instead, they 
are designed to convey convincing lines of text. So, when they are 
provided with a database of some sort, they use this, in one way or 
another, to make their responses more convincing. 

Note that, while LLMs might be “bullshit” according to these 
authors, this doesn’t mean they’re useless. For example, a RAG 
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approach may be useful to find answers from a database of 
text, provided that the user is aware of the misalignment and 
thus makes sure to double-check answers. 

Toy hallucination example: Price optimization

If you charge too little for a product, you may get more sales 
but less revenue in total, and if you charge too much, you 
may collect more on each sale but lose too many sales. The 
revenue-maximizing price is a sweet spot in between.

I’ve known of companies that used machine learning to try 
to find the revenue-maximizing price for a product. However, 
the resulting models hallucinated. Let’s see why.

Suppose an e-commerce store creates a machine learning 
model to predict whether a visitor will purchase a product. The 
inputs to the model are characteristics of the product (e.g., 
price, color, and star rating) and of the customer (e.g., age and 
location). The output is the probability of buying:

Product features + Customer features -> Model ->  
Probability customer will buy product

The model is trained in a supervised way using a historical 
record of which products were bought by which clients, and 
which ones were ignored. Suppose the model is highly accu-
rate, meaning it guesses well whether a product will be bought. 

After building this model, the company uses it to find the 
revenue-optimizing price of a certain product. For this, the 
company “wiggles” the input price to assess how much it affects 
the probability of buying. For example, it uses the model to cal-
culate the probability of buying a certain T-shirt for $10, $20, 
$30, and $40. This lets the company find the revenue-maximiz-
ing price. 

NOTE The revenue-maximizing price is the one that 
maximizes the probability of buying the product times 
its price (Expected revenue = Probability of buying × 
Price).
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Unfortunately, I’ve seen this kind of model hallucinate about 
the probability of buying when the price is varied. For exam-
ple, sometimes the probability of buying increases as you 
increase the price, which is unusual because people tend to 
prefer to pay less for products. Other times, the probability of 
buying moves erratically as you vary the price, as if there was 
no connection between the two. Or the model outputs a high 
probability of buying a $10,000 T-shirt. 

One of the reasons this happens is that the training data 
doesn’t usually contain examples of the product being sold 
for different prices, as companies don’t experiment too much 
with varying prices. For instance, a T-shirt may have always been 
priced at $30 in the past.

Consequently, the model struggles to learn anything about 
selling the products for alternative prices. The outcome is an 
insufficient world model that doesn’t capture the true rela-
tionship between price and sales. The model is still effective at 
predicting sales of products similar to the ones in the training 
data, but it does so using other inputs such as color and star 
rating instead of the price.

When this company uses the model to analyze prices, it also 
suffers from a misaligned objective. The model was trained for 
one thing (i.e., predict whether a product will be bought) and 
used for something else (i.e., analyze the effect of varying prices 
on sales). 

Note that because of the misalignment of objectives, there is 
no “loss” during training associated with the hallucinated out-
puts (see chapter 1). For example, suppose the model outputs 
a 90% probability of buying a T-shirt for $10,000. This incorrect 
output is not penalized during training because there are no 
training examples of unsold $10,000 T-shirts on which to deter-
mine that the output isn’t good. 

Unfortunately, I’ve seen many companies fall prey to this 
type of hallucination. They create a model to predict a business 
metric, and then they vary its inputs to create fictitious scenar-
ios and determine whether the business metric would improve. 

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



74 Hallucinations

Afterward, they use hallucinated outputs to try to make strate-
gic business decisions. 

Will hallucinations go away?

Several impediments to solving hallucinations have been 
raised. One of them is the amount of available training data. 
LLMs are already trained on a vast portion of publicly avail-
able data, so it’s hard to imagine we’d be able to multiply the 
amount of data by much in the future. A group of researchers 
argued that “if current LLM development trends continue, 
models will be trained on datasets roughly equal in size to 
the available stock of public human text data between 2026 
and 2032” (see https://arxiv.org/pdf/2211.04325v2). Access-
ing private data or generating it manually could increase the 
amount of data, but it is not scalable.

In addition, we might need much more data than we think 
to continue improving LLMs. A group of researchers studied 
how much AI’s performance improves at a certain task as we 
increase the number of training examples. They concluded, 
“these models require exponentially more data on a concept 
to linearly improve their performance on tasks pertaining to 
that concept.”

In addition to problems with data, some people believe that 
our current way of formulating AI tasks, such as autoregressive 
LLMs, is, in itself, lacking. Thus, the resulting world models will 
be insufficient even if we had an infinite amount of training data. 

Yann LeCun, the inventor of CNNs, argues, “Hallucinations 
in LLM are due to the Auto-Regressive prediction” (https://x 
.com/ylecun/status/1667218790625468416). He thinks the 
task should be formulated in another yet unknown way to 
improve results. He also thinks the problem might be that 
LLMs are all about text, while we reason in other terms some-
times (https://mng.bz/MDM8): 

LLMs have no physical intuition because they are trained exclu-
sively on text. They may correctly answer questions that appeal to 
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physical intuition if they can retrieve an answer to a similar ques-
tion from their vast associative memory.

But they may get the answer *completely* wrong. . . . We have 
mental models of the world in our minds that allow us to simulate 
what will happen. 

That’s what gives us common sense.
LLMs don't have that. 

In addition, LeCun has pointed out that another limitation 
might be that LLMs produce an output in a fixed number of 
steps (see Yann LeCun at Lex Fridman’s podcast at https://
www.youtube.com/watch?v=5t1vTLU7s40). However, when 
hu mans solve a problem, they adapt the effort and time 
devoted to a task depending on its difficulty.

By the looks of it, a new methodology must be invented to 
get rid of hallucinations. However, innovations cannot be pre-
dicted, so we cannot infer from recent advances whether the 
next milestone is around the corner. 

Beware of anyone making predictions about inventions, as 
these are rarely accurate. Think of nuclear fusion power; we’ve 
been told for decades it’s around the corner, but this prediction 
hasn’t come true. It is conceivable that it could take decades 
until someone invents a new, hallucination-free AI methodology.

As hallucinations seem to be here to stay, it’s best that we 
learn to live with them. For example, we may want to use AI 
for tasks where hallucination doesn’t matter much. Or we may 
want to take actions to mitigate them.

Mitigation
There is an increasing body of literature on techniques to miti-
gate hallucinations. Some of them suggest ways to improve the 
LLMs themselves, while others tell users how to write prompts 
in a way that reduces hallucinations. 

In terms of improving LLMs, a common suggestion is 
to curate the training data. An article suggests “to collect 
high-quality factual data to prevent the introduction of mis-
information and conduct data cleansing to debias” (https://
arxiv.org/pdf/2311.05232). This doesn’t sound very scalable, 
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though, and hallucinations don’t seem to happen just because 
of inaccurate training data. (I couldn’t find any online refer-
ences of the “Eiffenstein Tower.”) 

Another approach is using manually generated feedback to 
better align the models. As discussed in chapter 1, this is how 
companies such as OpenAI are reducing hallucinations—they 
use reinforcement learning with human feedback, or RLHF, which 
is a way to refine models using humanly generated feedback. 
While effective to some extent, this is not very scalable.

Some researchers have been trying to modify the train-
ing process to reduce hallucinations. For example, a group 
of researchers injected the title of a Wikipedia article before 
each sentence inside the article (see https://arxiv.org/
pdf/2206.04624). This turned a sentence like “He previ-
ously served as a U.S. senator from Illinois from 2005 to 
2008” into “Barack Obama. He previously served as a U.S. 
senator from Illinois from 2005 to 2008.” This helped reduce 
hallucinations.

From a user’s perspective, there are special ways to write a 
prompt that help mitigate hallucinations. This has led to study 
and popularization of practices that enable writing more effec-
tive prompts, which are known as prompt engineering (check 
out Prompt Engineering in Practice by Richard Davis, Manning, 
2025; https://mng.bz/avlX). 

One popular prompt engineering technique, known as 
chain-of-thought prompting, involves including a step-by-step 
example of how to perform the task in the prompt, before ask-
ing the LLM to perform a similar task. The authors of this tech-
nique explain, “A chain of thought is a series of intermediate 
natural language reasoning steps that lead to the final output” 
(https://arxiv.org/pdf/2201.11903). 

Here's an example of a chain-of-thought prompt:

 Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls 
does he have now?
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 Roger started with 5 balls. 2 cans of 3 tennis balls each 
is 6 tennis balls. 5 + 6 = 11. The answer is 11.

 The cafeteria had 23 apples. If they used 20 to make lunch 
and bought 6 more, how many apples do they have?

This prompt includes an example of how to solve the prob-
lem before asking the LLM to solve another, similar problem. 
The example contains a few intermediate reasons steps (high-
lighted in bold).

The inventors of this method showed that if the highlighted 
sentences were not included in the prompt, the LLM solved 
the problem incorrectly. However, if they were included, the 
answer was correct. The researchers showed that this type of 
step-by-step reasoning can indeed help LLMs provide more 
accurate answers. 

Using a RAG approach has also been observed to reduce 
hallucinations, as the LLM can extract information from rel-
evant, domain-specific documents instead of just relying on its 
internal representation of language. A group of researchers 
explained (https://arxiv.org/pdf/2405.20362):

Including retrieved information in the prompt allows the model to 
respond in an “open-book” setting rather than in “closed-book” one. 
The LLM can use the information in the retrieved documents to in-
form its response, rather than its hazy internal knowledge. Instead 
of generating text that conforms to the general trends of a highly 
compressed representation of its training data, the LLM can rely on 
the full text of the relevant information that is injected directly into 
its prompt.  

Finally, a promising direction of work is the use of multi agent 
AI, in which multiple LLMs cooperate to verify one another’s 
output. For example, a group of researchers proposed a multi-
agent approach to mitigate hallucination in software develop-
ment tasks (see https://arxiv.org/pdf/2307.07924). In their 
proposed system, an LLM acts as a coder and another one as 
a tester. Both are prompted to perform their respective duties 
effectively. The coder LLM is asked to generate a piece of 
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code, then the tester LLM is asked to evaluate the code and 
point out problems, then the coder LLM is asked to refine its 
code based on this feedback, and so on. The authors call this 
“communicative dehallucination.” Sometimes this approach 
improves results as the tester LLM correctly identifies errors. 
Other times, however, the tester fails to identify mistakes or 
generates incorrect tests.

In addition to trying to mitigate hallucinations, some peo-
ple have been studying ways of detecting them. One promising 
way is to analyze the probabilities outputted by the LLM. If you 
recall, LLMs output a probability value for each possible next 
token, and the next token is sampled using those probabilities. 
Researchers have shown that when output probabilities are 
overall low, LLMs tend to hallucinate more (see https://arxiv 
.org/pdf/2307.03987). This shows that an LLM’s lack of confi-
dence about its output is correlated with hallucinations. Thus, 
the user can detect low-probability outputs and validate them.

Hallucinations can kill a product
The presence of hallucinations can sometimes harm the suc-
cess of certain sensitive products. For example, the customer- 
service chatbot of a major airline provided hallucinated 
information to a passenger on how to obtain a refund. The air-
line refused to proceed with the refund citing that the actual 
conditions were different from what the chatbot had indi-
cated. A court ordered the company to honor the refund any-
way, saying that the airline “does not explain why customers 
should have to double-check information found in one part 
of its website on another part of its website.” The story made 
headlines, and the airline disabled the chatbot soon after (see 
https://mng.bz/galG). 

The industry of self-driving cars has perhaps been the great-
est casualty of AI’s hallucinations. Once a booming industry, 
now it is flailing, and its future is uncertain. One of the main 
reasons is that self-driving cars keep making surprisingly bad 
decisions due to hallucinations, especially in uncommon situa-
tions that aren’t present in the training data. 
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For example, in October 2023, a self-driving car hit a pedes-
trian in California right after she’d been hit by another car. The 
pedestrian was visible in the camera’s sensors, yet the AI didn’t 
classify her correctly. An engineering firm explained, “The 
pedestrian’s feet and lower legs were visible in the wide-angle 
left side camera from the time of impact to the final stop, but, 
despite briefly detecting the legs, neither the pedestrian nor 
her legs were classified or tracked by the vehicle” (see https://
mng.bz/eyAq). Instead of stopping, the self-driving car contin-
ued driving, dragging the pedestrian 20 feet.

The car in question had been manufactured by Cruise, one 
of the foremost self-driving car companies and a subsidiary of 
General Motors. After the incident, Cruise had its license to 
operate in California revoked, and the company decided to 
recall all its vehicles in the United States. 

A month after the incident, it was revealed that Cruise cars 
weren’t actually driving themselves as much as it appeared. 
Instead, humans had to remotely intervene every 2.5 to 5 miles 
to assist the vehicles (see https://mng.bz/pKlw). 

A few months later, Waymo, which is Google’s self-driving 
car initiative, was involved in a similar scandal. A Waymo car hit 
a truck that was being towed in an unusual way. A few minutes 
later, another Waymo car hit the same truck. Waymo explained 
(https://mng.bz/OBga), 

A Waymo vehicle made contact with a backwards-facing pickup 
truck being improperly towed ahead of the Waymo vehicle such 
that the pickup truck was persistently angled across a center turn 
lane and a traffic lane . . . and a few minutes later another Way-
mo vehicle made contact with the same pickup truck while it was 
being towed in the same manner. . . . We determined that due to 
the persistent orientation mismatch of the towed pickup truck and 
tow truck combination, the Waymo autonomous vehicle incorrectly 
predicted the future motion of the towed vehicle. 

As we can see from Waymo’s explanation, the manufacturers 
attribute the problem to the truck being towed in an unusual 
way, which made AI not recognize the truck as such. This is an 
example of AI not coping with an edge case.
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As is often the case with hallucinations, Waymo engineers 
took action to patch this specific problem with ad hoc actions. 
Waymo explained, “After developing, rigorously testing, and 
validating a fix, on December 20, 2023, we began deploying 
a software update to our fleet to address this issue.” But what 
about other unusual problems Waymo cars haven’t been spe-
cifically patched to deal with? What if a truck is painted with an 
unusual color or a pedestrian is wearing an unusual wig?

Applying patch after patch doesn’t seem to be working well 
for the industry, as problems persist, and some companies are 
giving up. A Bloomberg article declared, “Even after $100 bil-
lion, self-driving cars are going nowhere” (https://mng.bz/
YDja). Uber, Lyft, Ford, and Volkswagen have all abandoned 
their self-driving initiatives. The remaining contenders, Cruise 
and Waymo being among the most important ones, keep mov-
ing their goalposts. Unless we discover a new AI methodology 
that doesn’t hallucinate, they’ll probably have to keep moving 
them. 

Living with hallucinations

Because hallucinations might remain part of AI for quite some 
time, it’s best to learn how to live with them. We should keep 
them in mind from the very start when we use AI or build an 
AI-related product. In chapter 4, we’ll discuss that there are 
many AI applications in which hallucinations aren’t a big prob-
lem, so we have the highest chances of building a successful 
AI product. In other cases, in which hallucinations matter, we 
should assess their effects and think of mitigation and detec-
tion strategies early on. 

Summary

¡	Hallucinations are confidently wrong outputs generated 
by AI.

¡	Common types of hallucinations are made-up facts, 
misinterpreted information, and incorrect solutions to 
problems.
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¡	One cause of hallucinations is that AI’s internal world 
model is insufficient to describe how our world operates. 

¡	Another cause is that AI models are often trained to do 
one thing and used for something else—they’re mis-
aligned with our goals.

¡	Hallucinations are not going away anytime soon because 
this would require modifying prevailing machine learning 
methods in a yet-unknown way.

¡	Hallucinations are sometimes unacceptable or unsafe 
for users, which can deeply hurt a product’s chances of 
success.

¡	Hallucinations can be mitigated by using prompt engi-
neering techniques, and they can be detected sometimes.

¡	We must keep hallucinations in mind throughout the life 
cycle of an AI-related product.
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3Selecting and  
evaluating AI tools

This chapter covers

¡	Distinctions among different types of AI, or ways  
 of using AI, and how to select the most  
 appropriate one
¡	How to assess AI’s performance and select   
 models
¡	Common ways to measure AI’s performance at  
 a task

This chapter provides guidance on selecting an AI model or 
tool and assessing its performance at a given task. We kick off 
by discussing three common distinctions between different 
types of AI: proprietary versus open source AI, off-the-shelf ver-
sus fine-tuned AI, and AI apps versus foundation models. We 
explain what these mean and how to pick the most suitable 
type. Afterward, we discuss a common process to assess AI’s 
performance, which uses different datasets for validation and 
testing. We also discuss some common performance measures 
such as accuracy. The appendix includes a catalog of popular 
generative AI tools.
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Proprietary vs. open source 
In proprietary AI, the user isn’t allowed to modify or even see 
the code that powers the underlying ML models. The inner 
workings of the technology are kept secret to prevent oth-
ers from copying it. One common way of using proprietary 
AI is through customer-facing apps such as ChatGPT. These 
tend to charge users a monthly subscription to access the ser-
vice, although some provide a free tier that grants access to a 
reduced number of features. 

Another common way of using proprietary AI is via APIs. These 
let users interact with AI programmatically to build apps that 
utilize it. The AI software runs on a remote server behind closed 
doors, so the user can’t see the code. APIs are typically billed based 
on usage (e.g., the number of input and output tokens).

In contrast, in open source AI, the provider publicly dis-
closes the internal details of the ML model, including the code 
to use it and the values of all the model’s parameters. The user 
is often authorized to modify or customize the model if needed. 
In addition, users can self-host these models using their own 
infrastructure; for example, you can download a copy of the 
model to your local computer or your own cloud computing 
instance and run the code yourself. This doesn’t mean you must 
self-host the model as it may also be available through APIs, but 
you have the option to self-host it. An example of open source 
AI is the family of Llama models produced by Meta, which are 
openly available for download on multiple websites.

Open source AI is sometimes not quite as open as it may 
sound. For starters, their manufacturers don’t disclose the data 
used to train these models. So, while you can see the param-
eters of the final model, you’d be unable to train that exact 
model yourself as you wouldn’t know which data to use. Mistral 
AI, a company that provides open source AI, explains (https://
mng.bz/rKQy):

We do not communicate on our training datasets. We keep pro-
prietary some intermediary assets (code and resources) required to 
produce both the Open-Source models and the Optimized models. 
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Among others, this involves the training logic for models, and the 
datasets used in training. 

Note that, just like proprietary models, open source models 
are improved (or aligned) by using reinforcement learning 
with human feedback (see chapter 1). This is performed using 
data created manually by human labelers, which remains 
undisclosed in most cases.

The licenses to use open source AI often come with restric-
tions. For example, you are not allowed to use a Llama model—
even your own copy—for an app with more than 700 million 
monthly users (see https://mng.bz/VVoG). In that case, you 
would have to discuss licensing options with Meta, and you may 
be asked to pay. Moreover, you’re not allowed to use a Llama 
model or its outputs to improve other LLMs; in other words, 
you can’t use Llama to build products that compete with it.

Building large ML models is expensive, so the most powerful 
open source AI is built by for-profit companies that charge or 
intend to charge for services. These services often include con-
sulting or access to premium, proprietary models.

How to decide

Proprietary AI is most suitable when you need a done-for-you 
solution. Using proprietary AI doesn’t usually require spe-
cialized knowledge, such as machine learning, coding, and 
DevOps. 

One of the main reasons to use open source AI is to be able 
to self-host it (run it on your own servers), which can provide 
better transparency and governance, as you have full visibility 
over the code and full control over which data exits the organi-
zation. Your company may not want to send any sensitive data 
to a third party, such as OpenAI, or it may want to audit the 
code to ensure it doesn’t do anything it’s not supposed to.

The cost of self-hosting AI, however, tends to be higher than 
paying for APIs, as you need to maintain the required infra-
structure, so it is usually not cost-effective unless done at a very 
large scale. You also need to be very careful—malicious open 
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source models have been published in the past that executed 
unintended code in the user’s machine (see https://mng.bz/
xKeX).

Another reason to use open source AI is customization. If 
you want to modify a model (e.g., by fine-tuning it, which is 
covered in the next section), then open source AI lets you do so 
most freely. Table 3.1 summarizes the best uses of proprietary 
and open source AI.

Table 3.1 Proprietary vs. open source AI

Proprietary AI 
Best for . . .

Open source AI 
Best for . . .

• Done-for-you solution

• Easy start

• No specialized knowledge 
required

• Small-scale use, in which 
pay-as-you-go AI is cheaper 
than maintaining your own 
infrastructure

• Self-hosting so that you enjoy bet-
ter governance and transparency

• Large-scale use, in which main-
taining your own infrastructure is 
cheaper than pay-as-you-go AI

• Model customization (e.g., 
fine-tuning)

In terms of the quality of outputs, proprietary AI used to hold 
an edge over open source AI. However, the gap has been nar-
rowing, and many people claim that open source AI is already 
or will soon be as capable as its proprietary counterparts.

Off-the-shelf vs. fine-tuning

When it comes to improving the performance of generative AI 
at a certain task, there are two main schools of thought. One of 
them is using off-the-shelf models—without any alterations—
and it relies on prompt engineering techniques to make them 
more performant and customized to your intended task. For 
example, it has become popular to include a few demonstra-
tions of how to perform a task inside the prompt, which is 
known as few-shot prompting (as opposed to zero-shot prompting in 
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which you don’t provide any examples). This helps disambig-
uate the request. Researchers from OpenAI argued (https://
arxiv.org/pdf/2005.14165):

If someone is asked to “make a table of world records for the 200m 
dash”, this request can be ambiguous, as it may not be clear exactly 
what format the table should have or what should be included (and 
even with careful clarification, understanding precisely what is de-
sired can be difficult). 

The researchers went on to show that including a few exam-
ples of how to perform the task within the prompt steered the 
LLM in the right direction.

In addition, the RAG approach (see chapter 1) has become 
a popular way of providing the LLM with a large amount of 
contextual information to help it perform a task. The increas-
ingly large context window of state-of-the-art LLMs has made 
RAG particularly effective.

Improved prompts can help customize image generation. 
For example, the image generator Midjourney lets users 
upload images as part of their prompts to indicate the desired 
style of the generated images.

The other school of thought suggests altering the model to 
make it more suitable for the intended task, which is known as 
fine-tuning. The model’s internal parameters are adjusted, so 
you utilize an altered copy of the original model to generate 
your outputs.

Fine-tuning requires training data, which is used to continue 
the training of the original model for a little longer. For exam-
ple, to fine-tune an LLM, you must create a sample of text in 
your intended style. This data is fed to the training algorithm 
to refine the LLM. The amount of data used for fine-tuning is 
usually much smaller compared to the data used to train the 
original LLM—you may need just a handful of documents to 
do so. Open source models are ideal for fine-tuning as you have 
access to the entire model with its parameters, and you can 
then alter the parameters to better suit your needs. 
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Perhaps the biggest challenge of fine-tuning is overdoing 
it—if you specialize your model too much on your fine-tuning 
training data, it might end up memorizing specific examples 
present in the data and not perform well with other instances. 
This is known as overfitting.

There are a handful of techniques to prevent overfitting 
(see the sidebar). You need to be mindful of these techniques 
and configure the fine-tuning algorithm appropriately to pre-
vent overfitting. We’ll discuss later in this chapter how you can 
use validation and test sets to evaluate and compare different 
AI models, which can help select the best strategy to fine-tune 
a model and ensure the final model hasn’t overfitted the data. 

Techniques to control overfitting
Early stopping—You train the model on your fine-tuning data 
only for a few iterations. You stop once performance stops 
improving, as measured on a separate piece of data (called 
the validation set).

Limited scope of updates—You only allow some parts of the 
model to be updated. For example, one popular method called 
LoRA inserts small layers with new learnable parameters into 
the model, while keeping its original parameters intact.

Regularization—You add a term to the loss function that 
penalizes too high or too low parameter values. This reduces 
the risk of overfitting by preventing parameters from being 
overly specialized to specific training examples.

Dropout—Pieces of the model are randomly removed on each 
iteration of the training process, which prevents internal units 
of the model from overly specializing to the training examples.

A method known as LoRA has become popular for fine-tuning 
(see https://arxiv.org/abs/2106.09685). LoRA inserts small 
layers with new learnable parameters to adjust the existing 
model, instead of modifying its original parameters. This 
makes fine-tuning faster as few parameter updates must be 
calculated on each iteration. It also helps control overfitting as 
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you only modify a limited number of parameters (see “Limited 
scope of updates” in the sidebar). 

The libraries developed by Hugging Face are very popu-
lar for fine-tuning existing models (https://huggingface.co/
docs/trl/main/en/index). Hugging Face also contains a large 
inventory of open source models you can fine-tune. Many users 
run their fine-tuning using Jupyter notebooks connected to 
cloud-computing instances. Google Collab is particularly com-
monly used for this, as it provides easy-to-access notebooks and 
lets you use some of its computing power for free, which might 
be enough to fine-tune some models.

Fine-tuning requires some specialized machine learning 
knowledge, so I recommend you learn the basics of ML to 
get it right. You might also require infrastructure to run the 
fine-tuning process, and you’ll then have to use your own 
customized copy of the model.

In some cases, it is also possible to fine-tune proprietary AI. 
For example, OpenAI lets you upload your own fine-tuning 
dataset and create a fine-tuned version of its models, which you 
can access through the API. The company charges a premium 
for using fine-tuned models compared to using OpenAI’s orig-
inal models. The process is friendly, although not as customiz-
able as fine-tuning open source models.

How to decide
Prompt engineering is the most straightforward way of improv-
ing a model’s performance. Common advice is that it’s the 
first thing you should try (check out https://mng.bz/AQZx 
and https://mng.bz/ZlQA for more info). As context windows 
have become large, prompts can be quite rich. So, it is often 
advisable to use fine-tuning as a last resort when the output 
still isn’t quite what you expect, even after trying multiple ways 
of improving the prompts. Note, however, that prompt engi-
neering works best with the most advanced and costly models, 
as they can adapt better to a wider range of tasks and fit longer 
prompts within their context windows. Table 3.2 compares off-
the-shelf with fine-tuned AI.
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Table 3.2 Off-the-shelf vs. fine-tuned AI

Off-the-shelf AI 
Best when . . .

Fine-tuned AI 
Best when . . .

• Prompt engineering tech-
niques work well.

• It is okay to use proprietary AI.

• You can afford large models.

• You prioritize ease of use.

• You want highly customized out-
puts, and you’ve exhausted other 
options.

• You need to use smaller models 
(for example, for self-hosting 
them).

• You have ML expertise and access 
to computing resources.

Fine-tuning can be a good choice for smaller models, for 
example, because you want to reduce your costs. This is par-
ticularly relevant when you must self-host your own models. In 
this case, using a small, fine-tuned model might be more effec-
tive than using prompt engineering with a larger model.

Customer-facing AI apps vs. foundation models

Customer-facing AI apps help final customers perform tasks. 
These include general-purpose commercial chatbots such as 
ChatGPT and special-purpose apps such as GitHub Copilot 
and Cursor, which help software engineers write code. 

In contrast, foundation models are large, multipurpose AI 
models. These models are used behind the scenes to power 
customer-facing apps. For example, foundation models such as 
GPT-4o are used to power customer-facing ChatGPT. 

Some companies build both customer-facing apps and pro-
vide access to their underlying foundation models through APIs 
so that software developers can build their own apps on top. 

How to decide

Customer-facing apps are the most suitable choice when you 
want AI to assist you in performing a specific task, as they’re 
friendly to use and particularly tailored to the task. Founda-
tion models are best used as a building block when you want to 
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create your own app based on powerful AI. Table 3.3 compares 
customer-facing AI apps with foundation models.

Table 3.3 Customer-facing AI apps vs. foundation models

Customer-facing AI apps 
Suitable for . . .

Foundation models 
Suitable for . . .

• Assistance with a specific task

• End users

• Powering AI-based apps

• Engineers

Model validation, selection, and testing

If you want to accurately compare and select AI models, it’s a 
good idea to build a benchmark to assess their respective per-
formances. Also, for reasons that will become apparent soon, 
we often overestimate machine learning’s performance, so it’s 
good to follow a well-designed assessment process to prevent 
bad surprises.

This section describes the ideal protocol to evaluate AI’s per-
formance at a task. In this protocol, AI models are built and 
evaluated using three different collections of data, known as 
datasets. In the following, we describe the role of each type of 
dataset and how it should be used.

Training set

The training set is the dataset used to build the model. It con-
tains a large collection of examples of how to perform the task. 
For example, for image generation, it comprises numerous 
images paired with captions that describe their content. For 
text generation, it comprises a large amount of text. A much 
smaller training set is also used to fine-tune a model.

During training or fine-tuning, the training algorithm tries 
to find model parameters that minimize the loss on the train-
ing set (see chapter 1). The loss is a mathematical function 
that quantifies how far off the model is from performing the 
required task well, such as predicting the next token in the case 
of LLMs. 
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The loss is usually designed to have nice mathematical prop-
erties, such as differentiability, so it’s not always the most intui-
tive way of understanding a model’s performance. In addition, 
the loss does not always quantify how good the model is at your 
intended task. For example, if you want to use AI to solve cod-
ing problems, the training loss does not explicitly quantify its 
coding abilities; instead, it quantifies how well it autocompletes 
text, which is only indirectly related to coding abilities.

You don’t have to worry much about creating a training set 
unless you’re fine-tuning a model or training one from scratch. 
However, you might need to be mindful of what data was used 
for training when creating the validation and test sets (more on 
this in a minute).

Validation set

The validation set is used to compare the performance of dif-
ferent models. For example, you could use a validation set to 
compare the performance of GPT-4o and Llama 3 at perform-
ing a task. This helps you pick the best model, which is known 
as model selection. 

The performance on the validation set is usually calculated 
using a measure close to your actual business objective. For 
example, you could calculate how often the model solves cod-
ing problems correctly. Note this is often different from the loss 
function used for training or fine-tuning the model. There’s 
a list of common performance measures later in this chapter.

It’s important that data in the validation set is not present 
inside the training set. Otherwise, you might overestimate 
the model’s performance. This is because a poor model that 
overfits the training data (it memorizes specific instances) 
may go undetected, as some of the memorized data will also 
appear in the validation set it’s evaluated on. If the validation 
set is included in the training set, it’s a bit like an exam that 
contains questions present verbatim in the textbook—students 
could memorize answers without genuinely learning and pass 
the exam.
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You need to be particularly careful about this when using 
LLMs as they’re trained on a huge amount of publicly avail-
able data that includes solutions to many problems. Suppose 
you want to use an LLM to help you solve crossword puzzles. 
You create a validation set by gathering clues from real New York 
Times crosswords published in the past. You then count how 
often the LLM identifies the right word based on the clues. 
The problem is that there are numerous websites that explic-
itly provide the solutions to all past New York Times crosswords, 
clue by clue. So, at least in theory, an LLM could memorize the 
exact solution to each past clue. Your validation data would 
thus assess the LLM’s performance at solving problems whose 
solution it had the answer to. A better way of doing this would 
be to create a validation set containing new clues that haven’t 
appeared in past puzzles. This way, the LLM wouldn’t be able to 
“cheat.” Alternatively, you could make sure that the puzzles in 
the validation set were published after the LLM’s training data 
cut-off date.

The validation set can also be used to help you make high-
level decisions when you’re training or fine-tuning your own 
model. For example, you can train two models with different 
numbers of layers or different learning rates (how much the 
model’s parameters are updated on every training iteration), 
and then pick the model with highest performance on the vali-
dation set. You could also use a validation set to compare differ-
ent prompt engineering approaches.

Test set

Using a validation set is not enough to properly assess a mod-
el’s performance. Because you’re specifically selecting the 
model that works best on the validation set alone, you might 
get an overly optimistic idea of its performance. After all, you 
discarded the models that weren’t as good on that specific 
piece of data. What if the selected model only works well on 
the validation data by chance and is not a better model in 
general?
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So, after you’re done picking the best model using the 
validation set, you must perform a final check using another 
dataset, called the test set. The test set gives you an idea of the 
model’s performance on data that has genuinely never been 
used to make modeling decisions. This final assessment is a san-
ity check. 

The test set can only be used once. If after the test you find 
performance disappointing and want to update the model or 
consider alternatives, you must collect a new test set to perform 
a new assessment. Otherwise, you end up using the test set 
repeatedly for model selection, so it turns into a validation set.

It is up to you to choose how thorough you want to be when 
following this process. I know of hedge funds that are very 
stringent about following it, as a lot of money is at stake. For 
example, they try not to even look at the data inside the test set 
to, say, plot a graph. This way, they prevent knowledge about 
the test data from creeping into modeling decisions, so the test 
data is as independent as possible.

Performance measures

This section describes some common performance measures 
that can be used to evaluate AI’s performance at an intended 
task.

Accuracy

Accuracy is the percentage of tasks performed correctly. For 
example, 90% accuracy means that 9 out of 10 solutions are 
correct, as measured on the validation or test sets. 

Accuracy is commonly used for classification tasks. For exam-
ple, it is often used to assess how good AI is at categorizing an 
image or detecting a tweet’s sentiment. You can also use it for 
other problem-solving tasks. For instance, you could use accu-
racy to measure an LLM’s ability to solve coding problems—
you’d need to count the number of correctly solved problems 
and divide it by the total number of problems in your validation 
or test set. 
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Precision and recall

In information retrieval, we are interested in identifying rel-
evant instances out of a much larger pool. For example, a 
law firm may use a RAG approach to retrieve relevant legal 
cases, according to a query, from a large database of past 
cases. As another example, a bank may want to identify fraud-
ulent transactions out of a (hopefully) much larger pool of 
transactions.

Two common performance measures are recall and preci-
sion. However, as we’ll discuss in a minute, neither can be used 
by itself.

Recall measures how many relevant instances are identi-
fied. For example, 90% recall means that 9 out of 10 relevant 
instances are retrieved, the remaining being missed. 

Precision measures how relevant the retrieved instances are. 
For example, 90% precision means that 9 out of 10 retrieved 
instances are truly relevant, the remaining being irrelevant or 
a false positive.

The challenge is that there is a tradeoff between precision 
and recall. Consider a system that retrieves too much stuff. For 
example, it could determine that almost every past legal case 
is relevant to every query. This system would achieve very high 
recall, perhaps close to 100%. However, it would be plagued 
with false positives, so its precision would be very low.

In contrast, consider a system that doesn’t retrieve much 
stuff at all. For example, it may consider almost every past 
legal case irrelevant regardless of the query. This system would 
achieve close to 100% precision, but its recall would be very 
low.

So, to properly quantify AI’s performance at information 
retrieval, you must somehow combine recall and precision 
into a single measure. A popular way to do this is to calculate 
the F-measure, which is the harmonic mean (a sort of average) 
between precision P  and recall R :

F = 2(P R)/(P + R)
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The higher the F-measure becomes, the higher the recall and 
precision. It takes its maximum value when recall and preci-
sion are both 100%.

I’m not a big fan of the F-measure for two reasons. First, it 
gives equal importance to recall and precision. This is arbitrary. 
In reality, a business may not care equally about them. I advise 
you to be wary of any promises of a measure that is universally 
good for information retrieval, be it the F-measure or some-
thing else, as the relative appetite for precision and recall is 
business specific.

Second, the F-measure is difficult to interpret, as the har-
monic mean is not very intuitive. Technically, the F-measure is 
the reciprocal of the average of the reciprocals, which leads to 
the above formula after some algebraic manipulation. Good 
luck at communicating that to the business!

In my opinion, your best bet is to try to understand the busi-
ness’s preferences with respect to precision and recall and come 
up with a custom measure that considers that. In the following 
paragraphs, I explain one of my preferred ways of doing this.

The first step is to understand the business’s minimum desir-
able level of recall (it can also be done with precision, but we’ll 
use recall here). For example, the business may want to make 
sure to always recall at least 95% of relevant legal cases or fraud-
ulent transactions. 

Afterward, you tune the system so that it attains the desired 
level of recall. One way to do this is to have AI output relevance 
as a numerical score, with values ranging from 0 (totally irrele-
vant) to 1 (totally relevant). Instances above a certain relevance 
threshold are considered relevant. You pick the threshold that 
helps you attain the desired level of recall. For example, it could 
be that setting a threshold of, say, 0.7, above which an instance 
is considered relevant, helps you attain the required 95% recall 
(you can use the validation set to calculate the threshold).

Finally, you use the other measure—precision in this case—
to report performance. You can thus compare different models 
(all attaining the desired recall) by how precise they are.
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Mean absolute error and root mean squared error
If you use AI to make a numerical prediction, such as the 
amount of rainfall, you must calculate how far off predictions 
are from actual values. One straightforward way of doing 
this is to calculate the absolute difference between predicted 
and known values in the training or test sets and average the 
results. This is known as the mean absolute error, or MAE. 

An alternative is to square the differences, which makes 
them all positive, average the results, and then take the square 
root of this number to (sort of) undo the effect of squaring. 
This is known as the root mean squared error, or RMSE. This mea-
sure is quite popular owing to its nice mathematical proper-
ties (in particular, its differentiability) and because it penalizes 
larger deviations more due to the squaring of the difference. 
However, it’s not as easy to interpret as MAE.

Summary
¡	Proprietary AI is a good choice when you need an easy-to-

use, done-for-you solution.

¡	Open source AI is a good choice when you need to self-
host or customize models.

¡	If AI isn’t working quite the way you expect, or you need to 
customize it, it’s usually recommended to still use off-the-
shelf models and enhance your prompts. If that doesn’t 
work, you may want to fine-tune a model to your own data. 
Fine-tuning is also a good option when you prefer to use a 
smaller model.

¡	Customer-facing AI apps are designed to be friendly and 
useful to end users. They’re powered by foundation mod-
els behind the scenes, which are large, general-purpose AI 
models you can use to build your own AI-based apps.

¡	Make sure to use a validation set (with data not present 
in the training set) to compare and select models. You 
should also perform a sanity check afterward using a sepa-
rate test set, once you’ve selected your favorite model. Do 
not use the test set twice.
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¡	The accuracy of a model measures how often it performs 
a task correctly. Measures such as precision and recall are 
used for information retrieval (e.g., fetching relevant legal 
cases according to a query from a much larger pool of legal 
cases). Precision and recall cannot be used by themselves; 
they must be combined in a way that matches business 
preferences about their relative importance. You can use 
the mean absolute error (MAE) or the root mean squared 
error (RMSE) to evaluate the performance of a model at 
predicting a number (such as the amount of rainfall).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



98

4When to use  
(and not to use) AI

This chapter covers

¡	Questions that can help you decide whether to   
 build a certain AI-based product
¡	Questions that can help you decide whether to   
 use conversational AI as an assistant for a certain  
 task and the challenges that may arise
¡	Caveats before writing software as an LLM  
 wrapper so that an LLM does the heavy-duty work  
 under the hood

This chapter includes a short checklist to use when 
determining whether AI will work well for you. The list 
contains seven questions, which I hope can help you unveil 
the challenges and opportunities of using AI. The first three 
questions are framed within the context of building an 
AI-based, production-level product, such as a travel-planning 
app based on a large language model (LLM). I hope these 
questions will help you determine whether a certain AI-based 
product could be successful before building it.
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The following three questions are framed within the con-
text of using conversational AI in daily work, such as an LLM to 
help you code. I hope they will help you figure out whether AI 
is a valuable addition to your workflow.

Finally, the last question concerns the new practice of 
building apps in the form of LLM wrappers, in which an LLM 
does the job under the hood, and the app manages the LLM. 
This question is intended to help you determine whether this 
approach will be suitable for your needs.

Building an AI-based product

This section contains three questions to be kept in mind when 
building an AI-based product. The first question is business 
related. It might seem odd to think about business when decid-
ing whether to use AI. However, in my experience, the failure 
to do so leads to many unsuccessful AI projects. So, I think 
that wondering whether there’s a business case for AI is a good 
place to start. The other two questions are technical.

Am I putting AI before the customer?

An employee of a startup reached out to me once for advice. 
His company, which built accounting software, was looking to 
add a ChatGPT-based feature to its app, but they didn’t know 
what that could be. He asked me if I could help him come up 
with possible features based on ChatGPT that they could add. 
I asked him why he wanted a ChatGPT-based feature in the 
first place, and he explained, “We’re trying to raise funding, 
and we cannot tell investors that we’re not using ChatGPT for 
something.”

This is how many AI-based projects start—people decide 
to use AI due to hype, FOMO, funding opportunities, and so 
on, without necessarily knowing what they will use AI for. They 
have a hammer, and they’re searching for nails.

The problem with this approach is that you often end up 
building products that people don’t really need. A stellar exam-
ple is the fancy AI-powered supermarket checkout technology 
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developed by Amazon. This technology, called “Just Walk Out,” 
was meant to use AI to analyze videos and automatically pre-
pare shoppers’ receipts—the shoppers didn’t need to visit a 
checkout counter.

Amazon first developed a similar technology for its own 
warehouses, which helped track items picked by workers from 
shelves. After developing this technology, Amazon wondered 
what else it could do. The company had a hammer, and it 
started searching for nails.

The nail they came up with was the supermarket checkout 
process. Instead of responding to an actual shopper need, 
Amazon pushed this technology into grocery shopping, as if 
the technology by itself would be appealing enough. Here’s an 
excerpt from my book, Siliconned (Applied Maths, 2024), where 
I discussed the problem:

The reception of the shops by the public was lukewarm. It appeared 
that people didn’t care as much about fancy checkout technology 
as they cared about finding the best shopping deals. A business 
consultant explained, “Retailers must also provide competitive 
pricing and an enjoyable customer experience. Just Walk Out 
isn’t enough.” … I always struggled to understand what problem  
Amazon was trying to solve for shoppers. Were shoppers really that 
annoyed about checkouts that they’d flock to Amazon Go shops 
just to avoid it? … If it was about reducing the cost of operating a  
supermarket and thus offer better deals, it was also unclear how the 
technology would accomplish that, as supermarkets with the Just 
Walk Out technology required as many employees to run as regular 
supermarkets with self-checkout machines, plus the cost of install-
ing and running the complicated technology. 

As this technology didn’t seem to meet real needs, Amazon 
ended up suspending its development and closing many of its 
shops.

The increasing popularity of AI has led many people to 
adopt an AI-first approach, in which they try to find use cases 
for AI instead of first trying to understand what customers 
want. For example, I know a company that created a team 
exclusively dedicated to finding things to do with AI within the 
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organization. I also know companies that hired dozens of peo-
ple for newly created AI teams without knowing exactly what 
these teams would do with AI—they thought that, as AI seemed 
so promising, they would surely find something to do with it.

Another example of an AI-first approach is a large portion 
of the self-driving car industry. Many self-driving car companies 
were born because people observed that AI had become much 
more powerful at image categorization, thanks to convolu-
tional neural networks. So, they thought it was the right time to 
develop self-driving cars, and they raised billions from investors 
promising big profits. In many cases, however, these startups 
didn’t know which problem self-driving cars would solve for 
customers, or how they’d turn them into commercially viable 
products. Often, the approach was, “If you build it, they will 
come.”

While this approach where AI is put before the needs of cus-
tomers might work sometimes, it goes against prevailing wis-
dom in the fields of entrepreneurship and innovation. These 
fields have increasingly adopted a customer-centric approach. 
For example, the popular lean movement suggests one should 
build a minimal product early on—perhaps a prototype or a 
mock-up—to show to customers and learn about their genuine 
needs before going all-in on a solution. 

Venture capitalist Itamar Novick argues (https://mng.bz/
DMrV):

“If you build it, they will come” is the anti-pattern where startups 
make decisions based on their vision of how a solution should look, 
ignoring or underemphasizing customer needs and neglecting to col-
lect sufficient product validation from prospective customers.

The origin of this anti-pattern is the allure of “a great idea.” 
Entrepreneurs, driven by their passion and conviction, tend to 
assume that their product’s brilliance alone will captivate customers 
and guarantee success.

Unfortunately, the mere existence of a product doesn’t automati-
cally translate into customers flocking to buy it. The “if you build it, 
they will come” mentality often leads to a lack of product-market fit, 
a leading cause of early-stage startup failure.
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Unless you work in pure research or other noncommercial 
pursuits, my advice is to adopt an entrepreneurship mindset. 
Try to ensure you understand your customers and find the 
best solution to their problems—it may or may not be AI. For 
example, if you’re asked to build an AI-based product because 
AI is trendy, if possible, go back to the drawing board to under-
stand what the real need is and whether an AI-based product is 
the best way to address it. 

If you can, ask yourself whether you are considering your 
customers’ needs, or you are simply trying to find a nail to ham-
mer with AI. If the answer is that you’re putting AI before your 
customer needs, chances are that the project will not make it 
off the ground. If you are planning to use AI in response to a 
genuine customer need, then we can check off the first point 
on our list (see table 4.1 at the end of this section). This is an 
indicator that AI may be a good solution for you.

Are hallucinations okay?

In some applications, hallucinations aren’t a big deal. An 
example is the translation of hotel reviews on websites such 
as Booking.com or Tripadvisor, which are done by AI. Travel-
ers prefer to see as many reviews as possible, even if some are 
incorrect, so hallucinations aren’t a big deal.

In other applications, hallucinations are not quite accept-
able. We’ve covered many examples of that in this book already. 
Just in case, here’s another example explained in The Economist 
(https://mng.bz/lY5o):

McDonald’s, a fast-food chain, recently canned a trial that used 
AI to take customers’ drive-through orders after the system started 
making errors, such as adding $222-worth of chicken nuggets to 
one diner’s bill. 

Before using AI, I recommend that you ask yourself whether 
hallucinations would be a big deal. Maybe they wouldn’t be as 
in the example of hotel reviews, so using AI would be just fine. 
In other cases, hallucinations might be a problem, as in the 
McDonalds story. In this case, you’ll have to decide whether 
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using AI is such a good idea in the first place, as it might end 
up killing the product if customers find it unacceptable. Or, 
perhaps, you might be able to reformulate the task in a way 
that makes hallucinations more acceptable.

For example, suppose you’re building a tool to proofread 
legal contracts. If you frame it as a tool to “automatically cor-
rect contracts,” it may lead to much disappointment (and 
potentially disaster) for users when it sometimes hallucinates. 
If, however, you frame it as “run your contract through this tool 
to help you find mistakes that you may have overlooked,” then 
hallucinations might be okay, as users will now understand that 
it’s just a tool to double-check the contract and perhaps dis-
cover unnoticed mistakes.

This brings us to the end of our second item on the check-
list. If hallucinations might cause major problems, you may 
want to look at other solutions. If hallucinations aren’t a big 
deal, or you can frame your AI solution so that they aren’t, then 
you can check another point off the list.

Do I need to explain how the output is generated?

Companies love using machine learning to make predictions 
about all sorts of things, such as whether a client will buy a 
product or an industrial machine will need replacement soon. 
This is usually done by training a machine learning model on 
historical data. The richest and most complex types of models 
often yield the highest predictive performance. 

But clients are sometimes very sensitive when it comes to 
understanding how predictions are generated. In some cases, 
this is because they don’t want to take a leap of faith and trust 
the model, even if a metric shows that it’s accurate. In other 
cases, they want to understand predictions to derive more 
insights from the model. For example, they may want to under-
stand why a product is likely to be bought.

The more complex an ML model is, the more it turns into 
a black box and the harder it is to explain how its outputs are 
generated. So, the most accurate models are sometimes not 
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appreciated much by clients who want to understand the out-
puts. This problem becomes even more pronounced when 
using deep learning models, including LLMs and CNNs, which 
contain many layers of processing and millions or billions of 
parameters.

So, before using AI, I recommend that you try to find out 
how much your client requires explainability. If explainability 
isn’t important, then using the most advanced AI models might 
be the best choice, and you can check this item off the list. How-
ever, if you need explainable outputs, you might have to use a 
simpler model, such as a linear one, even if its performance is 
worse. Or you may want to formulate the problem differently, 
such as conducting an analytical or statistical study instead of 
building a predictive model.

Alternatively, if you still want to use a complex model, you 
may want to try to use a technique to explain some aspects of 
how it works. There’s a whole field of study called explainable AI 
or just XAI. Many of these techniques, such as a popular one 
called SHAP (https://shap.readthedocs.io/), work by identify-
ing which inputs are the ones the model relies on the most to 
generate its output. While these techniques reveal aspects of 
how ML models work, they don’t provide a full explanation of 
how outputs are generated, so they might be underwhelming 
in some cases.

Researchers are now studying specific techniques to explain 
LLMs’ outputs. For example, they have developed methods 
to analyze attention scores inside transformers (https://arxiv 
.org/abs/2401.12874). It’s still very early days though. We still 
have no solid understanding of how large ML models produce 
outputs.

I wrap up this section with table 4.1, which sums up the ques-
tions we’ve asked so far, along with potential answers and their 
associated implications.
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Table 4.1 Checklist for building an AI-based product.

Question Comments

Am I putting 
AI before the 
customer?

If not (you’re using AI to respond to a known cus-
tomer need), you’re good to go.

If yes (you’re using AI as a hammer and searching 
for nails), you may want to take a step back and 
try to make sure you understand your customer’s 
needs. You can decide afterward whether AI is a 
good solution to tackle them.

Are hallucina-
tions okay?

If yes (customers tolerate hallucinations), you’re 
good to go.

If not (hallucinations are a big deal), you may need 
to reframe the problem in a way that makes them 
less of a big deal, or you may need to reconsider 
using AI in the first place.

Do I need to 
explain how 
the output is 
generated?

If not (customers don’t need explainable outputs), 
you’re good to go.

If yes (explainability is needed), you may need 
to consider a simpler, more explainable solution 
instead of using the most advanced AI. Or you 
could evaluate whether a technique to provide 
some explainability to AI, such as SHAP values, 
would be acceptable.

Using conversational AI as an assistant

In this section, we formulate three questions that can help 
you decide whether to use AI as an assistant to help you per-
form a task. We focus on conversational AI, meaning that you 
describe your task as a natural-language prompt. This includes 
using an LLM to help you code, or using a text-to-image app 
to create a logo.

Can I describe the task succinctly and validate  
the output easily?

Conversational AI is most useful when you get “good bang 
for your prompt,” meaning that you obtain a useful output 
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without having to go to great lengths to write a detailed, step-
by-step prompt. So, before using it, I suggest you ask yourself:

¡	Can I describe the task succinctly?

¡	Can I validate the output easily?

For example, when writing code, there are tasks that can be 
described using very brief prompts such as

¡	Summarize what the code in this file does.

¡	Write a function to download a file from an S3 bucket.

¡	Rewrite this function in JavaScript.

¡	Is there a way to optimize this code?

Other tasks are much more difficult to describe as they require 
a detailed, step-by-step specification of the solution. In these 
cases, writing the prompt might be as cumbersome as writing 
the code itself. For example, I once had to use a library called 
GraphHopper, which contains algorithms to find the shortest 
route between landmarks in a map, but I had to customize it 
to measure distances in a nonstandard way. For that, we had to 
use a custom formula we had designed together with the client. 
The requirements were so specific and custom, that I’m not 
sure I would have saved any time by writing a prompt and hav-
ing an LLM write the code. So, if your answer to the question 
“Can I describe the task succinctly?” is yes, there are higher 
chances that AI will help you solve the problem (see table 
4.2 at the end of this section). As AI hallucinates sometimes, 
it’s also important that you ask yourself the second question, 
“Can I validate the output easily?”, especially if you’re sensitive 
about the correctness of the output (see section 4.1.2).

Some tasks can be validated easily. For example, if you 
already know how to perform the task, and all you want is to 
save time, you can rely on your expertise to quickly validate 
AI’s output. For example, I often forget how to use the Boto3 
library to read files from S3. So, I often ask ChatGPT how to 
do it. Because I’ve already done it before and it just involves a 
couple of lines of code, I can easily look at ChatGPT’s code and 
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verify that it’s correct. I can also quickly run the code to see if it 
fetches the required S3 file correctly. 

To cite another example, if you ask an LLM whether a piece 
of code can be optimized, you can easily check whether its rec-
ommendations make sense to you, especially if you have cod-
ing experience and have studied things such as computational 
complexity. Or if you ask ChatGPT to rewrite a piece of code in 
another programming language, you can also verify the output 
if you’re familiar with the target language.

In other cases, validating AI’s output is not as quick or easy. 
For example, suppose you ask ChatGPT to write a SQL query 
that requires plenty of joins and business logic. Understand-
ing the resulting query step by step may be cumbersome and 
take as much time as writing the query yourself. Or, if you ask 
ChatGPT to write code in a language you don’t know, you 
might have a hard time debugging it.

So, if your answer to the second question—“Can I validate 
the output easily?”—is also yes, then AI may provide good 
assistance.

Has anyone done it before?

A software engineer commented on Twitter, “I sometimes won-
der if coding is going to end up a bit like this” (https://mng 
.bz/BXr2), and shared a screenshot of the following code:

import ai from 'ai-thing';
const Select = ai.gen`
  A select dropdown with these options:

  - Podcast
  - Book
  - Movie

Animate the dropdown to slide down from the top
of the page in a distracting manner.
`;

This would be really impressive if the only tools available for 
frontend development were plain JavaScript, CSS, and HTML. 
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But that’s not how most people code nowadays. We use librar-
ies and frameworks that help us do the job. For example, I 
often use Material UI for frontend development, which is a 
collection of ready-made and visually appealing components. 
This is how I would create the required animated dropdown 
using Material UI:

import { Select, MenuItem } from '@mui/material';
const Select = 
<Select>
  <MenuItem>Podcast</MenuItem>
  <MenuItem>Book</MenuItem>
  <MenuItem>Movie</MenuItem>
</Select>

This code is almost exactly the same as the natural-language 
description from the previous code snippet. Although this 
code is written using a more structured language, it is as com-
pact and easily readable. The gains from employing AI are 
minimal.

So, before using an AI assistant, I recommend you wonder 
if some other people may have done the job before, for exam-
ple, by putting together a library that does what you need. If 
the task is very common—a select dropdown certainly is—it’s 
likely there’s a tool out there that does it for you. These tools 
are often very easy to use, mature, and well tested by an active 
community of developers. So, they help build software quickly 
and robustly.

A few weeks ago, I had to write code to calculate the posi-
tion of the sun in the sky at a certain time and location. Instead 
of wrangling trigonometric equations or asking an AI assistant 
how to do it, my first instinct was to search for a library for the 
task. I thought, “This is such a cookie-cutter task that someone 
must have done it before.” I Googled “sun position calculation 
library python” and immediately found a library to do that spe-
cific job (and there are others, too). I installed it easily with just 
one command:

pip install suncalc
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The library is minimal, and its documentation is brief. You can 
quickly learn that it’s used as follows given a datetime, longi-
tude, and latitude:

from suncalc import get_position
get_position(datetime, longitude, latitude) 

This returns exactly what I needed:

{'azimuth': -0.014045295626482863, 'altitude': 
0.8562684198030407}

A few days after I’d done this, out of curiosity, I asked GPT-4o, 
“Write a Python function to calculate the sun position given 
a location and time.” The chatbot wrote a complicated algo-
rithm, with 40 lines of code. Here’s a snippet:

n = julian_day - 2451545.0  # Days since J2000.0
        mean_longitude = (280.46 + 0.9856474 * n) % 360
        mean_anomaly = (357.528 + 0.9856003 * n) % 360
        ecliptic_longitude = (mean_longitude + 1.915 
           *math.sin(math.radians(mean_anomaly)) +
           0.020 * math.sin(math.radians(2 * mean_
anomaly)))
        obliquity = 23.439 - 0.0000004 * n
        declination = (math.degrees(math.asin(math.sin(
           math.radians(obliquity)) * 
           math.sin(math.radians(ecliptic_
longitude)))))

The algorithm was difficult to follow and contained lots of 
unexplained constants. Luckily, the chatbot also suggested 
that, as an alternative, “We can use a Python library like Astral 
or Pysolar.” So, as a follow-up prompt, I asked, “How can I use 
the Astral library to do this instead?” It responded with a much 
shorter snippet of code, showing me how to use the library. 
However, I tried the code, and it didn’t run, as it hallucinated 
the correct way to use the said library. (You can find a record of 
the conversation at https://mng.bz/dXGw.) 

Perhaps running the prompt again or refining it would have 
yielded better results. My point, however, is that sometimes 
you’re better off by finding out whether someone has already 
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built a tool for it. A quick Google search and scan of the doc-
umentation might be more effective than using AI, and the 
result may be more reliable. 

So, try to ask yourself, especially if you’re performing a cookie-
cutter task, whether someone else may have done it before. The 
most effective software developers avoid reinventing the wheel 
and try to build on other people’s proven work.

What does an excellent job look like?

One of my friends has a very interesting life story—he went 
from having little money and living in a hostel in exchange 
for a bed, to running a successful online business. A magazine 
wanted to share his story and asked him to write an article 
about it. He wrote it using ChatGPT.

He then shared the draft of the article with me and asked for 
my opinion. The grammar and style were pristine as expected. 
However, the article didn’t do justice to his story. For example, 
it went too fast over things readers would want to know more 
about. Notably, it didn’t say how he’d come up with his busi-
ness idea while living in the hostel; instead, it jumped straight 
to how he’d started building the business. In addition, there 
were a few digressions, such as a personal opinion on a political 
matter, which distracted the reader from the main purpose of 
the article. The words were put together nicely, but the writing 
wasn’t good because it didn’t tell the story effectively. Had he 
submitted the story like that, in my opinion, it would have been 
acceptable but not the kind of thing that people read all the 
way through the end and recommend to others.

I gave my friend a list of comments about the article. My 
comments were mostly high level. For example, I advised him 
to slow down and tell the story in more detail sometimes, and 
I advised him to remove certain slow passages and digressions. 
I also advised him to reorganize some parts of the article that 
intertwined different topics.

When he read my comments, he said he’d finally under-
stood why writing took me so much time. He also said he finally 
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understood why I spent money on hiring human editors. Until 
then, he’d thought writing was mostly about grammar. He 
hadn’t realized how much the pacing and organization of an 
article could matter to make it compelling to the audience. I 
didn’t know that either when I started writing.

It’s very easy to jump to conclusions and think AI can per-
form a task well when we don’t know much about it. We may 
miss important things required to do the job well and unknow-
ingly do subpar work.

So, before using AI, I recommend you investigate what it 
takes to do the intended job competently. Perhaps it involves 
many more things than is apparent at first sight. Afterward, 
once you understand the job better, you can decide whether AI 
will do a job good enough for what you need.

Consider the task of logo design. Some companies spend a 
fortune on hiring top-notch logo designers. But now that AI 
can create logos, is it worth hiring an expensive human logo 
designer? Well, it depends. If you speak with a high-end logo 
designer, you’ll discover that they perform thorough research 
about competitors’ logos and the sentiment they convey. After-
ward, they design a logo that is truly original and not a rehash 
of previous logos—something AI isn’t great at—but at the same 
time somehow matches the style of competitors’ logos. This 
helps customers quickly get an idea of what the brand is about 
as they recognize the type of logo from competitors, while still 
giving your company’s logo a distinctive look.

Depending on your requirements, you may or may not need 
the thoroughness of high-end logo design. For example, if 
you’re launching a startup, all you may need is a logo to fill 
in the space on your website as it may be too early to spend 
money on a higher-end design. Once the company grows and 
starts having repeat customers, you may want to hire a specialist 
to design a logo that will better position your company in the 
competitive landscape. Before we move on to the next section, 
you’ll find a summary of questions and possible answers, plus 
their implications in table 4.2.
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Table 4.2 Checklist for using conversational AI as an assistant

Question Comments

Can I describe 
the task suc-
cinctly and 
validate the 
outputs easily?

If yes, an AI assistant, such as a code-writing LLM, 
might save you time and effort as you’d be getting 
“good bang for prompt.”

If not (the task is difficult to describe or validating 
the output is cumbersome), then you may be bet-
ter off doing the job manually without AI’s help.

Has anyone 
done it before?

If yes (for example, you’re solving a cookie-cutter 
software task, and there’s a library that does just 
what you need), it might be easier and more reli-
able to reuse other people’s proven work and tools 
instead of asking AI for help.

If not (your task is not very common, and it’s 
unlikely other people’s past work will help), then 
using AI as an assistant might be helpful to do the 
custom work you need.

What does an 
excellent job 
look like?

If you’re familiar with what it means to do an 
excellent job at the required task, you’re in a good 
position to determine whether AI can do the job 
satisfactorily. 

If you don’t know what doing an excellent job 
means, you might be missing something and over-
estimate AI’s performance. In this case, it’s best 
if you do some research about the task to make a 
more informed decision about using AI for it.

Building LLM wrappers

As LLMs can tackle so many tasks, it is now tempting to build 
software products in a new way: Your code transforms the task 
into a natural-language prompt and makes an LLM do it. For 
example, if your app must show a list of nearby restaurants to 
the user based on their location, your code automatically crafts 
a prompt such as, “Create an HTML table listing the five restau-
rants closest to [the user coordinates are inserted here]. Each 
row should represent a restaurant, and the columns should be: 
The restaurant name, the cuisine style…” Afterward, your app 
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uses an LLM to perform the task, and it parses the LLM’s out-
put before displaying the restaurants to the user. 

When coding this way, apps become sophisticated LLM 
wrappers—they manage the LLM, which is in charge of doing 
the heavy-duty work under the hood. I’ve met many early-stage 
startups that built or tried to build their initial products this 
way. They thought it wasn’t necessary to code the core function-
ality of their apps when you could just craft a prompt and have 
an LLM do the work instead.

Creating LLM wrappers may be a good way of building soft-
ware in some cases. In other cases, however, it’s not the best solu-
tion. This section formulates one single question it may be worth 
asking yourself before you decide to build software that way. 

Will users interact with my product using natural language?

I know a startup that was building a travel-planning app. The 
user would input travel details in a structured format by select-
ing the dates on a calendar and the destination from a list. 
The tool would then produce a structured sightseeing itiner-
ary displayed in a timeline and a map. Note that this wasn’t a 
chatbot—the user didn’t converse with the app at any point by 
writing or reading free-form text.

Due to the popularization of LLMs, the company decided 
to build this feature using an LLM under the hood. The user’s 
request was first transformed into a natural-language prompt, 
such as, “Create a day-by-day itinerary to visit Paris from July 1st 
to July 7th…” The overall prompt was lengthy, as it contained 
instructions on how to output the itinerary in a specific format 
so it could be easily parsed and rendered in the app.

The startup struggled to make this work. One of the reasons 
was that the LLM’s output often included outdated informa-
tion, such as a suggestion to visit an attraction that didn’t exist 
anymore or at a time during which it was closed. Moreover, the 
LLM’s output sometimes didn’t fully respect the required struc-
ture. For example, it would sometimes indicate an attraction’s 
street address where its web address should be. In addition, 
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it all took over a minute to run, which is too long by today’s 
browsing standards.

The startup then realized that the problem it was trying to 
solve wasn’t related to natural language in any way—the user 
didn’t type in the inputs as free-form text (“I’d like to visit 
Paris”) and the outputs weren’t shown to the user as text either. 
So why use LLMs at all?

The startup ended up solving the problem differently: 
after the user made a query, the software searched for rele-
vant attractions in the required destination using the Google 
Places API, which provides up-to-date and structured informa-
tion about attractions, such as opening hours and coordinates. 
Afterward, the software ran a pathfinding algorithm to create 
an ideal sightseeing itinerary from those attractions. The solu-
tion ran much faster and solved the problem better.

If users will interact with your product through natural lan-
guage, using an LLM might be the best choice (see table 4.3 
at the end of this section), as LLMs are specially designed to 
process and produce natural language. For example, if you’re 
building a customer-service chatbot, then using LLMs may be 
the best choice because they’re designed to process written, 
free-form requests and generate convincing prose. In this case, 
you exploit what LLMs are best at. 

When users will not interact with your product using natural 
language, such as in the travel app, you may want to think twice 
before using an LLM to solve it. If you use an LLM, you may not 
enjoy its benefits, and you’ll have to cope with its drawbacks, 
such as long execution time, hallucinations, and unstructured 
outputs. In those cases, old-school software, such as a database 
look up, may do a better job. So, if your task does not involve 
natural language, analyze first whether other tools could be 
more suitable for the job before building an LLM wrapper. 

This brings us to the end of the chapter. We’ve covered a few 
scenarios of when to use AI. I hope it will prove useful the next 
time you’re working on a problem and wondering whether it’s 
worthwhile to bring in an AI model.
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Table 4.3 Checklist for building LLM wrappers 

Question Comments

Does my problem 
involve natural 
language?

If yes, LLMs may be a great choice, as they’re 
specially designed to read and generate natu-
ral language.

If not, you may want to consider alternative, 
old-school ways of building your software, 
which might be more suited to the job than 
LLMs.

Summary

¡	Adopt an entrepreneurship mindset: ensure you under-
stand the customer’s problem and find the best way to 
solve it, which may or may not be AI. Try not to decide 
you’ll use AI before knowing what you’ll use it for.

¡	Evaluate whether hallucinations are OK for your users. In 
some cases, such as the translation of hotel reviews, users 
are not too fussy about them. If hallucinations are a deal 
breaker, you may need to rethink the task.

¡	If your client wants to understand how AI generates its 
outputs, you may find yourself in quite a pickle, as the 
most powerful AI cannot be understood in detail. You 
might need to use a less performant but more explainable 
model or a technique to try to explain some aspects of the 
model such as the finding the relative importance of input 
features.

¡	If you use AI as an assistant, you can quickly ask yourself, 
“Can I easily describe the task and validate the output?” If 
so, you get good bang for your prompt, which is when AI is 
most effective. If you can’t describe the task succinctly or 
it takes a lot of effort to validate the output, using AI may 
not be very useful.

¡	When using AI as an assistant, make sure you’re not try-
ing to reinvent the wheel. If you’re performing a common 
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task, perhaps there’s a well-documented and proven way 
of doing the job. For example, when coding a certain task,  
an open source software may already exist that will do 
exactly what you need, and it might be easier and more 
reliable to use it instead of trying to do the same using an 
AI assistant.

¡	Before having AI do a certain job, try to understand what 
doing that job in an excellent way entails. It might be more 
complicated than it seems. You can then decide whether 
an AI assistant will help you do the job to a satisfactory 
level, depending on your needs.

¡	Some people are building apps that are LLM wrappers—
the job is done by an LLM under the hood, which is 
managed by the app. This is most powerful when you’re 
dealing with a natural-language problem, either because 
the user inputs free-form text or the system must generate 
human-readable text. If your problem doesn’t involve nat-
ural language, maybe using old-school algorithms instead 
of building LLM wrappers will be a better choice.
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5How AI will affect jobs  
and how to stay ahead

This chapter covers

¡	The qualities that will help protect jobs from being  
 replaced by AI
¡	How software engineers can future-proof their jobs
¡	How AI can generate new opportunities for   
 software engineers
¡	Discussing the effects of AI on the economy and  
 whether it could prolong unemployment and misery

Because generative AI can write code, many software 
engineers—and aspiring ones—have become worried that 
their careers might be in danger. NVIDIA’s CEO argued it’s 
no longer necessary to encourage young people to learn how 
to code. “In fact, it’s almost exactly the opposite,” he said. “It 
is our job to create computing technologies that nobody has 
to program and that the programming language is human: 
everybody in the world is now a programmer—that is the 
miracle” (https://mng.bz/GenJ).

This chapter discusses the possibility that AI may replace the 
jobs of software engineers and how to protect such jobs. The 
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first three sections discuss three qualities that will help them 
resist AI: a wide gap between “just fine” and excellent work; the 
need for stringent validation of the output; and the need for 
tight control over the output.

At the beginning of each section, we discuss the topic in 
general—outside software engineering. I hope this gives you 
a wider view of the AI affects jobs. At the end of each section, 
I relate the topic with software engineering specifically and 
share advice on how engineers can protect their jobs.

The remainder of the chapter is more speculatory and phil­
osophical. We first discuss how AI could open new doors. Next, 
we discuss whether AI could cause prolonged mass unemploy­
ment and misery, which is something feared by many people.

Excellence gap

Some people have asked me whether I thought TV shows 
would soon be written by AI, thus replacing the job of screen­
writers. After speaking with screenwriters, I’ve discovered that 
the job is often much more complicated than it may seem at 
first, or at least if you want to do it really well. Screenwriting is 
not so much about putting words together. Instead, it’s about 
choosing what to say and how to say it, and some screenwriters 
go to great lengths to perform this task. 

Consider the case of the spy show Homeland. One of the rea­
sons the show was so popular was that every season spoke about 
things that were taking place in the world as it aired. As the 
show was shot months before it aired, the writers had to try to 
anticipate the things that would be relevant much later.

For this reason, the writers and crew met intelligence experts 
to discuss potential storylines for the following year’s season. 
An article in The Guardian (https://mng.bz/zZRA) explains:

The team began attending an annual “spy camp” . . . absorbing the 
accumulated insights and knowledge of current and former intelli-
gence agents, diplomatic old hands and, one year, National Securi-
ty Agency (NSA) whistleblower Edward Snowden. 

[Claire] Danes has fond memories of the spy camps. “The days 
were long and dense. . . . We’d meet at nine and the revolving door 
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was in constant motion, depositing one story and then another. . . . 
You really did get to look into a crystal ball from all these amazing 
sources and get a fairly clear picture of what our reality might be like 
in a year’s time.” 

To cite another example, consider the sitcom Friends. After the 
actors rehearsed an episode for many days, it was shot in a sin­
gle day in front of a live audience. When the audience did not 
laugh at a joke, the writers asked the audience why. Based on the 
answers, writers rewrote lines on the spot and asked the audi­
ence to pick their favorite alternatives through a show of hands. 
That’s how they made sure the lines were genuinely funny.

But not all TV shows are written that carefully. Soap operas, 
for example, are known to be produced quickly and cheaply. In 
fact, multiple episodes are usually shot every week. The story­
lines across different soap operas are often very similar, as writ­
ers try to recycle proven ideas. 

As we can see from these examples, in some jobs, there is a large 
gap between seeking to achieve excellence, as in Homeland and 
Friends, and producing content that is just fine, as in soap operas. 
Let’s call this difference the “excellence gap” (see table 5.1).

Table 5.1 The characteristics of “just fine” and excellent work. The latter 
is likely to be safer from AI.

Just fine Excellent

Characteristics Value in doing the 
job as quickly and 
cheaply as possible

Short-term effects

Rehashed previous 
work

Value in doing the 
job thoroughly

Long-term effects

Original work

Examples Writing soap operas

Writing SEO-driven 
blog articles

Quick translation 
of an e-commerce 
website

Writing high-end TV 
shows

Writing high-end 
newspaper opinion 
piece

Literary translation
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In the case of high­budget TV series, the creators want the 
show to become a legend and stand the test of time—they 
want to collect royalties years or even decades later. So, writ­
ing must be done very carefully, and it takes a lot of time and 
skill.

In the case of a soap opera, writing quickly and rehashing 
existing stories is all that’s needed to do the job effectively. The 
goal of a soap opera is to provide light entertainment, and the 
producers rarely intend the show to be rerun. 

I asked a screenwriter whether he thought the profession 
was threatened by AI. He told me that perhaps repetitive, for­
mulaic writing might be affected, the kind you find in soap 
operas. However, in higher­profile productions, most of the 
work isn’t about writing itself but about conducting interviews, 
doing research, trying out ideas with a test audience, and so 
on—tasks that the likes of ChatGPT are unlikely to do.

Note that the excellence gap tends to be filled with activi­
ties with a human touch, such as networking, gathering human 
feedback, building relationships, and so on, for which current 
AI methods aren’t very suitable. You can sometimes detect 
these activities by asking someone whether their job can be 
easily described as a list of steps or a recipe, which can shed 
light on how easy it is to automate with AI or some other tech­
nique. For example, I asked that to a journalist, and she told 
me that she spent a lot of time trying to come up with creative 
story angles, and she didn’t think there was a recipe for that. 
Moreover, a lot of her work involved building good relation­
ships with influential people in her area, so she could reach out 
to them for commentary when necessary, and she didn’t think 
there was a step­by­step recipe that described how to do that, 
either. 

It seems that the jobs that are safest from AI are those on the 
excellent side of the excellence gap, such as writing higher­end 
TV shows. Jobs that might suffer from AI are the ones in which 
the worker specializes on the low end of the gap—the “just 
fine” part—or there isn’t much of a gap to start with—there 
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isn’t a wide difference between doing it just fine and exceed­
ingly well, the tasks being quite mechanic and easily described 
as a list of steps.

Consider the case of writing SEO­driven blog articles whose 
goal is to drive traffic to a website from Google. For example, 
a travel agency may want to publish several articles quickly 
about a travel destination to attract traffic and then sell holi­
days to internauts or collect commissions from affiliate links. 
These articles tend to be the “just fine” kind, as the goal is to 
pack them with relevant keywords, not to provide insightful 
analyses. I’m sure you’ve seen articles like that. They often 
have titles such as “20 Things to Do in Paris This Summer 
(2025).” 

Until a couple of years ago, it was common to hire humans 
on platforms such as Upwork and Fiverr to write these blog 
articles. I now hear that many of these workers are being 
replaced by AI. As this job only requires “just fine” work—
it doesn’t need interviews, research, networking, testing 
audiences, and similar—AI can do it satisfactorily and faster. 

Other jobs at risk are those in which there may be an excel­
lence gap, but excellence doesn’t have much market value—
people are not willing to pay for excellent work because just 
fine is good enough. I’ve spoken with many professional trans­
lators over the past few months, who reached out to me due 
to concerns regarding their profession. Translators often go to 
great lengths to produce an excellent translation, which can 
require a lot of research and creativity. In some cases, however, 
clients don’t care much about that excellence—they’re okay 
with a “just fine” translation. For example, I spoke with a group 
of translators who specialize in translating the content of web­
sites, such as online shops. They seemed to be the ones strug­
gling the most due to AI advancements, as many clients didn’t 
mind AI translations even if they were a bit flimsy. In other 
cases, such as literary translation, clients are much more sensi­
tive about the quality of the work and are less likely to be ready 
to replace professional, human translators with AI.
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Excellence gap in software engineering

I once worked on a small freelance project where I had to cre­
ate a dashboard so that a company could visualize some pub­
licly available data more easily. I had to make a few API calls 
to fetch the data from various sources, transform it a little bit, 
and plot it. Most of my time was spent coding. The job was 
rather mechanical, and doing it just fine was okay.

Now, consider a different piece of work I did a few years 
ago. I was working for a team that wrote algorithms to 
put together holiday packages automatically, including 
determining their prices. The algorithm was meant to design 
packages automatically and make the process more data 
driven, hopefully increasing revenue. We built an algorithm 
that looked good on paper, but we couldn’t deploy it because 
salespeople had concerns about it. They were scared that, by 
changing how we put the packages together, we would disrupt 
our relationship with customers. Moreover, salespeople often 
priced holidays strategically—for example, instead of trying 
to make the most revenue, they charged lower­than­revenue­
maximizing prices to promote a new travel destination. They 
were afraid our system would make them lose control over 
those decisions.

To reduce friction, we had a discussion with the salespeople 
to understand their needs, and as a result, we came up with 
a mathematical gimmick to insert business constraints to our 
algorithm. Salespeople would be able to adjust these con­
straints themselves, which would give them much finer control 
over the holiday packages generated by our tool. Only after this 
intervention they were happy with it, and we could deploy the 
system. The success of the project was not just about coding, 
but about understanding what salespeople wanted and finding 
a solution that clicked with them. 

Just like in screenwriting, there is an excellence gap in many 
software engineering projects. In some cases, like the simple 
dashboard project I mentioned, just fine is okay. The tasks 
involved in doing these jobs can often be written down as a 
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step­by­step recipe and delegated cheaply. This is the kind of 
work that AI might be able to replace.

Excellent software engineering is much more than that. 
Rather than just writing code as asked, the goal is to help a 
business solve a problem, as in the case of the package holiday 
example. The software engineer will work closely with the busi­
ness to help devise solutions to problems. For example, they 
will help businesspeople identify features that provide the most 
added value for the least effort. They will also suggest alterna­
tive solutions that the business may have not thought of. 

Moreover, excellent software developers help build robust 
solutions that stand the test of time. This requires finding the 
sweet spot between future­proofing and overengineering. For 
example, should your software handle multiple currencies 
even if all your users (for now) transact in the same currency? 
Or should you wait until you expand internationally to add 
support for other currencies? These are questions you can only 
answer by discussing and negotiating with the business, which 
often requires translating technical ideas to a language non­
technical people can understand so you can collaborate.

In addition, in excellent software development, you must 
make important decisions to secure the software and protect 
data. I once worked with a company that was particularly sensi­
tive about accidentally letting one of their clients see data that 
belonged to another client. Having one isolated database per 
client is a way to accomplish that, but it can be overkill in some 
cases. After discussing different possibilities with the business, 
we settled for having a single database with different compart­
ments in it, or schemas, which provided isolation without so 
much added complexity. This decision required negotiating 
with businesspeople.

As excellent software engineering is not just about writing 
code but about doing business and exercising soft skills, I think 
it will be well placed to resist replacement by AI. When busi­
nesspeople work alongside software engineers who genuinely 
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help them solve business problems, they’re unlikely to want to 
automate them away.

Recommendations

My advice is that, if you want to future­proof your career, you 
may want to focus on working at the intersection of technology 
and business—try to become the person who helps businesses 
attain their goals using technology, not just a person who 
writes code. This doesn’t mean you won’t be writing code; it 
means you’ll be writing the right code to help the business suc­
ceed. If you’re asked to add a feature to an app that you think 
is the wrong one businesswise, you should speak up.

I recommend you learn about business if you haven’t yet. 
I’ve found the following books particularly useful:

¡	The Lean Startup by Eric Ries (Crown Currency, 2011)—This 
popular book explains a modern innovation process that 
relies on experimentation and validation of customer 
needs. The author popularized the term minimum viable 
product, or MVP, which is a simple product meant to learn 
about customers.

¡	Value Investing: From Graham to Buffett and Beyond by Bruce 
Greenwald et al. (Wiley Finance, 2020)—While the book is 
about investing, the first half describes where the value of 
a company comes from. It explains, for example, what a 
competitive advantage truly is and how it adds value to a busi­
ness. It also explains the importance of future growth and 
when growth adds value, which is particularly relevant to 
ambitious, high­growth start­ups.

¡	The E-Myth Revisited: Why Most Small Businesses Don’t Work 
and What to Do About It by Michael E. Gerber (Harper Business, 
2004)—This classic book helps understand why a solid 
business is akin to a system that runs automatically, follow­
ing clearly defined processes.

¡	Venture Deals: Be Smarter than Your Lawyer and Your Ven-
ture Capitalist by Brad Feld and Jason Mendelson (Wiley, 
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2019)—This book is useful to understand how financing 
by venture capitalists works, which is one of the most com­
mon sources of financing for technology companies.

¡	Value Proposition Design: How to Create Products and Services 
Customers Want by Alexander Osterwalder et al. (Wiley, 2014)—
One of the main causes of tech product failure is that 
people don’t really want the product. This book describes 
a process to define your target customer and the added 
value of your solution, which can help prevent that. 

Once you learn about business, I suggest you work your way 
toward roles that involve both technical and business skills. For 
example, instead of becoming a deeper specialist on one tech­
nology, such as React, you may want to try to take up respon­
sibilities in product management or design alongside your 
coding work. I advise that you to steer clear of jobs where all 
you do is pick up a Jira ticket created by someone else and do 
the technical work described in it.

You may also want to prioritize working in cross­functional 
teams that have defined business rather than technical goals. 
You could, for example, work for an agency (or build your 
own) that partners up with startups to help them specify, build, 
and validate products in exchange for money and equity, as 
opposed to just building whatever product the client wants—
no questions asked.

In addition, you could specialize in a technical field aim­
ing to help attain business goals, such as operations research and 
data science. One of the main tasks of operations research is 
to build mathematical optimization algorithms to help solve 
business problems, such as finding the optimal way of allocat­
ing inventory to warehouses based on a demand forecast. This 
requires mapping a business goal to a mathematical goal, so 
you’re both a business and a technical person. Moreover, as 
you can’t efficiently optimize anything, you sometimes need to 
negotiate with the business to solve a simpler yet useful prob­
lem instead. 
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Although a bit hyped up at times, also data science sits at 
the intersection between technology and business, as it uses 
ML to help answer business questions. This is especially true of 
full­stack data scientists, who help all the way from ideation to 
building production­level data products. Occupations such as 
operations research and full­stack data science, in which cod­
ing and doing business are tightly coupled, may be in the stron­
gest position to survive advances from AI. 

If you’re absolutely not interested in business and prefer purely 
technical work, you may want to specialize in a niche technology 
or problem area and stay up to date with developments—you 
could become a guru in your field. This might help you stay 
ahead of AI, as AI learns to code from examples of code available 
on the internet, which can be outdated or not abundant enough 
with the latest and most niche technologies.  

Stringent validation 

If you use hotel­booking websites such as Booking.com, you 
may have noticed that hotel reviews from travelers are often 
translated into your language. This helps you see as many 
reviews as possible. Instead of hiring humans to translate the 
reviews, these companies use AI to do so automatically. The 
outputs generated by AI aren’t verified manually one by one. 
Sometimes AI hallucinates, so the translations have mistakes 
or sound a little funny. I just saw the following review on Book­
ing.com: “Location perfect. Report value for money, nothing 
to say.” The strange use of the word “report” came from the 
mistranslation of rapport qualité prix in French, which is a com­
mon way of saying “good value for money.”

But travelers don’t care much about these mistakes; they 
want to know whether a hotel is clean, well located, and so on, 
and they don’t need a perfect translation for that. So, using AI 
instead of a human translator, presumably one who doesn’t hal­
lucinate, is just fine.

Another similar example is personalized recommendations 
on websites, such as which movie to watch next on Netflix or 
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which product to buy on Amazon. Instead of having a market­
ing specialist analyze customers and create tailor­made recom­
mendations, these are generated at scale and automatically 
using machine learning trained on past user data. Sometimes 
these recommendations aren’t quite right. For example, you 
may be recommended to buy another washing machine after 
you just bought one, even though washing machines are usu­
ally a one­off purchase. But these mistakes don’t matter much, 
as users will probably not be too fussed about poor recommen­
dations and just ignore them.

In these cases, the correctness of the output isn’t all that 
important. So, even though AI may sometimes hallucinate, 
companies might still choose it instead of hiring human work­
ers (see table 5.2). This is often the case with “nice to have” 
features that aren’t critical to a company’s core operations, so 
mistakes don’t matter much. It is also common with large­scale 
tasks that would be too time­consuming or costly to perform. 
For example, I think it’s unlikely Booking.com would hire 
humans to translate all hotel reviews on its website. Between 
having no translated reviews and unvalidated AI­translated 
reviews, Booking.com chooses the latter. 

Table 5.2 The characteristics of work that don’t require a stringent 
validation of outputs. The latter is likely to be safer from AI.

Lax validation Stringent validation

Characteristics Nice-to-have 
features

Things you wouldn’t 
do manually due to 
poor scalability

Mistakes can be 
devastating (due to 
legal, safety, or com-
mercial reasons)

Examples Translation of hotel 
reviews

Automated product 
recommendations

Legal translations

Verification of air-
craft maintenance 
records

Preparation of shop-
ping receipts
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In other cases, it is much more important to make sure that 
the output of a job is thoroughly validated. I recently had a 
conversation with the manager of a team in charge of verifying 
aircraft maintenance records. He explained that every time a 
leased aircraft switches hands between different airlines, it is 
imperative to make sure that all maintenance has been con­
ducted properly. His team oversees going through all the 
records to verify that. 

Believe it or not, all maintenance records are still held on 
paper—technicians fill forms manually with a pen, and piles 
of paper are stored in boxes (yes, in the 21st century). Each 
country uses different kinds of forms, and they’re often filled 
in inconsistently, which makes the process of verifying them 
even more cumbersome. 

A startup built a solution to automate the process using AI. 
However, the AI system made mistakes sometimes, and this was 
very difficult to correct due to scarce training data on edge cases. 
Because of that, a user told me they still had to go through all the 
papers manually to verify AI’s outputs, so this app didn’t end up 
saving much time after all. They ended up unsubscribing from 
the AI service and doing it all by hand as usual. 

Similarly, I once met intelligence staff in the military who 
were thinking of using AI to identify sensitive targets in satellite 
images. At that time, they were inspecting the images manu­
ally by visually sweeping them using a “Z” pattern. The person 
in charge of the sweeping was held personally responsible 
for their observations, so missing a target could compromise 
their careers. The images covered huge areas, so this was very 
time­consuming.

After discussing AI with them, they soon realized it wasn’t 
possible to guarantee that AI would identify targets with 100% 
accuracy. Maybe it would identify more targets than humans, 
but the possibility existed that it would sometimes ran­
domly miss a target a human could see. To them, this meant 
they would still have to sweep the entire image manually to 
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double­check that AI hadn’t missed anything. So, AI wouldn’t 
speed up the process whatsoever. 

Aircraft maintenance and military operations were examples 
of work that is too sensitive to leave to AI without double­
checking it (see table 3.2). Other sensitive professions that 
require stringent validation are those of lawyers and doctors, as 
small mistakes can lead to lost licenses or malpractice lawsuits. 

Even in other fields in which mistakes may not be as devas­
tating, they can be harmful commercially, so humans will still 
be involved in validating AI’s outputs manually. An example 
of this is Amazon’s automated grocery shops. These stores, 
which opened in the United States and the United Kingdom, 
allegedly used video cameras and AI to automatically detect 
what a customer picked from the shelves, so logged­in users 
could just walk out of the store without going to the cash desk, 
and they received a receipt on their email later. 

As is often the case, AI sometimes hallucinated, so the 
receipts contained mistakes. But Amazon wouldn’t want those 
receipts to ever reach customers, as it would be very harmful 
for the business’s reputation. So, Amazon secretly hired an 
army of 1,000 people who watched the videos remotely and val­
idated AI’s outputs (https://mng.bz/0Qnv). Thus, instead of 
eliminating the jobs of human cashiers, Amazon moved them 
elsewhere. 

Jobs in which outputs must be thoroughly validated due to 
legal, safety, or commercial reasons are safer from being auto­
mated away by AI, as a human expert must still be involved 
in the loop. In some cases, there may be productivity gains 
from using AI and validating its output instead of doing the 
work manually. For example, perhaps AI might help draft 
legal contracts quickly, which lawyers will have to verify word 
by word (remember the unfortunate story of the lawyer who 
filed a document in court rife with AI hallucinations), but 
this two­step process will be quicker than writing the contract  
without AI. 
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In some other cases, however, the overall productivity gains 
will not be consequential because the validation process will 
be cumbersome. As illustrated by the story of aircraft mainte­
nance records and Amazon checkouts, AI often saves much 
less time overall—or even makes things worse—than people 
initially thought.

Some professionals have told me their clients are pressuring 
them to use AI to work more quickly and even charge lower 
rates. According to the clients, now AI can do your work and 
you just have to validate it, so it should be faster and cheaper. 
For example, translators have told me that many of their clients 
are now asking them to be editors of AI­translated text instead 
of translating the text from scratch, and they want to pay less 
for that.

Perhaps in some professions, productivity gains will indeed be 
observed. However, there are some early indicators that it may 
not be happening as much as expected, and validation may be 
the culprit. A survey conducted by Upwork (https://mng.bz/
KGXO) revealed that

Nearly half (47%) of workers using AI say they have no idea how 
to achieve the productivity gains their employers expect. Over three 
in four (77%) say AI tools have decreased their productivity and 
added to their workload in at least one way. For example, survey 
respondents reported that they’re spending more time reviewing or 
moderating AI-generated content (39%), invest more time learning 
to use these tools (23%), and are now being asked to do more work 
(21%). Forty percent of employees feel their company is asking too 
much of them when it comes to AI. 

So, when the correctness of outputs is of paramount impor­
tance, either for safety, legal, or commercial reasons, it is 
unlikely that AI will completely replace human work, or at least 
it won’t be the case as long as AI isn’t 100% accurate. It might 
be the case, however, that some workers will find themselves 
being hired for lower rates to validate AI’s outputs instead of 
generating them themselves, although the payoff of this may 
not always be as good as it may initially seem.
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Validation in software engineering

Compared to other fields in which a small mistake can go 
unnoticed, software bugs are often amplified—one minor bug 
can break an entire application. Notably, in July 2024, a bug 
in an update of security software CrowdStrike caused major 
disruption globally, including grounding planes and disabling 
fire alerts in buildings. The damages are estimated to be in the 
billions of dollars (https://mng.bz/YD0e).

That’s why software is usually validated thoroughly. Com­
panies often ask developers to unit­test their own code and 
review one another’s code. They also have automated tests in 
the deployment pipeline and separate quality assurance (QA) 
teams to independently validate the software.

If AI generated flawless software, then validation would per­
haps no longer be necessary. But is that so?

The code generated by LLMs tends to be syntactically 
correct—it compiles just fine. However, it sometimes doesn’t 
solve the intended problem correctly, or it crashes at runtime. 

A software engineer performed a series of tests to under­
stand LLMs’ code­writing capabilities. In his first experiment, 
he asked ChatGPT to fetch publicly available data from traffic 
cameras in Singapore and show them on a map (https://mng 
.bz/jpRe). This was the prompt:

 You can get JSON data containing traffic images, camera 
id and location (longitude and latitude) by calling traffic 
images API, https://api.data.gov.sg/v1/transport/traffic 
-images. Show on a map (using OpenStreetMaps) where all 
cameras are, with the corresponding traffic image, camera 
id and the date and time of the image. Call the traffic 
images API to refresh the data and repopulate the map 
every 1 minute. Only use Javascript embedded within the 
map html file for this and nothing else.

In just one attempt, ChatGPT produced a piece of code 
that did exactly what it was asked to do. This was certainly 
impressive.
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The software engineer then tried to augment the functional­
ity of this map by also showing weather data on it:

 The 2-hour weather forecast for Singapore can be found 
through the Weather API, https://api.data.gov.sg/v1/ 
environment/2-hour-weather-forecast, which returns JSON 
data that includes the name of the location, the longitude 
and latitude of the location and the weather forecast of the 
loca tion in the next 2 hours. Display the information on the 
map that was previously returned by modifying it. Use a 
marker with a weather icon to indicate the weather station.

This time, ChatGPT’s code didn’t work correctly. After some 
debugging, the engineer realized it was because the LLM had 
assumed that the weather API returned data in a format that 
was not the right one. So, the engineer modified the prompt 
to indicate more explicitly the format of the data returned by 
the API. It then worked correctly. 

The engineer learned from this experience and, in sub­
sequent experiments, he made sure to write more detailed 
prompts to prevent ChatGPT from making wrong assumptions. 
Even then, the code wasn’t correct all the time. For example, it 
persistently outputted the wrong URL to the CDN of a library.

The engineer acknowledged that ChatGPT was useful and 
could help you learn how to perform certain tasks. However, he 
argued (https://mng.bz/jpRe):

If you make assumptions about ChatGPT, it will make assumptions 
too aka hallucinate and make up stuff. The made-up stuff is just as 
elaborate and believable. . . .    Most of the time, you’ll need to debug 
the code, especially if you are not very specific. . . . Using ChatGPT 
to debug code can be enlightening or disastrous. It can be enlighten-
ing because it can give you pointers to the issue, even issues it created 
in the first place, and sometimes even fix it for you. It can be disas-
trous because it can also lead you down a rabbit hole that never ends 
by giving you wrong pointers and red herrings, and it will sound 
super-confident at every step of the way. 

As we can see from these examples and the author’s reflec­
tions, we can’t completely trust AI­generated code. We still 
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need to validate and debug its outputs, and the expertise 
of a software engineer is required to do so. In addition, the 
prompts that work best are the ones filled with technical 
details, so software engineers are the ones who can craft the 
most effective prompts. 

That’s why I find it unlikely that companies will automate 
away software engineers with AI­generated code. However, 
it may happen that some companies, persuaded by potential 
productivity gains, will try to turn software engineers into vali­
dators of AI­generated code. Just like in the case of translators, 
they may expect to pay lower rates to engineers or have them 
do more work, as they’d be just proofreading the AI­generated 
code instead of writing it. Let’s see ways in which you can avoid 
that.

Recommendations

Let’s first go over some observations and recommendations 
about traditional software development. I will then add recom­
mendations regarding the validation of AI­based products.

I’ve heard of software development teams that dedicate 
most of their time to the implementation of new features, and 
they deprioritize testing them or leave testing for later or for 
others to do. While these teams produce code, they often do so 
unreliably. I wouldn’t be surprised if business managers tried to 
automate them away using AI.

To protect your job, I recommend that you specialize in 
delivering robust software. This requires many more duties 
than just writing code. For example, you may spend a large and 
perhaps greater portion of your work making sure that your 
code is robust to edge cases and unfortunate situations. Even if 
AI can write some code for you, that is only a small portion of 
your duties. Your employer will see you as a person who delivers 
holistic and robust code that stands the test of time.

For that, I recommend joining modern software develop­
ment teams that are validation driven; they intertwine develop­
ment and testing and try to deliver robust software off the bat. 
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These teams make validation central and tightly coupled to the 
development process, as opposed to a secondary task.

I also recommend that you learn about test-driven develop-
ment, or TDD, which has become extremely popular. In TDD, 
you divide your code into small units and spend time to think 
of edge cases or things that could go wrong with each unit. 
You then write individual tests for all these things that could 
go wrong, and you make sure that your code passes the tests 
(some people even write the tests before writing the code). I 
often advise others to write a test case instead every time they’re 
tempted to run the software to see if it works well, perhaps 
using a “print” statement. This way, the test stays in the code 
base forever and can be helpful in catching problems later. 
But you don’t want to overdo it. Part of your responsibility as a 
test­driven developer is to find the sweet spot between coding 
and testing—you shouldn’t spend too much time writing out­
landish tests to cover scenarios that are extremely unlikely to 
happen.

I also recommend you learn about trunk-based development, 
which is an increasingly popular way of organizing software 
teams. Before trunk­based development, each coder worked 
on a separate branch of the main code branch. After finishing, 
peers reviewed the software (in a “pull request”) before it was 
merged into the main code. Coding and validation were thus 
quite separate activities.

In trunk­based development, coders directly push their 
updates to the main code branch without peer review (some 
may use short­lived feature branches). For this to work, you 
must adopt a set of work practices to prevent breaking the pro­
duction app. For example, you may use a mechanism known as 
a feature flag to direct most users to the old version of the code 
and only a handful of users, such as yourself and the quality 
assurance team, to the new version. You only remove the old 
code and point every user to the new one once you validate that 
your new feature works as expected. Moreover, the deployment 
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pipeline must contain plenty of automated tests. You can learn 
more about this process on trunkbaseddevelopment.com.

When implementing modern work practices, such as TDD 
and trunk­based development, the job of coders is not just to 
write code but to help continuously deliver robust software. 
This involves a lot more than just writing code that implements 
new features, so AI may not affect it all that much.

In addition, you may want to learn how to build and deploy 
apps holistically, including DevOps and management of cloud 
infrastructure, for example. This will strengthen your position 
as a person who delivers robust software end to end and not just 
a coder, helping you stay relevant in an era when AI can write 
some code.

Let’s now move on to AI­based products, which are all the 
rage. These products impose additional requirements in terms 
of validation, as AI sometimes hallucinates or produces differ­
ent outputs on different executions. How can you properly 
measure the accuracy of an AI­based product in performing a 
task? And how can you find opportunities to improve it? 

Over the past few months, many people have approached 
me to ask for advice about their AI­based products because 
they were disappointed with AI’s performance. This included 
both developers and entrepreneurs. In addition to the odd 
hallucination, they often complained that AI lacked consis­
tency. For example, a company created an AI model to gener­
ate recommendations to improve marketing videos. The users 
would implement one of the recommendations and then run 
the video again through the app, but now the app would make 
completely different recommendations and forget some of the 
previous ones. This was frustrating to users.

 In most cases, I soon noticed the developers weren’t fol­
lowing a systematic process to validate and select AI models. 
For example, they didn’t have a benchmark to assess the per­
formance of different models at the task or how performance 
improved as the prompt changed. Moreover, they summarized 
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the entire task in one single mega­prompt and hoped for the 
best. I encouraged them to divide the problem into smaller 
units and conduct thorough benchmarking. This would help 
diagnose the problem and identify individual subtasks that 
could be improved, perhaps bringing in some external data or 
even not using AI at all. In addition, benchmarking could help 
build realistic assumptions about performance and see how 
close you are to what’s acceptable—AI will rarely work just the 
way you want 100% of the time. In chapter 3, we discussed the 
preferred process for validation and selection of models, which 
gives you an idea of how AI could perform in the future and 
avoid unfortunate biases that can arise from poor handling of 
the validation process.

I expect there will be an increasing need for developers to 
work on validating AI’s performance and finding opportunities 
for improvement. Why not become a guru of AI­based product 
validation to stay ahead of the curve?

 Tight control

A graphic designer told me she was trying to use AI to gen­
erate an image but was struggling to do so effectively as she 
couldn’t get it to look exactly the way she wanted. As she had 
very specific requirements about the image, the prompt had 
become very detailed and long, which made it hard to man­
age. AI sometimes randomly ignored some instructions in the 
prompt, so she had to rephrase or rearrange it to try to have AI 
heed the requests. 

The designer told me, “I must be doing something wrong. I 
need to read the user manual.” It is true that the user manual 
may have provided her with some useful directions and tricks to 
write an effective prompt. For example, Midjourney’s documen­
tation (https://docs.midjourney.com/docs/prompts) explains:
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It is better to describe what you want instead of what you don’t 
want. If you ask for a party with “no cake,” your image will probably 
include a cake. To ensure an object is not in the final image, try 
advanced prompting using the --no parameter. . . .Word choice 
matters. More specific synonyms work better in many circumstances. 
Instead of big, try tiny, huge, gigantic, enormous, or immense. . . . 
Plural words leave a lot to chance. Try specific numbers. “Three 
cats” is more specific than “cats.” Collective nouns also work, “flock 
of birds” instead of “birds.” 

While these tips and tricks may have indeed helped the 
designer, they’re still rules of thumb that don’t work every 
time. It’s unlikely that, just by following these recommenda­
tions, the designer would have easily controlled AI’s output 
the way she wanted. 

This experience is very different from that of an owner of an 
e­commerce website. He explained to me that he sometimes 
runs quick ad campaigns on Instagram to test a new product 
or refine its sales copy. Until a couple of years ago, he hired 
people to create graphics for these ads or did it himself. Now 
he uses AI. As he doesn’t care much about the exact look of 
these graphics, such as the colors or images in them, he writes 
very simple prompts and often obtains an acceptable result in 
one go. 

Similarly, as I write this book, the editors have been creating 
videos to summarize its content. They’ve been using AI for it. 
They don’t need full control over the look of the videos, such 
as colors, design, layout, and so on. They just need to verify that 
the content makes sense. So, AI is very effective because a sim­
ple prompt can take you a long way. 

Generative AI works best when we don’t want to tightly con­
trol its output, as you can obtain useful outputs without having 
to refine and refine the prompt (see table 5.3). When you’re 
not very picky about the end result, you get “good bang for 
your prompt.”
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Table 5.3 The characteristics of work that don’t require tight control over 
the output. The latter is likely to be safer from AI.

Loose control Tight control

Characteristics You care about core 
features but not finer 
details (“80/20” work).

Short-lived, experimen-
tal, or add-on features.

Ready to accept AI’s 
first output without 
much fuss.

No need for very 
detailed prompts (you 
get good bang for your 
prompt).

You know exactly 
what you want.

You want the output to 
look a certain way, up 
to the finest details.

Describing the task 
step by step can take 
a significant amount 
of time (perhaps as 
much as doing the 
job).

Examples Graphics for ephem-
eral ad campaigns.

Informal videos to 
supplement written 
content.

Visual effects for high-
end movie production.

Designs for clients 
with very precise 
requirements.

In other cases, we want to have much more control over AI’s 
output, as we have a stronger idea of what we want to produce. 
In this case, generative AI may not save that much time, if any 
at all, as the process of precisely describing what you want in 
the prompt and getting AI to do it might be as complicated as 
doing the work manually.

So, jobs in which clients don’t care much about the precise 
details of the output are the ones most at risk of being replaced 
by AI. For example, a designer who specializes in creating 
graphics cheaply for quick ad campaigns may need to worry. 
Jobs where clients have very precise requirements about out­
puts are the ones that may resist AI better. In these cases, AI 
may be of some assistance, but the worker will still have to do a 
lot of work to get the output as intended. For example, a visual 
effects artist who works for high­end movie productions, in 
which directors are very demanding, is more likely to resist AI.
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Control in software 

A few months ago, I had to quickly come up with a color 
palette to display lines using different colors in a line chart. 
The palette had to be defined as a JavaScript list of colors 
represented by hexadecimal strings. I asked ChatGPT the 
following:

 give me a color palette for a graph written as a Javascript 
list of hex values. there should be 20 different colors

ChatGPT responded with a list of colors in the right format. 
Here’s an excerpt:

 const colorPalette = [
  "#FF5733", // Red-Orange
  "#33FF57", // Green
  "#3357FF", // Blue
  "#FF33A1", // Pink
  "#FF8C33", // Orange
  … 
];

It worked like a charm. The colors looked kind of ugly (the cli­
ent said they looked jazzy), but it did the job we needed at the 
time, which was to visualize the data as quickly as possible. We 
didn’t need it to look particularly well, or not just yet. 

When it comes to writing code, AI is most useful when we 
can succinctly describe the task and don’t care so much about 
the exact output. So, we get good bang for our prompt. Note 
how sloppily written my prompt was, yet ChatGPT managed to 
produce code I could readily use. 

But not all coding tasks are like this. In fact, most often, we 
do care a lot about the fine details of the software we write, and 
stakeholders have strong opinions of how our software should 
tackle a problem, what its interface should look like, and so on. 
For example, we may need it to use a specific algorithm or a 
specific external API to gather data, or we way need a frontend 
interface to respond to different screen sizes in a specific way. 

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



140 How AI will affect jobs and how to stay ahead

As a software project grows, it often becomes more customized 
and unique. 

The more requirements you have about your code, the more 
writing an AI prompt for it becomes like coding itself, as you 
must define the solution step­by­step. This is one of the rea­
sons why no­code, drag­and­drop tools to write software have 
never replaced programming. At one point, when you need 
to customize a no­code app, you end up having to either code 
or write step­by­step instructions using the no­code platform’s 
capabilities, which is a lot like coding, thus defeating the pur­
pose of no­code in the first place.

After NVIDIA’s CEO argued that programming will now be 
done using human language, technology educator John Crick­
ett pointed out, “How will we ever specify complex software in 
a language as imprecise, vague and open to interpretation as 
‘Human’? I’ve never met a product owner who has been able 
to do it in English. I certainly can’t” (https://mng.bz/W2KW). 
AI might be a tool that can aid engineers, but they will still have 
to use precise, step­by­step technical language to define what 
code must do. 

Recommendations
I recommend avoiding software jobs that involve building 
experimental products for which details don’t matter much—
we can think of them as toy products. One example is building 
quick prototypes for entrepreneurs who want to test an app 
idea with potential users. These clients often don’t care about 
the scalability or future­proofing of the solution. They want 
you to build something quickly so they can show it to users 
and gather feedback. If they collect evidence that there’s a real 
need for the product, they often throw away the initial proto­
type and hire engineers to build a more serious product after­
ward. Many of these entrepreneurs are now using no­code app 
builders such as Bubble or FlutterFlow, without hiring engi­
neers, to build the apps themselves. We could imagine they’ll 
increasingly rely on AI tools and become less inclined to hire 
engineers for their early­stage projects.
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Instead, try to work on demanding projects for very picky 
clients. Some clients are extremely sensitive about small details 
and want things done in a certain way. This often derives from 
the demands of their own users who are perfectionists and 
complain about small things. You might observe this the most 
when building software for mission­critical applications, such 
as coordinating logistics operations. 

A new opportunity: Making the web more human

Do you ever add the word “reddit” to your search queries on 
Google? I do that all the time, and it seems that there’s an 
increasing number of people who do that, too. 

For example, I recently went to the city of Belfast and won­
dered whether it was worth visiting Titanic Belfast, a museum 
built on the site where the ocean liner was built. I knew that 
an ordinary Google search would send me to countless SEO­
driven articles with titles such as “Top 5 reasons to Visit Titanic 
Belfast.” These articles, packed with keywords to drive traffic, 
would be poorly curated and filled with affiliate links to try to 
sell me something. 

Instead, I searched “Titanic Belfast worth visiting reddit,” 
as I wanted to know what redditors had to say on the matter. I 
knew opinions would differ, and perhaps redditors would fight 
and downvote each other, but at least I’d have a higher chance 
of discovering what genuine human beings thought about the 
museum. 

Software engineer Dmitri Brereton argues, “Why are people 
searching Reddit specifically? The short answer is that Google 
search results are clearly dying. The long answer is that most 
of the web has become too inauthentic to trust” (https://dkb 
.blog/p/google­search­is­dying).

People seem to be craving more genuine, human con­
tent on the web. I think that, if AI­written content floods the 
web, it will make the problem even worse. People will flock 
to online venues where they can find more genuine content. 
If AI­made content proliferates on platforms such as Google, 
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Medium, and YouTube, they may find themselves in trouble as 
users flee them. Some of them, such as YouTube, have already 
started cracking down on AI­generated content (https://mng 
.bz/8OgD).

So, if you allow me some speculation, I think that the gen­
erative AI revolution may create new types of jobs to help rank 
and filter content based on its authenticity. For example, a new 
specialty may be in writing software to detect AI­generated con­
tent. This may lead to new developments and interest in the 
field of information retrieval. 

Philosophical detour: Automation and mass unemployment

Since the rapid development of generative AI, some people 
have been concerned about the possibility that it would cause 
mass unemployment in the wider economy (https://mng.bz/
EarR). This concern isn’t new—it’s been voiced many times 
in history when machines or new techniques that automated 
work were introduced. As a technologist, you may often find 
yourself discussing the effects of your own work in the grand 
scheme of things—does building new technology hurt the 
economy?

Indeed, new machines and techniques do cause people to 
lose their jobs. This is very unfortunate, as workers find them­
selves with obsolete skills and have to search for new jobs, per­
haps for lower pay. But what is the overall effect of machines 
on an economy—do they generate prolonged mass unemploy­
ment and widespread misery? To answer this question, let’s dis­
cuss economics.

We can think of an economy as a process that takes resources 
and converts them into real outputs (products and services):

Resources (minerals, energy, workers’ time) —> Products (e.g., 
food, Netflix series) and services (e.g., doctor’s care, haircut).

The total output of an economy is measured by its GDP (more 
precisely, the GDP adjusted for inflation, or real GDP). Coun­
tries with a higher per­capita GDP produce more stuff for their 
inhabitants. This often means they enjoy a higher standard of 
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living. The GDP of a country grows when it finds ways to pro­
duce more stuff, for example, by using more advanced produc­
tion techniques or by building machines that automate away 
part of the manual work. 

When an economy doesn’t benefit from machines, many 
worker hours are required to produce essential items like food 
and clothes. When it accumulates machines, fewer hours are 
required to produce the same stuff, so more items can be pro­
duced, and they become cheaper. 

The use of technology frees up resources, including human 
work hours, which can be used to innovate and produce non­
essential things, such as entertainment and TV series. A 2022 
study revealed that “roughly 60% of employment in 2018 is 
found in job titles that did not exist in 1940” (https://mng.bz/
N1rd). So, while automation eliminates jobs, ultimately the 
economy accommodates the freed­up resources to the pro­
duction of other stuff, perhaps things that weren’t produced 
before and that aren’t as essential to survive. Automation, 
provided that it uses resources efficiently, makes an economy 
richer, not poorer. 

In his book Economics in One Lesson (Harper & Brothers, 
1946), journalist Henry Hazlitt explained:

If it were indeed true that the introduction of labor-saving machin-
ery is a cause of constantly mounting unemployment and misery, 
the logical conclusions to be drawn would be revolutionary, not only 
in the technical field but for our whole concept of civilization. Not 
only should we have to regard all further technical progress as a 
calamity; we should have to regard all past technical progress with 
equal horror. . . . Why should freight be carried from New York to 
Chicago by railroads when we could employ enormously more men, 
for example, to carry it all on their backs? . . . What machines do, to 
repeat, is to bring an increase in production and an increase in the 
standard of living.

The conundrum is that, even if automation improves eco­
nomic development overall, the transition is harsh for the peo­
ple who lose their jobs in the process. Henry Hazlitt goes on 
to argue:
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We should keep at least one eye on Joe Smith. He has been thrown 
out of a job by the new machine. . . . Now he has become overnight 
an unskilled workman again, and can hope, for the present, only 
for the wages of an unskilled workman, because the one skill he had 
is no longer needed. We cannot and must not forget Joe Smith. His 
is one of the personal tragedies . . . incident to nearly all industrial 
and economic progress. 

I don’t think generative AI is as big a step as people claim in 
terms of helping us produce stuff more efficiently. As we saw, 
AI hallucinates and its outputs often need to be thoroughly 
validated. In addition, as we’ll discuss later, it consumes quite a 
lot of electricity and other natural resources. However, it does 
seem to be helping perform certain tasks more efficiently in 
a variety of industries. This will create economic growth, not 
misery, in the long run, just like so many other machines have 
done in the past. Some people will lose their jobs in the pro­
cess, and this will certainly be harsh for them. But we should 
not fall prey to the idea that new technology causes widespread 
and prolonged misery. It’s quite the opposite.

Summary

¡	Jobs in which excellent work is noticeable and appreciated 
are likely to resist AI better. In software engineering, one way 
to achieve that is to work at the intersection between tech­
nology and businesses—you partner with businesspeople to 
help them build successful products, as opposed to just cod­
ing. Some suggestions to accomplish that are the following:

– Learn about business, for example, by reading popular 
business books like Lean Startup.

– Be involved in tasks beyond technical ones, such as 
product management or business analysis. 

– Specialize in a technical field designed to help busi­
nesses attain their goals, such as operations research 
and data science.

¡	Jobs requiring a stringent and detailed validation of the 
output, either for safety, legal, or commercial reasons, will 
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better resist AI. This tends to be the case with software, but 
some people may want to turn engineers into validators of 
AI­written code. Some ideas to remain relevant are

– Become a person whose job is to deliver reliable soft­
ware, not just code.

– Work in modern teams that constantly intertwine cod­
ing and testing. If you haven’t already, learn about mod­
ern engineering practices like test­driven development 
(TDD) and trunk­based development.

– Learn how to build and software holistically, including 
deployment, cloud, and DevOps.

– Learn good practices to evaluate AI­based products 
(see chapter 5). Help your clients understand the per­
formance of AI at their intended tasks and help them 
find opportunities for improvements. 

¡	Jobs that require fine control over the output may resist AI 
better, as AI is most helpful when you’re ready to accept its 
outputs without having to refine them much. Some ideas 
to protect your job are

– Avoid specializing in building rough prototypes or “toy 
products,” as required by early­stage entrepreneurs for 
idea validation.

– Try to work with picky clients who want things done in 
a certain way. You might have the highest chances of 
finding this kind of client when building software for 
mission­critical applications.

¡	The proliferation of generative AI may create new soft­
ware jobs to build algorithms that will help cope with 
the newly generated content (e.g., by helping filter and 
retrieve content written by humans).

¡	Those whose professions are affected by AI will suffer 
through the transition to a new profession. However, if AI 
were to truly automate jobs efficiently, rather than cause 
prolonged unemployment and misery, it will make our 
economies more efficient and prosperous.
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6The fine print

This chapter covers

¡	Controversial and timely discussions around AI
¡	Copyright disputes regarding training data
¡	The economics of AI
¡	Exaggeration about AI’s performance and   
 advancements
¡	AI regulation
¡	Consumption of resources, such as electricity and  
 water, to train and use AI models
¡	The philosophical debate around AI, biological   
 brains, and consciousness

This chapter addresses some of the bigger questions around 
AI. It also reveals a less flattering AI side—how the field often 
suffers from exaggeration, speculation, and even deception. 
I think it’s important to be informed about these topics, so 
you can analyze AI announcements and discussions critically. 
In addition, if you’re building AI-based products or using AI 
intensively, you may want to be aware of the broader effects 
and potential controversies that could arise from your work. 
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Copyright

Large AI models, such as LLMs and text-to-image models, 
have been trained using data collected from the internet, or 
scraped, most often without authorization from its owners. This 
includes millions of documents, images, and books, which 
has made many people angry, and there have been many law-
suits against AI providers. One example is a lawsuit from Getty 
Images, a website that sells stock images, against Stability AI, 
which creates the Stable Diffusion text-to-image models. Getty 
Images argues that Stability AI used images collected from Get-
ty’s website without authorization to train its models. The com-
plaint shows images generated by Stability AI’s models, which 
are similar to those sold on Getty. In some cases, the AI model 
even generates images with a rough imitation of Getty Images’ 
watermark (see figure 6.1).

Figure 6.1 Left: Image sold on Getty Images’ website. Right: Image 
generated by a Stable Diffusion model. Note the watermark in the image. 
These images are reproduced from Getty Images (US), Inc. v. Stability AI, 
Inc., 1:23-cv-00135, (D. Del.).

A similar lawsuit was filed by The New York Times against OpenAI 
on the grounds that newspaper articles were scraped without 
authorization to train OpenAI’s models. The complaint 
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contains examples of large portions of text outputted by GPT-
4, which are verbatim reproductions of text found in The New 
York Times (see figure 6.2). 

Output from GPT-4:

Actual text from The New York Times:

Figure 6.2 Example of GPT-4 output (almost) verbatim text  
as published by The New York Times. Figure reproduced from  
The New York Times Company v. Microsoft Corporation,  
1:23-cv-11195, (S.D.N.Y.).
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In addition, a group of artists sued Midjourney, Stability AI, 
and other image-generation providers for using images of the 
plaintiffs’ work to train their models. They argue this allows 
the models to generate images “in the style of” the plaintiffs 
(https://mng.bz/ZlKa). It is likely that many other copyright 
infringement allegations will be made against AI providers in 
the future. 

Copyright infringement is usually alleged on two grounds:

¡	AI models sometimes reproduce verbatim content.

¡	AI providers use copyrighted data without authorization 
to train models.

Verbatim reproductions happen when a model memorizes 
training data, which is a result of overfitting. It is likely that AI 
providers will try to minimize this by using techniques to pre-
vent overfitting. It’s hard to guarantee that no memorization 
will happen, but it might be mitigated successfully. 

The second point—that data is used to train models without 
authorization—is more controversial and seems to be the crux 
of the problem. Supporters of AI providers argue that it isn’t a 
copyright violation. They think it is legitimate to scrape data 
to train a model because the goal is for the model to learn pat-
terns and associations from data, not to reproduce a verbatim 
copy of the data (even if that has happened in some unfortu-
nate cases). 

I’ve even heard some people argue that us humans learn 
from reading publicly available data, and we then use that 
knowledge to create our own work. So, why wouldn’t AI provid-
ers be able to do the same? 

The key to this conundrum hinges on the topic of fair use. In 
copyright law, it is considered that copying data without autho-
rization is fair in some circumstances. This includes copying 
the data to help build a product that does not replace or com-
pete against the original product. For example, throughout 
this book, I have reproduced quotations from other books. I 
never reached out to their authors to ask for permission. This 
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is considered fair use because my quotations don’t make this 
book compete against the other books, and the original author 
of the quotation is clearly attributed. In chapter 1, for instance, 
I quoted a paragraph from the book The Elements of Statistical 
Learning. However, this book covers a different topic, so it 
doesn’t intend to compete with it, stealing some of its custom-
ers. In fact, I may actually drive some publicity toward that book 
by mentioning it. Had I copied an entire chapter of that book, 
however, this wouldn’t be considered fair use because my book 
could become a replacement for it. There are no exact guide-
lines on what constitutes fair use, such as a precise number of 
words in a quotation, so this is usually determined case by case 
in a dispute resolution.

The lawsuits by Getty Images and The New York Times 
attempted to establish that scraping their data by AI providers 
was not fair use because they used it to build competing prod-
ucts. This allegation is particularly easy to visualize in the case 
of image generation—one can imagine that customers of Getty 
Images may use Stable Diffusion instead to create images.

As Getty Images argues (https://mng.bz/RVgO),

Stability AI has copied at least 12 million copyrighted images from 
Getty Images’ websites. . . . Stability AI now competes directly with 
Getty Images. 

The New York Times lawsuit also tries to establish that OpenAI’s 
models act as a replacement to the newspaper’s website 
(https://mng.bz/2yvm):

Defendants insist that their conduct is protected as “fair use” 
because their unlicensed use of copyrighted content to train GenAI 
models serves a new “transformative” purpose. But there is nothing 
“transformative” about using The Times’s content without payment 
to create products that substitute for The Times and steal audiences 
away from it. 

As of this writing, these disputes haven’t been settled. We’ll see 
what happens in court.

I think one likely outcome from successive disputes is 
that regulators will request AI providers to honor opt-out 
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requests—if a data owner doesn’t want their data used to train 
AI models, it shouldn’t be used. The data owner will have to 
indicate their wish to opt out through machine-readable meta-
data in an agreed format. This is how it works if you don’t want 
search engines to scrape and index your content. You must 
specify so in a text file called robots.txt, returned upon request 
to your root domain (e.g., example.com/robots.txt). In a spe-
cial format, the file describes which sections of the website are 
allowed to be scraped and by whom. All major search engines 
honor the protocol. 

A different controversy is whether AI-generated content is 
itself protected by copyright law. For example, if you gener-
ate an image using Midjourney, can you prevent others from 
reproducing the AI-generated image, as it’s a violation of your 
copyright? The Copyright Alliance argues that work solely gen-
erated by AI is not protected by copyright. However, it clarifies 
(https://mng.bz/1Xnn): 

If a work contains both AI-generated elements and elements of 
human authorship protectable by copyright law—such as human-
authored text or a human’s minimally creative arrangement, 
selection, and coordination of various parts of the work—the 
elements of the work that are protected by copyright would be owned 
by the human author. 

I’m not quite sure what this means. If I use Midjourney to gen-
erate an image, is the work solely generated by AI, or am I the 
work’s coordinator because I wrote and refined the prompt? 
Perhaps the Copyright Alliance doesn’t know yet, as it adds 
after that paragraph, “AI and copyright issues will continue to 
develop,” and it invites you to sign up for the newsletter on AI 
copyright to stay up to date.

Economics of AI

Since the boom of generative AI, we hear a lot about its poten-
tial economic rewards. By the sounds of it, a lot of people will 
make a lot of money thanks to AI. But is that so?

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

http://example.com/robots.txt
https://mng.bz/1Xnn


152 The fine print

Some AI providers are already collecting billions in revenue. 
In 2024, for example, OpenAI generated $3.7 billion. This is 
quite impressive for such a young company. 

But revenue is not enough to build a successful business in 
the long run. For that, a business must become profitable—it 
must collect more revenue than it spends on generating it. 
Otherwise, it can’t pay the bills unless there’s a continued injec-
tion of cash from investors to subsidize its losses.

In 2024, OpenAI lost $5 billion. While its $3.7-billion rev-
enue was impressive, it wasn’t enough to cover its even more 
impressive expenses (https://mng.bz/PdMv). This was likely 
related to the high costs of training and serving large AI mod-
els. Some people have estimated that running ChatGPT might 
cost OpenAI $700,000 a day (https://mng.bz/JYna). Training 
GPT-4 is said to have cost the company $100 million (https://
mng.bz/wJma). Note that some models are retrained period-
ically with new data, so model training is not always a one-off 
expense. The other major AI providers, such as Anthropic and 
Mistral, are also still unprofitable. 

In addition to becoming profitable, a business is successful 
if it generates good profits—investors want good bang for their 
buck. In a competitive market, profits tend be eroded over time 
because copycats enter the market, pushing costs up and prices 
down, so it’s hard to make consistently good profits. The latter 
requires a moat, also known as a competitive advantage, which is a 
feature that protects a company’s market share from competi-
tors. When a business benefits from a moat, competitors can’t 
enter the market on equal terms, so it’s hard or too expensive 
for them to eat into your market share. 

AI providers don’t seem to have a strong moat protecting 
their market shares. In particular, the methodology behind 
LLMs (the transformer architecture discussed in chapter 1) 
is publicly known, so others can build their own competing 
models. AI providers are a bit uneasy about this. In May 2023, a 
leaked Google memo said, “We have no moat and neither does 
OpenAI. . . . The uncomfortable truth is, we aren’t positioned 
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to win this arms race and neither is OpenAI. . . .While our AI 
still holds a slight edge in terms of quality, the gap is closing 
astonishingly quickly. Open-source AI is faster, more custom-
izable, more private, and pound-for-pound more capable.” 
The memo also admitted, “We have no secret sauce,” and it 
suggested, “People will not pay for restricted AI when free, 
unrestricted alternatives are comparable in quality. We should 
consider where our value add really is” (Emmanuel Maggiori, 
2024, Siliconned).

Because there’s no secret sauce, the models created by differ-
ent providers are already converging in terms of performance 
and capabilities, including open source ones. It is conceivable 
that there will be a market shake-up at some point—some com-
panies may go out of business or discontinue their products. 
The economic case for developing large AI models is not as 
clear as it may seem initially.

In addition to the big players, numerous smaller compa-
nies are building AI-based products, which are built on top of 
foundation models—some people call them “AI wrappers.” 
For example, there are tens of companies that offer an AI tool 
to turn an ordinary picture of you into a professional-looking 
headshot. These tools are likely a thin layer added on top of 
a publicly available AI model such as Stable Diffusion, or per-
haps a fine-tuned version of one of them. This might seem like 
a winning business idea at first because you’re genuinely mak-
ing it easy to create headshots for people. However, there is no 
moat—the “secret sauce” of these apps is the prompt which, 
unless it’s very special, others will probably be able to come up 
with too. So, competition multiplies, as we can already see from 
the multiple apps offering similar functionality. It will be hard 
for these thin businesses to generate significant profits.

Finally, much has been said about a dramatic increase in busi-
ness productivity thanks to the use of AI tools. In 2023, McKin-
sey shared the following estimates (https://mng.bz/qxz6):

Generative AI’s impact on productivity could add trillions of dollars 
in value to the global economy. Our latest research estimates that 
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generative AI could add the equivalent of $2.6 trillion to $4.4 tril-
lion annually across the 63 use cases we analyzed—by comparison, 
the United Kingdom’s entire GDP in 2021 was $3.1 trillion. 

But productivity increases have been pretty much undetect-
able so far. A 2024 Economist article explains: 

Macroeconomic data . . . show little evidence of a surge in produc-
tivity . . . In America, the global centre of AI, output per hour re-
mains below its pre-2020 trend. Even in global data derived from 
surveys of purchasing managers, which are produced with a shorter 
lag, there is no sign of a productivity surge. (“What happened to 
the artificial-intelligence revolution?” 2024, July 2, The Economist)

The article also explains that the rate of adoption of AI in the 
business world has been very slow due to “concerns about data 
security, biased algorithms and hallucinations.” It concludes, 
“So far the technology has had almost no economic impact.” 
Indeed, it seems that implementing AI in business is harder 
than it may initially seem. Someone recently told me that the 
problem was the “last mile”—while AI can help you do the ini-
tial 80% of a job just fine, it’s hard to make it complete the 
remaining 20% well because of hallucinations or the need for 
painstaking customization. This makes productivity gains less 
impressive than promised.

So, I advise you to be cautious when you hear big statements 
about AI’s economic benefits. The jury is still out.

Smoke and mirrors

In November 2023, it was revealed that self-driving cars pro-
duced by Cruise weren’t quite driving themselves. An army of 
human operators in a remote-control room manually inter-
vened when the cars faced problems. This happened once 
every 2.5 to 5 miles of driving. The company had 1.5 employ-
ees doing this job for every car on the streets (https://mng 
.bz/7pM7). Business professor Thomas W. Malone said, “It 
may be cheaper just to pay a driver to sit in the car and drive it” 
(https://mng.bz/mGpW).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>

https://mng.bz/7pM7
https://mng.bz/7pM7
https://mng.bz/mGpW


 155Smoke and mirrors

A few months later, Waymo, which is Cruise’s main compet-
itor, explained in a blog article, “Much like phone-a-friend, 
when the Waymo vehicle encounters a particular situation on 
the road, the autonomous driver can reach out to a human 
fleet response agent for additional information to contextu-
alize its environment” (https://waymo.com/blog/2024/05/
fleet-response/).

Something similar happened with Amazon’s “just walk out” 
technology, installed in Amazon’s supermarkets. This technol-
ogy allegedly used AI to automatically prepare your shopping 
receipt based on footage from cameras installed on the ceiling. 
In April 2024, a reporter revealed that 1,000 remote workers 
in India were watching the videos and manually preparing or 
adjusting at least 70% of receipts (https://mng.bz/5gX8).

The use of humans to secretly power AI is often compared 
to the Mechanical Turk, a fraudulent machine constructed 
in 1770, which seemed to play chess by itself when, in reality, 
a human secretly powered it. The machine was exhibited on 
tours for 84 years.

The AI field is plagued with big promises, hype, and exagger-
ation. Mechanical Turks are just one example of this—exagger-
ation and deception come in different forms. In April 2023, for 
example, Google executives claimed that one of their AI mod-
els had learned the Bengali language even though it hadn’t 
been trained on Bengali-language text. One of them explained, 
“We discovered that with very few amounts of prompting in 
Bengali, it can now translate all of Bengali” (https://futurism 
.com/the-byte/google-ai-bengali).They argued that this was an 
example of AI having “emergent properties.” 

The news went viral. An Indian newspaper pondered, “AI 
learns Bengali on its own, should we be worried?” (https://
mng.bz/6eyp). Someone who heard about this news reached 
out to me asking if I thought we might soon face a “singularity 
event”—a dramatic explosion of AI’s capabilities—since now 
AI could learn new stuff on its own. 
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With an understanding of how current AI works (see chap-
ter 1), it’s hard to believe it could easily learn a new language 
that is not part of its training data. As it turns out, Bengali was 
indeed one of the languages the model was trained on, con-
trary to what the Google executives had said (https://mng.bz/
oKYy).

More recently, in September 2024, OpenAI launched a new 
model called OpenAI o1. The company framed it as a model 
capable of “thinking” and “reasoning.” The announcement 
explained, “We are introducing OpenAI o1, a new large lan-
guage model trained with reinforcement learning to perform 
complex reasoning. o1 thinks before it answers—it can pro-
duce a long internal chain of thought before responding to 
the user” (https://mng.bz/nROV). The article used the word 
“think” 9 times and the word “reason” 17 times. This framing 
made it sound like a major improvement and perhaps a depar-
ture from the usual autocompleting LLMs. It also sounded like 
a step toward more human-like AI—the announcement said 
the model could spend more time thinking before responding, 
“much like a person would.”

But once we look beyond the marketing material, we real-
ize that the o1 system isn’t as novel as it seems. It works as 
follows: first, an LLM is used to generate a piece of text with a 
suggested list of steps to solve the problem. These instructions 
are then added to the end of the original prompt. So, the new 
prompt contains the original task followed by a suggested 
step-by-step recipe to perform it. Afterward, this extended 
prompt is run through an LLM as usual. This mimics the 
popular chain-of-thought prompting technique, in which the 
user adds a step-by-step guideline of how to solve a problem 
to the prompt. 

The announcement emphasized that reinforcement learn-
ing was used to train the system: “Our large-scale reinforce-
ment learning algorithm teaches the model how to think 
productively using its chain of thought in a highly data-efficient 
training process.” This may sound impressive, but it’s probably 
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nothing new. OpenAI has been using reinforcement learning 
with human feedback (RLHF) to refine all its models for quite 
some time (see chapter 1). It’s likely that by “reinforcement 
learning” they meant that humans manually wrote down a 
small dataset of examples of the step-by-step instructions they 
wanted the LLM to generate, and the LLM was refined to pro-
duce such instructions more accurately.

I advise you to be cautious whenever you hear impressive AI 
announcements. I recommend keeping in mind how current 
AI works when you analyze announcements, which makes it 
easier to read between the lines and separate the wheat from 
the chaff.

Regulation

In August 2024, regulation concerning AI came into force in 
the European Union, known as the AI Act. The AI Act applies 
to AI that is used, or whose outputs are used, inside the EU, 
even if it’s developed and run elsewhere. The regulation has 
been controversial, with some people deeming it insufficient 
and others excessive. Either way, let’s have a quick discus-
sion about it because you might be affected (e.g., you might 
develop an AI-based product used in the EU) and because it 
may become the blueprint for future AI regulation elsewhere. 

The AI Act contains four special chapters that are especially 
relevant to developers and users of AI systems. We briefly com-
ment on each of them below. You can read the full text online 
(https://mng.bz/vKWm) or have a look at the official high-
level summary (https://mng.bz/4aQ5).

Prohibited AI practices

This part of the Act describes a list of AI practices that are 
outright prohibited as they’re considered serious violations. 
These include AI used to manipulate or deceive people, AI 
that exploits people’s vulnerabilities “due to their age, disabil-
ity or a specific social or economic situation,” and AI for social 
scoring, among other categories.
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High-risk systems

This part contains stipulations that apply to high-risk products. 
These are products that are already regulated by the EU and 
require a third-party conformity assessment, such as certain 
vehicles, machinery, and medical devices. It also adds a few 
more categories to the list, such as AI for targeted job ads and 
AI for visa applications. The Act imposes several requirements 
on these high-risk systems, including enabling human over-
sight “to understand its capabilities and limitations, detect and 
address issues, avoid over-reliance on the system, interpret its 
output, decide not to use it, or stop its operation.”

Transparency obligations

This part requires companies to inform users when they’re 
interacting with an AI system (“unless it's obvious or the AI is 
used for legal purposes like crime detection”), which specif-
ically applies to “an AI system that generates or manipulates 
image, audio or video content constituting a deep fake.” This 
is the case even with systems that are not deemed high risk. 
Note that if you use AI to generate content but then you thor-
oughly review the content and hold editorial responsibility 
over it, you no longer need to inform others about using AI.

By the way, don’t worry about the AI Act ruining your AI 
art—you can indicate that you’re using AI “in an appropriate 
manner that does not hamper the display or enjoyment of the 
work.”

Foundation models

This part imposes requirements on foundation models, which 
are denoted by “general-purpose AI models.” The Act requires 
the AI provider to write documentation detailing the mod-
el’s development, including “information on the data used 
for training, testing and validation” and “known or estimated 
energy consumption of the model.” 

In addition, there’s a special category of very large founda-
tion models the Act deems to pose “systemic risk.” These are 
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models that exceed a certain threshold in terms of the amount 
of training (the threshold is currently set to 1025 floating-point 
operations during training). The creators of these models must 
notify the EU of their work, and the EU might impose addi-
tional requirements to mitigate risk.

In addition, the Act approves training models from scraped 
data without authorization, so long as opt-outs are respected. 
This was approved indirectly by referring the reader to a direc-
tive that allows web scraping with the goal of data mining for 
analytics purposes. Some people have criticized this directive 
saying that “data mining” is too broad and could cover pretty 
much anything (https://mng.bz/QDa1).

Resource consumption

Training and using AI models consumes electricity and other 
resources, the scale of which has been criticized. For example, 
a journalist called AI “a disaster for the climate” (https://mng 
.bz/Xxzl).

It is difficult to gauge AI’s electricity consumption because 
providers haven’t yet reported it consistently. So, we have to 
rely on studies made by other people. These studies aren’t 
quite standardized, so they’re a bit messy and difficult to fol-
low. Some of them even mix different units within the same 
report in a chaotic way, such as kWh, CO2 emissions, and 
“equivalent number of smartphone charges” (https://arxiv 
.org/pdf/2311.16863). Sometimes researchers rely on hearsay 
and loose logical connections to calculate consumption. For 
example, one researcher deduced LLMs’ energy consumption 
indirectly from the fact that a Google executive said in an inter-
view that LLMs likely consumed 10 times more power than per-
forming a Google search (https://mng.bz/yW57).

In the following, I’ll share some results from a study pre-
sented by a group of researchers from Hugging Face and 
Carnegie Mellon University. The researchers used multi-
ple open source models with their own GPUs and measured 
consumption. 
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Table 6.1 shows electricity consumption reported by the 
researchers for text and image generation (https://arxiv.org/
pdf/2311.16863). Consumption figures are the average across 
different models studied by the researchers (individual con-
sumption per model was not reported in a consistent manner).

Table 6.1 Average electricity consumption across different models 
compared with typical household consumption 

kWh / 1,000 
responses

% of daily 
household kWh 

(US)

% of daily 
household kWh 

(UK)

Text generation 0.047 0.15% 0.5%

Image generation 2.907 9.83% 30%

Note that the figures are per 1,000 uses of the model, such 
as generating an entire response 1,000 times with an LLM 
or generating 1,000 images with a text-to-image model. One 
thousand uses of AI may seem like a lot, but it might easily be 
reached by intensive users in less than a day. For example, a 
coder using GitHub Copilot might generate hundreds of LLM-
based autocompletions every hour. Moreover, many of our 
regular online actions, such as performing a Google search or 
browsing an online store, may trigger LLM queries (Google 
is already showing AI results with searches), which would add 
more LLM usage even if the user doesn’t use LLMs directly. We 
can also imagine that a small group of graphic designers might 
generate 1,000 images in a short time frame by prompting the 
system repeatedly to create images and adjust the result.

In these experiments, image generation was much more 
power-hungry than text generation. However, the research-
ers didn’t reveal the prompt used for text generation or how 
much text was generated each time. In addition, they only 
used text-generation models on the smaller end of the spec-
trum, such as GPT-2 models, which are 100 times smaller than 
the generation that succeeded them. The authors reported 
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significant variability across models. In particular, the largest 
image-generation model consumed 6,000 times as much power 
as the smallest one. 

Note that AI models are constantly being optimized, so con-
sumption could be reduced in the future—sometimes a model 
can be made much smaller without significantly reducing its 
capabilities. For reference, I’ve added two columns to table 6.1 
that compare AI consumption with the total daily electricity 
consumption by the typical US (https://www.eia.gov/tools/
faqs/faq.php?id=97&t=3) and UK (https://mng.bz/MDQE) 
households. 

The greatest worry is not electricity consumption itself, 
but the CO2 emitted to generate it. Carbon intensity measures 
the grams of CO2 emitted per kWh consumed, and it varies 
depending on how power is generated. Table 6.2 restates the 
above results in terms of CO2 emitted based on typical car-
bon intensity in the US (https://mng.bz/av6x) and the UK 
(https://mng.bz/gaXZ; both countries produce electricity 
from different sources, so their carbon intensity differs).

Table 6.2 Comparison of the electricity consumption from table 6.1 with 
equivalent CO2 emissions of petrol cars

Grams of 
CO2 / 1,000 
responses 

(US)

Miles 
driven for 
equivalent 
CO2 (US)

Grams of 
CO2 / 1,000 
responses 

(UK)

Miles  
driven for 
equivalent 
CO2 (UK)

Text 
generation

20 0.05 miles 7.6 0.02 miles

Image 
generation

1,200 3.1 miles 470 1.2 miles

To put things in perspective, the table includes the number 
of miles you’d have to drive a car to emit the same amount of 
CO2 (https://mng.bz/av6x).

In addition to the electricity required to use AI models, 
many people have stressed that training them is a power-hungry 
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activity. It’s been estimated that training GPT-3 consumed 1,287 
MWh (https://arxiv.org/pdf/2104.10350). This amounted to 
the electricity consumed in one day by 43,000 US households 
or 134,000 UK households. Note that, while models are only 
trained sporadically, AI providers train or retrain multiple 
models a year.

Using and training AI models also consumes other 
resources, such as water for cooling down data centers. An 
article in Fortune explained, “Microsoft disclosed that its global 
water consumption spiked 34% from 2021 to 2022 (to nearly 
1.7 billion gallons, or more than 2,500 Olympic-sized swim-
ming pools), a sharp increase compared to previous years that 
outside researchers tie to its AI research” (https://mng.bz/
eyNw).

When you use AI, I recommend you keep in mind that 
“cloud computing” actually happens on Earth, inside large 
refrigerated buildings, and this can be resource-intensive and 
have an influence on the environment.

Brains and consciousness

Let’s finish on a lighter and more philosophical note. It is com-
mon to compare the structure of AI models with our own bio-
logical brains. If you remember from chapter 1, LLMs perform 
lots of projections, which are mathematical operations that 
involve matrix multiplications. Biological neurons have been 
traditionally described as performing a similar calculation, so 
many ML models, including LLMs, are categorized as artifi-
cial neural networks. In addition, some ML model architectures 
have been compared with the structure of specific parts of our 
brains. For example, convolutional neural networks (CNNs) 
are often compared with the brain’s visual cortex.

In reality, we still don’t quite understand how brains work. 
For example, the traditional understanding of the calcula-
tions made by neurons is too simple (Penrose, R., 1989, The 
Emperor's New Mind: Concerning Computers, Mind, and the Laws 
in Physics. Oxford University Press, p. 511). Over the years, 
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much more complicated models have been developed. How-
ever, these models still cannot predict what scientists observe 
when studying the workings of real neurons. For example, in 
2020, a group of researchers discovered that the dendrites that 
pass signals from one neuron to another may actually carry out 
complicated computations (Gidon, A. et al., 2020, “Dendritic 
action potentials and computation in human layer 2/3 corti-
cal neurons,” Science, 367[6473], pp. 83–87). So, they aren’t just 
wires that carry signals as previously thought. To complicate 
things even more, the fluid that surrounds neurons contains 
molecules, known as neuromodulators, which affect neurons’ 
behavior in a way that isn’t fully understood. While progress 
has been made, our understanding of neurons and brains is 
still quite poor. 

As of today, the brain of only one organism has been fully 
mapped out, meaning that researchers could create a map of 
all connections between neurons, or connectome. The organism 
is a tiny worm called C. Elegans, which has around 300 neurons 
and 7,000 connections among them. However, it was impossible 
to simulate the observed worm’s behavior, as the map just tells 
us which neurons are connected to which but not exactly how 
they work. Neuroscientist Anthony Movshon concluded that 
the “connectome by itself has not explained anything" (Jabr, 
F., 2012, “The Connectome Debate: Is Mapping the Mind of 
a Worm Worth It?” Scientific American, https://mng.bz/pKaE). 

In some cases, AI models are designed without considering 
brain structures, and the brain analogy is forced later on. For 
example, the initial articles describing CNNs did not say that 
these were inspired by the brain. The researchers claimed their 
design decisions were “guided by our prior knowledge about 
shape recognition” (LeCun, Y. et al., 1989, “Handwritten digit 
recognition with a back-propagation network,” Advances in 
Neural Information Processing Systems, 2). Years later, when CNNs 
became popular, the same researchers claimed that they were 
“directly inspired by the classic notions of simple cells and com-
plex cells in visual neuroscience, and the overall architecture is 
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reminiscent of the LGN–V1–V2–V4–IT hierarchy in the visual 
cortex ventral pathway” (LeCun, Y., Bengio, Y., & Hinton, G., 
2015, “Deep learning,” Nature, 521[7553], pp. 436–444). 

Moreover, analogies are often quite loose. For example, the 
comparison between CNNs and the visual cortex only works if 
we ignore some known things about the visual cortex that are 
not a part of CNNs (see Smart Until It’s Dumb, Chapter 2).

So, be cautious whenever you hear analogies between AI and 
brains. We still don’t understand brains, so the connection is 
likely to be highly speculative.

In addition to brain-related speculation, the latest AI boom 
has also reignited the consciousness debate. Just to cite an 
example, in 2022, the news went viral that an AI engineer 
claimed Google’s chatbot had become sentient (https://mng 
.bz/OBn2).

But, just like with brains, we don’t quite understand con-
sciousness. We do know that some parts of the brain are in 
charge of unconscious actions (like controlling heartbeat), 
while others are related to conscious perceptions (like vision), 
but we don’t understand why some parts contribute to our con-
sciousness, while others don’t. We also don’t understand how 
general anesthesia works; we just know from experience that 
anesthetics turn off consciousness temporarily, but we don’t 
know the mechanism behind it. 

In addition, there are many philosophical questions around 
consciousness that don’t have an easy answer. For example, 
some people think that any computation gives rise to con-
sciousness. Under this view, a thermostat is conscious but in 
a different way. Other people, like physicist Roger Penrose, 
think consciousness doesn’t arise from computation at all and 
thus cannot be created with digital computers. The debate is 
still ongoing, and I’m not sure we’ll ever be able to determine 
whether a thermostat is conscious.

So, I advise you to be cautious when anyone claims to have a 
definitive answer about the link between AI and consciousness. 
There is so much we don’t know. 
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As we’ve now reached the end of this book, let’s quickly 
reflect on the content covered. Throughout this book, we’ve 
discussed the power of AI—how ML innovations have pushed 
the boundaries of what AI can do. We’ve also discussed AI’s 
limitations—how sometimes AI hallucinates or isn’t as useful 
as it seems at first sight. Because AI is not all-powerful, its 
effects will vary depending on the context—sometimes AI may 
automate away jobs, but other times it may not; sometimes it 
may be the best tool for a task, but other times it may not; and 
so on. In this book, I tried to cover both sides of that debate 
and share advice accordingly. The last chapter completed our 
analysis by discussing some of the bigger questions surrounding 
AI, many of which are still unanswered and are likely to be hot 
topics in the future.

Summary

¡	The copyright debate hinges on the interpretation of fair 
use. AI providers argue that they scrape data so that their 
models can learn general patterns and that they don’t 
intend to reproduce the original data, implying it’s a fair 
use of that data. Data owners argue that AI providers use 
this data to build competing products and steal their cus-
tomers, so this isn’t fair use.

¡	The economic case for AI is not that clear. AI providers 
are still largely unprofitable and face fierce competition. 
Smaller companies that create thin AI wrappers also face 
fierce competition and may struggle to make ends meet. 
Productivity gains in the wider economy due to AI have 
not yet been observed.

¡	The AI field has a tendency to exaggerate or even deceive. 
Many products that allegedly used AI have been revealed 
to rely on remote human operators to do the job man-
ually. Big AI announcements are often incorrect (like 
Google saying a model learned a language that wasn’t in 
its training data) or spruced up (like OpenAI saying its 
model “thinks” and “reasons”).
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¡	The amount of electricity consumption (and other 
resources like water) to train and run AI models has 
received a lot of criticism, with some people arguing it 
will have detrimental environmental effects. Studies and 
reports about AI resource consumption are still scarce 
and preliminary, but we can see that it isn’t a negligible 
amount.

¡	Comparisons between AI models and the structure of the 
brain are highly speculative. We don’t quite understand 
how brains work yet, so comparisons tend to be forced. 
The same goes for AI and consciousness—it’s still an 
ongoing debate without clear-cut answers.
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appendix A
Catalog of  

generative AI tools

This appendix lists many popular generative AI tools available 
at the time of writing. I expect some parts of the AI market 
to organize as an oligopoly, meaning that there will be a few 
key players instead of a multitude. This will be especially true 
of companies that build foundation models, as model train-
ing incurs high one-off costs that few companies will be able 
to afford. So, the market of foundation models will become 
similar to the cloud computing market, which is dominated by 
three main competitors. 

Furthermore, I expect convergence in terms of models’ 
capabilities, as different foundation models are becoming 
increasingly similar. There also seems to be a tendency toward 
building multimodal AI, so you may not need to use different 
models to process text, images, and video.

In other cases, such as lighter AI apps (e.g., simple wrap-
pers around LLMs) or smaller specialized AI models, we may 
observe a multitude of competitors. This market may become 
similar to fitness apps, in which there are thousands of options 
to choose from.
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General-purpose conversational AI

Let’s first have a look at the market for general-purpose AI 
chatbots, categorized into customer-facing apps, proprietary 
foundation models, and open source foundation models.

Customer-facing apps

¡	ChatGPT—An AI assistant developed by OpenAI. It oper-
ates on a freemium basis (free access to some functionality 
and a monthly subscription to access additional features). 
It can be accessed at https://chatgpt.com. 

¡	Claude—An AI assistant developed by Anthropic, an AI 
company launched by former OpenAI employees. It oper-
ates on a freemium basis and can be accessed at https://
claude.ai. 

¡	Gemini—An AI assistant developed by Google via its sub-
sidiary Google DeepMind. It operates on a freemium basis 
and can be accessed at https://gemini.google.com. 

¡	Microsoft Copilot—An AI assistant developed by Micro-
soft. It operates on a freemium basis and can be accessed 
through various Microsoft apps, such as Word and Excel, 
as well as directly through the browser at https://copilot 
.microsoft.com. It’s also possible to access Copilot directly 
from the Windows 11 taskbar, and some PCs are already 
being manufactured with a dedicated Copilot key in their 
keyboards.

¡	Perplexity AI—A freemium AI chatbot meant to be used 
as a search engine. It relies on various foundation models 
under the hood, including some manufactured by other 
companies like OpenAI and Anthropic. It can be used at 
https://perplexity.ai. 

Foundation models (proprietary)

¡	GPT—A family of general-purpose, multimodal models 
developed by OpenAI, which includes GPT-4 and GPT-4o. 
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They can be accessed through the OpenAI API. Some of 
these models power customer-facing ChatGPT.

¡	Gemini—A family of general-purpose, multimodal models 
developed by Google, which includes Gemini 1.5 Flash 
and Gemini 1.5 Pro, the former being faster but less capa-
ble than its Pro variant. Gemini models power Google’s 
customer-facing Gemini.

¡	Claude—A family of general-purpose, multimodal models 
developed by Anthropic, which includes Claude Haiku, 
Claude Sonnet, and Claude Opus (in increasing order of 
complexity). They can be accessed through the Anthropic 
API. Some of these models power customer-facing Claude.

Foundation models (open source)

¡	Llama—A family of general-purpose, multimodal mod-
els developed by Meta. The model architecture and its 
parameters are publicly available, but training data has 
not been disclosed. These models are released under a 
special-purpose license called Meta Llama Community 
License, which imposes some usage restrictions.

¡	DeepSeek—A family of models developed by the Chinese 
AI company DeepSeek. Its most prominent model, Deep-
Seek-V3, made headlines for being as performing but 
much cheaper to train than competitors, which caused 
Nvidia's stock to crash. The code to run the model is pub-
licly available, but training code and training data haven't 
been disclosed. Its license is permissive but imposes some 
usage restrictions.

¡	Mistral—A family of models developed by French com-
pany Mistral AI, which was founded to become the Euro-
pean contender to OpenAI. The company publishes 
text-only models (e.g., Mistral Large 2) and vision-capable 
models (e.g., Pixtral 12B). They’re released under the 
highly permissive Apache 2.0 license, but the training data 
has not been disclosed.
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¡	Gemma—A family of general-purpose models developed 
by Google as an open source counterpart to its propri-
etary Gemini models. Some models are text-only (e.g., 
Gemma 2), while others can handle input images (e.g., 
PaliGemma). The models are released under the permis-
sive Apache 2.0 license, but the training data has not been 
disclosed.

¡	Phi—A family of lightweight general-purpose language 
models developed by Microsoft, including Phi-3 Mini and 
Phi-3 Medium. They’re released under the permissive 
MIT License, but the training data has not been disclosed.

Coding assistants

The following are popular tools that help software engineers 
write code:

¡	GitHub Copilot—An AI coding assistant that can be in -
stalled as a plug-in on multiple popular IDEs. It can be 
used mainly in two different ways. One way is to type into 
a chat window to interact with a chatbot and ask questions 
about the code or ask it to perform tasks. The other way 
is for the assistant to autocomplete your code as you type 
it—you can accept suggestions by pressing the Tab key on 
your keyboard. You must pay a monthly subscription to 
use it, but there is a free trial.

¡	Cursor—A standalone, AI-powered IDE, built on top of 
Visual Studio. You can chat with the AI assistant or accept 
code autocompletions by pressing the Tab key. There is 
a free version with a limited number of completions and 
paid subscriptions with a higher number or an unlimited 
number of completions.

¡	JetBrains AI Pro—The company behind popular IDEs such 
as PyCharm and IntelliJ offers an add-on subscription to 
access an AI assistant. You can chat with the assistant about 
the code, and you can also accept autocompletions by 
pressing the Tab key. These autocompletions are powered 

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



 171Image generation

by their cloud-based LLM, but users not subscribed to the 
AI add-on can still benefit from simpler autocompletions 
run locally. Users must pay a monthly license to add the AI 
assistant to its IDEs. 

Image generation

We now discuss AI for image generation, categorized into 
customer-facing apps, proprietary foundation models, and 
open source foundation models.

Customer-facing apps

¡	Midjourney—A tool to generate images from a textual 
description (and optionally reference images to influence 
the output). The app is used directly on Midjourney’s web-
site (https://midjourney.com) or through a Discord chat. 
The app initially generates four different image variants of 
size 1024 × 1024 each. You can then pick your favorite one, 
refine it, and increase its size (or upscale it). You must pay 
a monthly fee to access Midjourney, with different plans 
imposing different usage limits.

¡	Dall-E—OpenAI’s flagship text-to-image app. It has now 
been integrated into ChatGPT, so it can be used directly 
by asking ChatGPT to produce images (although OpenAI 
still offers a dedicated DALL-E interface on https://
chatpgt.com). Only paid OpenAI subscribers can access it.

Foundation models (proprietary)

¡	Dall-E—OpenAI provides API access to its image-
generation models. Users pay per image generated, with 
prices varying according to the model’s version and image 
size.

¡	Flux.1 Pro—A text-to-image model developed by Black 
Forest Labs, which has been praised for its photorealism. 
It can be accessed through various APIs from providers 
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that have partnered up with Black Forest Labs, which 
include Replicate and Together AI. 

Foundation models (open source)

¡	Stable Diffusion—A family of text-to-image models devel-
oped by Stability AI, built using a diffusion approach (see 
chapter 1). In addition to making the models publicly 
available, the company has released the data used to train 
its models and the algorithms used to filter and curate the 
data. Stable Diffusion is released under an open source 
license with usage restrictions. In particular, users are not 
allowed to “generate or disseminate verifiably false infor-
mation,” “harm minors,” or “provide medical advice,” 
among other restrictions (https://mng.bz/YDpe).

¡	Flux.1 Schnell and Flux.1 Dev—These models, derived from 
proprietary Flux.1 Pro, have been made open source by 
Black Forest Labs. Flux.1 Schnell has been released under 
the permissive Apache 2.0 license. The more powerful but 
slower Flux.1 Dev has been released under a license that 
forbids commercial use. Training data has not been made 
publicly available.

DIY

We finish with some of the tools and libraries commonly used 
to fine-tune or create your own AI models:

¡	Hugging Face—This company hosts the de facto repository 
of AI models. Open source models are usually published 
there. The company also maintains a suite of libraries, 
including Transformers, which helps use pretrained mod-
els. The company also maintains libraries that help fine-
tune models easily.

¡	PyTorch—A popular Python library used to create and 
train machine learning models. Historically, PyTorch has 
been favored by the academic community, which uses the 
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library to quickly prototype and analyze models, although 
it seems to be growing in popularity elsewhere. Hugging 
Face’s Transformers library is built on top of PyTorch. 

¡	TensorFlow—A popular alternative to PyTorch. It is usually 
favored by those who deploy high-performing ML models 
in production, although it seems to be losing popularity to 
PyTorch as of late. The GPT-2 model, whose code was made 
publicly available by OpenAI, uses TensorFlow (https://
github.com/openai/gpt-2/). OpenAI has switched to 
PyTorch as its preferred library since then (https://
openai.com/index/openai-pytorch/).
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Guidelines for selecting AI tools

Proprietary vs. open source AI

Proprietary AI
Best for…

Open source AI
Best for…

 ■ Done-for-you solution

 ■ Easy to get started

 ■ No specialized knowledge 
required

 ■ Small-scale use, in which pay-as-
you-go AI is cheaper than main-
taining your own infrastructure

 ■ Self-hosting, so that you 
enjoy better governance and 
transparency

 ■ Large-scale use, in which main-
taining your own infrastructure is 
cheaper than pay-as-you-go AI

 ■ Model customization (e.g., 
fine-tuning)

Off-the-shelf vs. fine-tuned AI

Off-the-shelf AI
Best when…

Fine-tuned AI
Best when…

 ■ Prompt engineering techniques 
work well.

 ■ It is okay to use proprietary AI.

 ■ You can afford large models.

 ■ You prioritize ease of use.

 ■ You want highly customized 
outputs, and you’ve exhausted 
other options.

 ■ You need to use smaller models 
(for example, for self-hosting 
them).

 ■ You have ML expertise and 
access to computing resources.

Customer-facing AI apps vs. foundation models

Customer-facing AI apps
Suitable for…

Foundation models
Suitable for…

 ■ Assistance with a specific task

 ■ End users

 ■ Powering AI-based apps

 ■ Engineers 
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