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preface

“Can you describe a situation in which two threads of execution would cause a dead-
lock?” asked my interviewer. After I gave the correct answer, he probed further: “And
what would you do in that situation to make sure the code avoids the deadlock?” Luck-
ily, I also knew the solution. The interviewer proceeded to show me some code and
inquire whether I could spot anything wrong with it. The code had a bad race condi-
tion, which I highlighted, and I suggested ways to resolve the problem.

This exchange came up during my third and final interview for a core backend
developer position at an international tech company in London. In this role, I was
exposed to some of the most challenging problems in programming—problems
requiring that I sharpen my skills in developing concurrent, low-latency, and high-
throughput services. That was more than 15 years ago.

Throughout my career in technology, over 20+ years, many circumstances have
changed: developers can now work from anywhere, computer languages have evolved
to model more-complex businesses, and geeks have become cool since they now run
the giant tech companies. However, a few aspects have remained constant: program-
mers will always struggle to name variables, a great many problems can be solved by
turning systems off and then on again, and concurrent programming skills are still in
short supply.

The tech industry lacks programmers skilled in concurrency because concurrent
programming is perceived as extremely challenging. Many developers even dread
using concurrent programming to solve problems. The perception in the tech indus-
try is that this is an advanced topic, reserved only for hard-core computer nerds.
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xii PREFACE

There are many reasons for this. Developers are not familiar with the concepts and
tools available for managing concurrency, and sometimes they fail to recognize how
concurrency can be modeled programmatically. This book is my attempt to address
this problem and explain concurrent programming in a pain-free manner.
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about this book

Learn Concurrent Programming with Go was written to help developers increase their
programming skills with more advanced programming in concurrency. Go was chosen
as the language in which to present examples because it provides a wide range of tools
for fully exploring this concurrent programming world. In Go, these tools are quite
intuitive and easy to grasp, letting us focus on the principles and best practices of
concurrency.

After reading this book, you will be able to

Use concurrent programming to write software that is responsive, high-
performance, and scalable

Grasp the advantages, limits, and properties of parallel computing

Distinguish between memory sharing and message passing

Utilize goroutines, mutexes, readers-writer locks, waitgroups, channels, and
condition variables—and, additionally, understand how to build some of these
tools

Identify typical errors to watch for when dealing with concurrent executions
Improve your programming skills in Go with more advanced, multithreading
topics

Who should read this book

This book is for readers who already have some programming experience and would
like to learn about concurrency. The book assumes no prior knowledge of concurrent
programming. Though the ideal reader would already have some experience with Go
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ABOUT THIS BOOK

or another C-syntax-like language, this book is also well suited for developers coming
from any language—if some effort is spent learning Go’s syntax.

Concurrent programming adds another dimension to your programming: pro-
grams stop being a set of instructions executing one after the other. This makes it a chal-
lenging topic, and it requires you to think about programs in a different way. Thus,
being already proficient in Go is not as important as possessing curiosity and drive.

This book does not focus on explaining Go’s syntax and features but instead uses
Go to demonstrate concurrency principles and techniques. Most of these techniques
can be applied to other languages. For Go tutorials and documentation, see https://
go.dev/learn.

How this book is organized: A road map

This book has three parts with 12 chapters. Part 1 introduces the fundamentals of con-
current programming and communication using memory sharing:

Chapter 1 introduces concurrent programming and talks about some of the
laws governing parallel execution.

Chapter 2 discusses the various ways we can model concurrency and the abstrac-
tions provided by operating systems and the Go runtime. The chapter also com-
pares concurrency and parallelism.

Chapter 3 talks about inter-thread communication using memory sharing, and
it introduces race conditions.

Chapter 4 explores different types of mutexes as solutions to some race condi-
tions. It also shows how to implement a basic readers-writer lock.

Chapter 5 shows how to use condition variables and semaphores to synchronize
concurrent executions. This chapter also describes how to build a semaphore
from scratch and improve the readers-writer lock developed in the previous
chapter.

Chapter 6 demonstrates how to build and use more complex synchronization
mechanisms, such as waitgroups and barriers.

Part 2 discusses how multiple executions can communicate using message passing
instead of memory sharing:

Chapter 7 describes message passing using Go’s channels. This chapter shows
the various ways channels can be used, and it illustrates how channels can be
built on top of memory sharing and synchronization primitives.

Chapter 8 explains how we can combine multiple channels by using Go’s select
statement. In addition, this chapter gives some guidelines on choosing memory
sharing versus message passing when developing concurrent programs.
Chapter 9 provides examples and best practices for reusing common message-
passing patterns. This chapter also demonstrates the flexibility of having a lan-
guage (such as Go) where channels are first-class objects.
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Part 3 explores common concurrency patterns and some more advanced topics:

Chapter 10 lists techniques for breaking down problems so that programs can
run more efficiently by employing concurrent programming.

Chapter 11 illustrates how deadlock situations can develop when we have con-
currency and describes various techniques for avoiding them.

Chapter 12 deals with the internals of mutexes. It explains how mutexes are
implemented in both the kernel and user space.

How to read the book

Developers with no experience in concurrency should view the book as a journey,
starting with the first chapter and following through to the end. Each chapter teaches
new skills and techniques that build on the knowledge acquired in previous ones.

Developers who already have some experience with concurrency can read chapters
1 and 2 as a refresher on how operating systems model concurrency and then decide
whether to skip to some of the more advanced topics. For example, a reader who is
already familiar with race conditions and mutexes may choose to continue learning
about condition variables in chapter 5.

About the code

The source code in the book’s listings is in a fixed-width font to distinguish it from
the rest of the document, with keywords in Go set in bold. Code annotations accom-
pany many of the listings, highlighting important concepts.

To download all the source code in the book, including the exercise solutions, go to
https://github.com/cutajarj/ConcurrentProgrammingWithGo. The complete code
for the examples in the book is also available for download from the Manning website
at https://www.manning.com/books/learn-concurrent-programming-with-go. You can
get executable snippets of code from the liveBook (online) version of this book at
https://livebook.manning.com/book/learn-concurrent-programming-with-go.

The source code in this book requires the Go compiler, which can be downloaded
from https://go.dev/doc/install. Note that some of the source code in this book will
not work correctly on Go’s online playground—the playground is blocked from cer-
tain operations, such as opening web connections.

liveBook discussion forum

Purchase of Learn Concurrent Programming with Go includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features,
you can attach comments to the book globally or to specific sections or paragraphs.
It’s a snap to make notes for yourself, ask and answer technical questions, and receive
help from the author and other users. To access the forum, go to https://livebook
.manning.com/book/learn-concurrent-programming-with-go/discussion. You can
also learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/discussion.
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ABOUT THIS BOOK

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s

website as long as the book is in print.
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Part 1

Foundations

ow can we write instructions so that some actions are performed at the
same time as others? In part 1 of this book, we’ll explore the basics of how we
can model concurrency in our programming. We’ll see how modeling and exe-
cuting concurrent programs require help from the hardware, the operating sys-
tem, and the programming language.

When we develop concurrent programs, we encounter a new set of program-
ming errors that are not present in sequential code. Known as race conditions,
these errors can be some of the most difficult to identify and fix. A huge part of
concurrent programming involves learning how to prevent these types of bugs
in our code. In this part of the book, we’ll learn about race conditions and then
discuss various techniques for avoiding them.
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Stepping into concurrent

programming

This chapter covers

= |ntroducing concurrent programming
= Improving performance with concurrent execution
= Scaling our programs

Meet Jane Sutton. Jane has been working at HSS International Accountancy as a
software developer for three months. In her latest project, she has been looking at
a problem in the payroll system. The payroll software module runs at the end of the
month after the close of business, and it computes all the salary payments for the
HSS clients’ employees. Jane’s manager has arranged a meeting with the product
owner, the infrastructure team, and a sales representative to try to get to the bottom
of the problem. Unexpectedly, Sarika Kumar, CTO, has joined the meeting room
via video call.

Thomas Bock, the product owner, starts: “I don’t understand. The payroll mod-
ule has been working fine for as long as I can remember. Suddenly, last month, the
payment calculations weren’t completed on time, and we got loads of complaints
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from our clients. It made us look really unprofessional to Block Entertainment, our
new and biggest client yet, with them threatening to go to our competitor.”

Jane’s manager, Francesco Varese, chimes in: “The problem is that the calculations
are too slow and take too long. They are slow because of their complex nature, consid-
ering many factors such as employee absences, joining dates, overtime, and a thou-
sand other factors. Parts of the software were written more than a decade ago in C++.
There are no developers left in the firm who understand how this code works.”

“We’re about to sign up our biggest client ever, a company with over 30,000
employees. They’ve heard about our payroll problem, and they want to see it resolved
before they proceed with the contract. It’s really important that we fix this as soon as
possible,” replies Rob Gornall from the Sales and Acquisitions department.

“We’ve tried adding more processor cores and memory to the server that runs the
module, but this made absolutely no difference. When we execute the payroll calcula-
tion using test data, it’s taking the same amount of time, no matter how many
resources we allocate. It’s taking more than 20 hours to calculate all the clients’ pay-
rolls, which is too long for our clients,” continues Frida Norberg from Infrastructure.

It’s Jane’s turn to finally speak. As the firm’s newest employee, she hesitates a little
but manages to say, “If the code is not written in a manner that takes advantage of the
additional cores, it won’t matter if you allocate multiple processors. The code needs to
use concurrent programming for it to run faster when you add more processing
resources.”

Everyone seems to have acknowledged that Jane is the most knowledgeable about
the subject. There is a short pause. Jane feels as if everyone wants her to come up with
some sort of answer, so she continues. “Right. Okay. I've been experimenting with a
simple program written in Go. It divides the payroll into smaller employee groups and
then calls the payroll module with each group as input. I'’ve programmed it so that it
calls the module concurrently using multiple goroutines. I'm also using a Go channel
to load-balance the workload. At the end, I have another goroutine that collects the
results via another channel.”

Jane looks around quickly and sees blank looks on everyone’s faces, so she adds,
“In simulations, it’s at least five times faster on the same multicore hardware. There
are still a few tests to run to make sure there are no race conditions, but I'm pretty
sure that I can make it run even faster, especially if I get some help from accounting to
migrate some of the old C++ logic into clean Go concurrent code.”

Jane’s manager has a big smile on his face now. Everyone else in the meeting seems
surprised and speechless. The CTO finally speaks up and says, “Jane, what do you
need to get this done by the end of the month?”

Concurrent programming is a skill that is increasingly sought after by tech compa-
nies. It is a technique used in virtually every field of development, from web develop-
ment to game programming, backend business logic, mobile applications, crypto, and
many others. Businesses want to utilize hardware resources to their full capacity, as
this saves them time and money. To accomplish this, they understand that they have to
hire the right talent—developers who can write scalable concurrent applications.
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1.2

1.2 Interacting with a concurrent world 5

About concurrency

In this book, we will focus on principles and patterns of concurrent programming.
How can we program instructions that happen at the same time? How can we manage
concurrent executions so they don’t step over each other? What techniques should we
use to have executions collaborate toward solving a common problem? When and why
should we use one form of communication over another? We will answer all these
questions and more by making use of the Go programming language. Go gives us a
full set of tools to illustrate these concepts.

If you have little or no experience in concurrency but have some experience in Go
or a similar C-style language, this book is ideal. This book starts with a gentle introduc-
tion to concurrency concepts in the operating system and describes how Go uses them
to model concurrency. We’ll then move on to explain race conditions and why they
occur in some concurrent programs. Later, we’ll discuss the two main ways we can
implement communication between our executions: memory sharing and message
passing. In the final chapters of this book, we’ll discuss concurrency patterns, dead-
locks, and some advanced topics such as spinning locks.

Apart from helping us to get hired or promoted as developers, knowing concurrent
programming gives us a wider set of skills that we can employ in new scenarios. For exam-
ple, we can model complex business interactions that happen at the same time. We can
also use concurrent programming to improve our software’s responsiveness by picking
up tasks swiftly. Unlike sequential programming, concurrent programming can make
use of multiple CPU cores, which allows us to increase the work done by our programs
by speeding up their execution. Even with a single CPU core, concurrency offers ben-
efits because it enables time-sharing and lets us perform tasks while we’re waiting for
I/0 operations to complete. Let’s now look at some of these scenarios in more detail.

Interacting with a concurrent world

We live and work in a concurrent world. The software that we write models complex
business processes that interact concurrently. Even the simplest of businesses typically
have many of these concurrent interactions. For example, consider multiple people
ordering online at the same time or a consolidation process grouping packages
together while coordinating with ongoing shipments, as shown in figure 1.1.

In our everyday life, we deal with concurrency all the time. Every time we drive a
car, we interact with multiple concurrent actors, such as other cars, cyclists, and pedes-
trians. At work, we may put a task on hold while we’re waiting for an email reply and
pick up the next task. When cooking, we plan our steps so we maximize our productiv-
ity and shorten the cooking time. Our brain is perfectly comfortable managing con-
current behavior. In fact, it does this all the time without us even noticing.

Concurrent programming is about writing code so that multiple tasks and pro-
cesses can execute and interact at the same time. If two customers place an order
simultaneously and only one stock item remains, what happens? If the price of a flight
ticket goes up every time a client buys a ticket, what happens when multiple tickets are
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Figure 1.1 A consolidation shipping process showing complex concurrent interactions

booked at the same exact instant? If we have a sudden increase in load due to extra
demand, how will our software scale when we increase the processing and memory
resources? These are all scenarios that developers deal with when they are designing
and programming concurrent software.

1.3 Increasing throughput

For the modern developer, it is increasingly important to understand how to program
concurrently. This is because the hardware landscape has changed over the years to
benefit this type of programming.

Prior to multicore technology, processor performance increased proportionally to
clock frequency and transistor count, roughly doubling every two years. Processor
engineers started hitting physical limits due to overheating and power consumption,
which coincided with the explosion of more mobile hardware, such as notebooks and
smartphones. To reduce excessive battery consumption and CPU overheating while
increasing processing power, engineers introduced multicore processors.

In addition, the rise of cloud computing services has given developers easy access
to large, cheap processing resources where they can run their code. This extra compu-
tational power can only be harnessed effectively if our code is written in a manner that
takes full advantage of the extra processing units.

DEFINITION Horizontal scaling is when we improve system performance by dis-
tributing the load over multiple processing resources, such as processors and
server machines (see figure 1.2). Vertical scaling is when we improve the exist-
ing resources, such as by getting a faster processor.
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Figure 1.2 Improving performance by adding more processors

Having multiple processing resources means we can scale horizontally. We can use the
extra processors to execute tasks in parallel and finish them more quickly. This is only
possible if we write code in a way that takes full advantage of the extra processing
resources.

What about a system that has only one processor? Is there any advantage to writing
concurrent code if our system does not have multiple processors? It turns out that
writing concurrent programs has a benefit even in this scenario.

Most programs spend only a small proportion of their time executing computa-
tions on the processor. Think, for example, about a word processor that waits for
input from the keyboard, or a textfile search utility that spends most of its running
time waiting for portions of the text files to load from disk. We can have our program
perform different tasks while it’s waiting for I/O. For example, the word processor
could perform a spell check on the document while the user is thinking about what to
type next. We can have the file search utility look for a match with the file that we
already loaded in memory while we are reading the next file into another portion
of memory.

As another example, think of cooking or baking a favorite dish. We can make more
effective use of our time if, while the dish is in the oven or on the stove, we perform
some other actions instead of just waiting around (see figure 1.3). In this way, we are
making more effective use of our time, and we are more productive. This is analogous
to our program executing other instructions on the CPU while it waits for a network
message, user input, or a file to be written. This means our program can get more
work done in the same amount of time.
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Figure 1.3 Even with one processor, we can improve performance if we utilize idle times.
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Improving responsiveness

Concurrent programming makes our software more responsive because we don’t
need to wait for one task to finish before responding to a user’s input. Even if we have
one processor, we can always pause the execution of a set of instructions, respond to
the user’s input, and then continue with the execution while we’re waiting for the
next user’s input.

If we again think of a word processor, multiple tasks might be running in the back-
ground while we are typing. There is a task that listens to keyboard events and displays
each character on the screen. We might also have a task that checks our spelling and
grammar in the background. Another task might be running to give us stats on our
document (word count, page count, etc.). Periodically, we may have another task that
autosaves our document. All these tasks running together give the impression that
they are somehow running simultaneously, but what’s happening is that these tasks
are being fast-switched by the operating system on CPUs. Figure 1.4 illustrates a sim-
plified timeline showing these three tasks executing on a single processor. This inter-
leaving system is implemented by using a combination of hardware interrupts and
operating system traps.

We’ll go into more detail on operating systems and concurrency in the next chap-
ter. For now, it’s important to realize that if we didn’t have this interleaving system, we
would have to perform each task one after the other. We would have to type a sen-
tence, then click the spell check button, wait for it to complete, and then click
another button and wait for the document stats to appear.
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Programming concurrency in Go

Go is a very good language to use when learning about concurrent programming
because its creators designed it with high-performance concurrency in mind. Their
aim was to produce a language that was efficient at runtime, readable, and easy to use.

Goroutines at a glance

Go uses a lightweight construct, called a goroutine, to model the basic unit of concur-
rent execution. As we shall see in the next chapter, goroutines give us a system of user-
level threads running on a set of kernel-level threads and managed by Go’s runtime.

Given the lightweight nature of goroutines, the premise of the language is that we
should focus mainly on writing correct concurrent programs, letting Go’s runtime
and hardware mechanics deal with parallelism. The principle is that if you need some-
thing to be done concurrently, create a goroutine to do it. If you need many things
done concurrently, create as many goroutines as you need, without worrying about
resource allocation. Then, depending on the hardware and environment that your
program is running on, your solution will scale.

In addition to goroutines, Go provides us with many abstractions that allow us to
coordinate the concurrent executions on a common task. One of these abstractions is
known as a channel. Channels allow two or more goroutines to pass messages to each
other. This enables the exchange of information and synchronization of the multiple
executions in an easy and intuitive manner.

Modeling concurrency with CSP and primitives

In 1978, C.A.R. Hoare first described communicating sequential processes (CSP) as a for-
mal language for expressing concurrent interactions. Many languages, such as Occam
and Erlang, have been influenced by CSP. Go tries to implement many of CSP’s ideas,
such as the use of synchronized channels.

This concurrency model of having isolated goroutines communicating and
synchronizing using channels (see figure 1.5) reduces the risk of race conditions—
types of programming errors that occur in bad concurrent programming and that are
typically very hard to debug and lead to data corruption and unexpected behavior. This
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type of modeling concurrency is more akin to how concurrency happens in our
everyday lives, such as when we have isolated executions (people, processes, or
machines) working concurrently, communicating with each other by sending messages
back and forth.
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employee details
reader
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Figure 1.5 A concurrent Go application using CSP

Depending on the problem, the classic concurrency primitives used with memory
sharing (such as mutexes and condition variables, found in many other languages)
will sometimes do a better job and result in better performance than using CSP-style
programming. Luckily for us, Go provides us with these tools in addition to the CSP-
style tools. When CSP is not the appropriate model to use, we can fall back on the
other classic primitives.

In this book, we will purposely start with memory sharing and synchronization
using classic primitives. The idea is that by the time we get to discussing CSP-style con-
current programming, you will have a solid foundation in the traditional locking and
synchronization primitives.

Building our own concurrency tools

In this book, you will learn how to use various tools to build concurrent applications.
This includes concurrency constructs such as mutex, condition variables, channels,
semaphores, and so on.

Knowing how to use these concurrency tools is good, but what about understand-
ing their inner workings? Here, we’ll go one step further and take the approach of
building them together from scratch, even if they are available in Go’s libraries. We
will pick common concurrency tools and see how they can be implemented using
other concurrency primitives as building blocks. For example, Go doesn’t come with a
bundled semaphore implementation, so apart from understanding how and when to
use semaphores, we’ll go about implementing one ourselves. We’ll also do this for
some of the tools that are available in Go, such as waitgroups and channels.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



1.6

1.6.1

1.6 Scaling performance 11

This idea is analogous to having the knowledge to implement well-known algo-
rithms. We might not need to know how to implement a sorting algorithm to use a
sorting function; however, learning how the algorithm works exposes us to different
scenarios and new ways of thinking, making us better programmers. We can then
apply those scenarios to different problems. In addition, knowing how a concurrency
tool is built allows us to make better-informed decisions about when and how to use it.

Scaling performance

Performance scalability is the measure of how well a program speeds up in proportion to
the increase in the number of resources available to the program. To understand this,
let’s try to make use of a simple analogy.

Imagine a world where we are property developers. Our current project is to build
a small multi-story residential house. We give the architectural plan to a builder, and
they set off to finish the small house. The work is all completed in a period of eight
months.

As soon as that project is finished, we get another request for the same build but in
another location. To speed things up, we hire two builders instead of one. This time
around, the builders complete the house in just four months.

The next time we are asked to build the same house, we hire even more help, so
that the house is finished quicker. This time we pay four builders, and it takes them
two and a half months to complete. The house has cost us a bit more to build than the
previous one. Paying four builders for two and a half months costs more than paying
two builders for four months (assuming they all charge the same rate).

We repeat the experiment twice more, once with 8 builders and then with 16. With
both 8 and 16 builders, the house takes two months to complete. It seems that no mat-
ter how many hands we put on the job, the build cannot be completed in less than two
months. In geek speak, we say that we have hit our scalability limit. Why does this hap-
pen? Why can’t we continue to double our resources (people, money, or processors)
and always reduce the time spent by half?

Amdahl’s law

In 1967, Gene Amdahl, a computer scientist, presented a formula at a conference that
measured speedup with regard to a problem’s parallel-to-sequential ratio. This
became known as Amdahl’s law.

DEFINITION Amdahl’s law states that the overall performance improvement
gained by optimizing a single part of a system is limited by the fraction of time
that the improved part is actually used.

In our house build scenario, the scalability is limited by various factors. For starters,
our approach to solving the problem might be limiting us. For example, one cannot
construct the second floor before constructing the first. In addition, several parts of
the build can only be done sequentially. For example, if a single road leads to the
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building site, only one transport can use the road at any point in time. In other words,
some parts of the building process are sequential (one after the other), and other
parts can be done in parallel (at the same time). These factors influence and limit the
scalability of our task.

Amdahl’s law tells us that the non-parallel parts of an execution act as a bottleneck
and limit the advantage of parallelizing the execution. Figure 1.6 shows this relationship
between the theoretical speedup obtained as we increase the number of processors.

Amdahl's law
20 e
"
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Figure 1.6 The speedup against the number of processors according to Amdahl’s law

If we apply this chart to our construction problem, when we use a single builder and
they spend 5% of their time on the parts that can only be done sequentially, the scal-
ability follows the topmost line in our chart (95% parallel). This sequential portion is
the part that can only be done by one person, such as trucking in the building materi-
als through a narrow road.

As you can see from the chart, even with 512 people working on the construction,
we would only finish the job about 19 times faster than if we had just 1 person. After
this point, the situation does not improve much. We’ll need more than 4,096 builders
to finish the project just 20 times faster. We hit a hard limit around this number. Con-
tracting more workers does not help at all, and we would be wasting our money.

The situation is even worse if a lower percentage of work is parallelizable. With
90%, we would hit this scalability limit around the 512-workers mark. With 75%, we
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get there at 128 workers, and with 50% at just 16 workers. Notice that it’s not just this
limit that goes down—the speedup is also greatly reduced. When the work is 90%,
75%, and 50% parallelizable, we get maximum speedups of 10, 4, and 2, respectively.

Amdahl’s law paints a pretty bleak picture of concurrent programming and paral-
lel computing. Even with concurrent code that has a tiny fraction of serial processing,
the scalability is greatly reduced. Thankfully, this is not the full picture.

Gustafson’s law

In 1988, two computer scientists, John L. Gustafson and Edwin H. Barsis, reevaluated
Amdahl’s law and published an article addressing some of its shortcomings (“Reevalu-
ating Amdah’s Law,” https://dl.acm.org/doi/pdf/10.1145/42411.42415). The article
gives an alternative perspective on the limits of parallelism. Their main argument is that,
in practice, the size of the problem changes when we have access to more resources.

To continue with our house-building analogy, if we did have thousands of builders
available at our disposal, it would be wasteful to put them all into building a small
house when we have future projects in the pipeline. Instead, we would try to put the
optimal number of builders on our house construction and allocate the rest of the
workers to other projects.

Suppose we were developing software and we had a large number of computing
resources. If we noticed that utilizing half the resources resulted in the same software
performance, we could allocate the extra resources to do other things, such as
increasing the accuracy or quality of that software in other areas.

The second argument against Amdahl’s law is that when you increase the prob-
lem’s size, the non-parallel part of the problem typically does not grow in proportion
with the problem size. In fact, Gustafson argues that for many problems, this remains
constant. Thus, when you take these two points into account, the speedup can scale
linearly with the available parallel resources. This relationship is shown in figure 1.7.

Gustafson’s law tells us that as long as we find ways to keep our extra resources busy,
the speedup should continue to increase and not be limited by the serial part of the
problem. However, this is only true if the serial part stays constant as we increase the
problem size, which, according to Gustafson, is the case in many types of programs.

To fully understand both Amdahl’s and Gustafson’s laws, let’s take a computer
game as an example. Let’s say a particular computer game with rich graphics was writ-
ten to make use of multiple computing processors. As time goes by and computers
become more powerful, with more parallel processing cores, we can run that same
game with a higher frame rate, giving us a smoother experience. Eventually, we get to
a point where we’re adding more processors, but the frame rate is not increasing fur-
ther. This happens when we hit the speedup limit. No matter how many processors we
add, the game won’t run with higher frame rates. This is what Amdahl’s law is telling
us—that there is a speedup limit for a particular problem of fixed size if it has a non-
parallel portion.
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Figure 1.7 The speedup against the number of processors according to Gustafson’s law

However, as technology improves and processors get more cores, the game designers
will put those extra processing units to good use. Although the frame rate might not

increase, the game can now contain more graphic detail and higher resolution due to
the extra processing power. This is Gustafson’s law in action. When we increase the
resources, there is an expectation of an increase in the system’s capabilities, and the

developers will make good use of the extra processing power.

Summary

Concurrent programming allows us to build more responsive software.
Concurrent programs can also provide increased speedup when running on
multiple processors.

We can increase throughput even when we have only one processor if our con-
current programming makes effective use of the I/O wait times.

Go provides us with goroutines, which are lightweight constructs for modeling
concurrent executions.

Go provides us with abstractions, such as channels, that enable concurrent exe-
cutions to communicate and synchronize.

Go allows us the choice of building our concurrent application either using the
communicating sequential processes (CSP)-style model or using the classical
primitives.
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Using a CSP-style model, we reduce the chance of certain types of concurrent
errors; however, for certain problems, using the classical primitives will give us
better results.

Amdahl’s law tells us that the performance scalability of a fixed-size problem is
limited by the non-parallel parts of an execution.

Gustafson’s law tells us that if we keep on finding ways to keep our extra
resources busy, the speedup should continue to increase and not be limited by
the serial part of the problem.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



Dealing with threads

This chapter covers

Modeling concurrency in operating systems
Differentiating between processes and threads
Creating goroutines

Differentiating between concurrency
and parallelism

The operating system is the gatekeeper of our system resources. It decides when
and which processes are given access to the various system resources, including pro-
cessing time, memory, and network. As developers, we don’t necessarily need to be
experts on the inner workings of the operating system. However, we need to have a
good understanding of how it operates and the tools it provides to make our lives as
programmers easier.

We’ll start this chapter by looking at how the operating system manages and
allocates resources to run multiple jobs concurrently. In the context of concurrent
programming, the operating system gives us various tools to help manage this con-
currency. Two of these tools, processes and threads, represent the concurrent
actors in our code. They may execute in parallel or interleave and interact with
each other. We will look, in some detail, at the differences between the two. Later,

16
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we will also discuss goroutines and where they sit in this context, and then we’ll create
our first concurrent Go program using goroutines.

Multiprocessing in operating systems

How does an operating system provide abstractions to build and support concurrent
programs? Multiprocessing (sometimes referred to as multiprogramming) is the term
used when an operating system can handle more than one task at a time. This is
important because it enables us to make effective use of the CPU. Whenever the CPU
is idling, such as when the current job is waiting for user input, we can have the oper-
ating system choose another job to run on the CPU.

NOTE When it comes to multiprocessing, modern operating systems have var-
ious procedures and components to manage their multiple jobs. Understand-
ing this system and how it interacts with our programming can help us
program in a more effective manner.

Whenever we execute a job on our system, whether it’s our home laptop or a cloud
server, that execution transitions through various states. To fully understand the life
cycle that a job goes through, let’s pick an example and walk through these states.
Let’s say we run a command on our system to search for a particular string in a large
text file. Suppose our system is a UNIX platform, and we use this command:

grep 'hello' largeReadme.md

Figure 2.1 shows an example of the path taken by this job.
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Figure 2.1 The operating system’s job states in a single-CPU system
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NOTE On some operating systems (such as Linux), the ready queue is known
as the run queue.

Let’s have a look at each of these states, one step at a time:

A user submits the string-search job for execution.
The operating system places this job in the job queue. The job goes into this
queue in cases when it is not yet ready to run.
Once our text search is in a ready-to-run state, it moves to the ready queue.
At some point, when the CPU is free, the operating system picks up the job
from the ready queue and starts executing it on the CPU. At this stage, the pro-
cessor is running the instructions contained in the job.
As soon as our text-search job requests an instruction to read from a file, the
operating system removes the job from the CPU and places it in an I/O waiting
queue. Here it waits until the requested I/O operation returns data. If another
job is available in the ready queue, the OS will pick it up and execute it on the
CPU, thus keeping the processor busy.
The device will perform and complete the I/O operation (reading some bytes
from the text file).
Once the I/O operation is complete, the job moves back to the ready queue.
It’s now waiting for the operating system to pick it up so that it can continue its
execution. The reason for this wait period is that the CPU might be busy exe-
cuting other jobs.
At some point, the CPU is free again, and the OS picks up the text-search job
and continues executing its instructions on the CPU. The typical instructions in
this case would be to try to find a match in the loaded text from the file.
At this point, the system might raise an interrupt while the job is in execution.
An interrupt is a mechanism used to stop the current execution and notify the
system of a particular event. A piece of hardware called the interrupt controller
handles all interrupts coming from multiple devices. This controller then noti-
fies the CPU to stop the current job and start on another task. Typically, this
task involves a call to a device driver or the operating system scheduler. This
interrupt can be raised for many reasons, such as

— An I/0O device completes an operation such as reading a file or network or
even a keystroke on a keyboard.

— Another program requests a software interrupt.

— A hardware clock (or timer) tick occurs, interrupting the current execution.
This ensures that other jobs in the ready queue also get their own chance to
execute.

The operating system pauses the execution of the current job and puts the job

back on the ready queue. The OS will also pick up another item from the ready

queue and execute it on the CPU. The job of the OS scheduling algorithm is to
determine which job from the ready queue to pick up for execution.
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At some point, our job is picked up again by the OS scheduler, and its execu-
tion resumes on the CPU. Steps 4 through 10 will typically repeat multiple times
during the execution, depending on the size of the text file and how many
other jobs are running on the system.

Our text search finishes its programming (completing the search) and terminates.

DEFINITION Steps 9 and 10 are an example of a context switch, which occurs
whenever the system interrupts a job and the operating system steps in to
schedule another one.

A bit of overhead occurs on every context switch—the OS needs to save the current
job state so that it can later resume where it left off. The OS also needs to load the
state of the next job to be executed. This state is referred to as the process context block
(PCB). It is a data structure used to store all the details about a job, such as the pro-
gram counter, CPU registers, and memory information.

This context switching creates the impression that many tasks are happening at the
same time, even when we have only one CPU. When we write concurrent code and
execute it on a system with only one processor, our code creates a set of jobs that run
in this fashion to give a quicker response. When we have a system with multiple CPUs,
we can also have true parallelism, in that our jobs are running at the same time on dif-
ferent execution units.

In the 1990s, many systems came with dual-processor motherboards, although
these were generally expensive. The first dual-core processor was available commer-
cially (from Intel) in 2005. In the drive to increase processing power and lengthen bat-
tery life, most devices now come with multiple cores. This includes cloud server setups,
home laptops, and mobile phones. Typically, the architecture of these processors is
such that they share the main memory and a bus interface; however, each core has its
own CPU and at least one memory cache. The role of the operating system remains the
same as in a single-core machine, with the difference being that now the scheduler has
to schedule jobs on more than one CPU. Interrupts are quite a bit more complex to
implement, and these systems have an advanced interrupt controller, which can inter-
rupt one processor or a group of processors together, depending on the scenario.

Multiprocessing and time sharing

Although many systems adopted multiprocessing in the 1950s, these were usually spe-
cial purpose-built systems. One example is the Semi-Automatic Ground Environment
(SAGE) system, which the US military developed in the 1950s to monitor airspace. SAGE
consisted of many remote computers connected using telephone lines. The SAGE sys-
tem was ahead of its time, and its development gave birth to many ideas in use today,
such as real-time processing, distributed computing, and multiprocessing.

Later, in the 1960s, IBM introduced System/360. In various literature, this is referred
to as the first real operating system, although similar systems available earlier were
named and referred to differently (such as batch-processing systems).
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(continued)

System/360, however, was one of the first commercially available systems that had
the ability to perform multiprocessing. Prior to this, on some systems, when a job
required loading data from or saving data to tape, all processing would stop until the
system accessed the slow tape. This created inefficiencies in programs that per-
formed a high proportion of I/0. During this time, the CPU was sitting idle and unable
to do any useful work. The solution to this was to load more than one job at a time
and allocate a chunk of fixed memory to each job. When one job was waiting for its
I/0, the CPU was switched to execute another job.

Another solution that emerged about this time is the idea of time sharing. Prior to this,
when computers were still large, shared mainframes, programming involved submit-
ting the instructions and having to wait for hours for the job to compile and execute.
If a submitted program had an error in the code, programmers would not know until
late in the process. The solution to this was to have a time-sharing system, which is
when many programmers are connected via terminals. Since programming is mostly a
thinking process, only a small proportion of the connected users would be compiling
and executing jobs. The CPU resources would be allocated alternately to this small pro-
portion of users when they needed it, reducing the long feedback time.

So far, we have vaguely referred to these execution units managed by the operating
system as system jobs. In the next section, we will go into a bit more detail to see how
the OS provides us with two main abstractions to model these execution units.

Abstracting concurrency with processes and threads

When we need to execute our code and manage concurrency (with jobs running, or
appearing to run, at the same time), or enable true parallelism in the case of a multi-
core system, the operating system provides two abstractions: processes and threads.

A process represents a program that is currently running on the system. It is an
essential concept in an operating system. The main purpose of an operating system is
to efficiently allocate the system’s resources (such as memory and CPUs) amongst the
many processes that are executing. We can use multiple processes and have them run
concurrently as outlined in the previous section.

A thread is an extra construct that executes within the process context to give us a
more lightweight and more efficient approach to concurrency. As we shall see, each pro-
cess is started with a single thread of execution, sometimes referred to as the primary
or main thread. In this section, we’ll look at the differences between modeling concur-
rency with multiple processes and having many threads running in a single process.

Concurrency with processes

How can we complete a large piece of work when multiple people are working on the
task? To pick a concrete example, let’s say we are a group of famous artists, and someone
commissions us to paintalarge piece of art. The deadline is tight, so it’s essential we work
together as a team to work efficiently and finish on time.
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One way of having our artists work on the same picture is to give everyone a sepa-
rate piece of paper and instruct them to draw a different feature of the finished paint-
ing. Each member of the team would draw their feature on their respective piece of
paper. When everyone was finished, we would merge our work. We could stick our
respective pieces of paper onto a blank canvas, paint over the paper edges, and con-
sider the job done.

In this analogy, the various team members represent our CPUs. The instructions
we are following are our programmed code. The execution of a task by the team
members (such as painting on the paper) represents a process. We each have our own
resources (paper, desk space, etc.), we work independently, and at the end, we come
together to merge our work. In this example, we finish the work in two steps. The first
step is creating the different parts of the painting in parallel. The second step is stick-
ing the different parts together (see figure 2.2).

using processes
Ty

—

(@ work separately
N in parallel

merge work (2)

Figure 2.2 Having your own space while performing a task is analogous to using processes.

This is similar to what happens in the operating system with processes. The painter’s
resources (paper, pencil, etc.) represent the system resources, such as memory. Each
operating system process has its own memory space, isolated from other processes.
Typically, a process would work independently, having minimal interaction with other
processes. Processes provide isolation at the cost of consuming more resources. If, for
example, one process crashes due to an error, it will not affect other processes, since it
has its own memory space. The downside of this isolation is that we end up consuming
more memory. In addition, starting up processes takes a bit longer (compared to
threads) since we need to allocate the memory space and other system resources.
Since processes do not share memory with each other, they tend to minimize com-
munication with other processes. Just like our painter analogy, using processes to syn-
chronize and merge work is, in the end, a bit more of a challenge. When processes do
need to communicate and synchronize with each other, we program them to use oper-
ating system tools and other applications, such as files, databases, pipes, sockets, etc.
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Creating processes

A process is an abstraction of how the system will execute our code. Telling the operat-
ing system when to create a process and which code it should execute is crucial if we
want to execute our code in an isolated manner. Luckily, the operating system gives us
system calls for creating, starting, and managing our processes.

For example, Windows has a Createprocess () system call. This call creates the pro-
cess, allocates the required resources, loads the program code, and starts executing
the program as a process.

Alternatively, on UNIX systems, there is a fork () system call. Using this call, we can
create a copy of an execution. When we make this system call from an executing pro-
cess, the operating system makes a complete copy of the memory space and the pro-
cess’s resource handlers, including the registers, stack, file handlers, and even the
program counter. The new process then takes over this new memory space and con-
tinues execution from that point onward.

DEFINITION We refer to the new process as the child and the process that cre-
ated it as the parent. This child and parent terminology also applies to threads,
which we shall explore in section 2.2.4.

The fork() system call returns the process ID on the parent process and a value of 0 on
the child. After forking into two processes, each process can determine what instruc-
tions to run based on the return value of the fork() system call. A child process can
decide to use the copied resources (such as data contained in memory) or to clear it
and start anew. Because each process has its own memory space, if one process changes
its memory contents (for example, changing a variable’s value), the other process will
not see this change. Figure 2.3 shows the result of the fork () system call on UNIX.

memory file handle?‘ everythingis | memory We handles

copied + —
@ T
stack space j o> L stack space J

r registers 7 (ap £ registers j
Lﬁrogr‘om counter { e Lpr‘ogr‘cm counfer‘j

@ process calls fork() @ execution starts
@ execution continues

existing process
new process <

Figure 2.3 Using the fork () system call to create a new process

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



223

2.2 Abstracting concurrency with processes and threads 23

As you can imagine, since each process has its own memory space, the total memory
consumed increases every time you spawn a new process. In addition to consuming
more memory, copying and allocating system resources takes time and consumes pre-
cious CPU cycles. This means that creating too many processes takes a heavy toll on
the system. For this reason, it’s quite unusual for one program to use a large number
of processes concurrently, all working on the same problem.

Copy on write for UNIX processes

Copy on write (COW) is an optimization introduced to the fork () system call. It reduces
the time taken by not copying the entire memory space. For systems using this opti-
mization, whenever fork () is called, both child and parent processes share the same
memory pages. Then, if one of the processes tries to modify the contents of a memory
page, that page is copied to a new location so that each process has its own copy.
The OS only makes copies of the memory pages that are modified. This is a great way
to save both memory and time, but if a process modifies large parts of its memory,
the OS will end up copying most pages anyway.

Support for creating and forking processes in Go is limited to the syscall package
and is OS-specific. If we look at the package, we’ll find the createProcess() function
on Windows and ForkExec () and StartProcess () on UNIX systems. Go also gives us the
ability to run commands in a new process by calling the exec() function, abstracting
some of the OS-specific functions in the syscall package. However, concurrent pro-
gramming in Go does not typically rely on heavyweight processes. As we shall see, Go
adopts a more lightweight threading and goroutine concurrency model instead.

A process will terminate when it has finished executing its code or has encoun-
tered an error it cannot handle. Once a process terminates, the OS reclaims all its
resources so they are free to be used by other processes. This includes memory space,
open file handles, network connections, etc. On UNIX and Windows, when a parent
process finishes, it does not automatically terminate the child processes.

Using multiprocessing for common tasks

Have you ever considered what happens behind the scenes when you run a UNIX
command like this?

$ curl -s https://www.rfc-editor.org/rfc/rfcll22.txt | wc

When we run this command on a UNIX system, the command line is forking two con-
current processes. We can check this by opening another terminal and running ps -a:

PID TTY TIME CMD

26013 pts/49 00:00:00 curl
26014 pts/49 00:00:00 wc
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The first process (PID 26013, in this example) will run the curl program, which will
download the text file from the given URL. The second process (PID 26014) will run
the word count program. In this example, we are feeding the output of the first pro-
cess (curl) into the input of the second one (wc) through a buffer (see figure 2.4).
Using the pipe operator, we are telling the operating system to allocate a buffer and to
redirect the output of the curl process and the input of the word count to that buffer.
The curl process blocks when this buffer is full and resumes when the word count pro-
cess consumes it. The word count process blocks when the buffer is empty until curl
piles up more data.

process | process 2

pipe buffer

Figure 2.4 Curl and wc running
stdout stdin concurrently using a pipe

Once curl reads all the text from the web page, it terminates and puts a marker on the
pipe indicating that no more data is available. This marker acts as a signal to the word
count process indicating that it can terminate since no more data will be coming.

Concurrency with threads

Processes are the heavyweight answer to concurrency. They provide us with good isola-
tion, but they consume lots of resources and take a while to create.

Threads are the answer to some of the problems that come with using processes
for concurrency. We can think of threads as the lightweight alternative to multiple
processes. Creating a thread is much faster (sometimes 100 times faster), and a thread
consumes fewer system resources than a process. Conceptually, threads are another
execution context (kind of a microprocess) within a process.

Let’s continue our simple analogy, where we’re painting a picture with a team of
people. Instead of each member of our team having their own piece of paper and
drawing independently, we could have one large, empty canvas and hand everyone
paintbrushes and pencils. Everyone would share space and draw directly on the large
canvas (see figure 2.5).

This is similar to what happens when you use threads. Like when we are sharing
the canvas, multiple threads will execute concurrently sharing the same memory
space. This is more efficient because we’re not consuming large amounts of memory
for each execution. In addition, sharing memory space usually means that we don’t
have to merge our work at the end. Depending on the problem we’re solving, we
might reach the solution more efficiently by sharing memory with other threads.

When we discussed processes, we saw how a process contained both resources (pro-
gram and data in memory) together with the execution that is running the program.
Conceptually, we can separate the resources from the execution because this lets us
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using threads

work in pardllel (7)

while sharing space

Figure 2.5 Painting concurrently and sharing space is analogous to using threads.

create more than one execution and share the resources between them. We call each
single execution a thread (or thread of execution). When you start a process, it contains
one main thread by default. When we have more than one thread in a single process,
we say that the process is multithreaded. Multithreaded programming is when we code in
a manner that has different threads working together in the same application. Figure
2.6 shows how two threads can share the same memory, contained in one process.

3 memory and file handles J

[T stodksoce ) [[_stockspnce ]

thread 1 thread 2

process

Figure 2.6 Threads sharing the
same process memory space

When we create a new thread, the operating system needs to create only enough
resources to manage the stack space, registers, and a program counter. The new
thread runs inside the context of the same process. In contrast, when we create a new
process, the OS needs to allocate a completely new memory space for it. For this rea-
son, threads are a lot more lightweight than processes, and we can typically create
many more threads than processes before the system starts running out of resources.
In addition, because there are so few new resources to allocate, starting a thread is a
lot faster than starting a process.
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What goes on the stack space?

The stack space stores the local variables that live within a function. These are typi-
cally short-lived variables—when the function finishes, they are not used anymore.
This space does not include variables that are shared between functions (using point-
ers), which are allocated on the main memory space, called the heap.

This extra performance comes at a price. Working in the same memory space means
we don’t get the isolation that processes offer. This can lead to one thread stepping
over another thread’s work. Communication between and synchronization of the mul-
tiple threads are important in avoiding this. It’s much the same in our team-of-painters
analogy. When we are working together on the same project and sharing the same
resources, we need to have good communication and synchronization between the
painters. We need to constantly talk to each other about what we are doing and when.
Without this cooperation, we would risk painting over each other’s art, giving us a
poor result.

This is similar to how we manage concurrency with multiple threads. Since multi-
ple threads are sharing the same memory space, we need to take care so that the
threads are not stepping over each other and causing problems. We do this by using
thread communication and synchronization. We’ll examine the types of errors that
can arise from sharing memory and provide solutions throughout this book.

Since threads share memory space, any change made in main memory by one
thread (such as changing a global variable’s value) is visible to every other thread in
the same process. This is the main advantage of using threads—multiple threads can
use this shared memory to work on the same problem together. This enables us to
write concurrent code that is very efficient and responsive.

NOTE Threads do not share stack space. Although threads share the same
memory space, it’s important to realize that each thread has its own private
stack space (as was shown in figure 2.6).

Whenever we create a local non-shared variable in a function, we are placing this vari-
able on the stack space. These local variables are thus visible only to the thread that
creates them. It’s important that each thread has its own private stack space because it
might call completely different functions than other threads and will need its own pri-
vate space to store the variables and return values used in these functions.

We also need each thread to have its own program counter. A program counter (also
known as an instruction pointer) is simply a pointer to the instruction that the CPU will
execute next. Since threads will likely execute different parts of our program, each
thread needs to have a separate instruction pointer as well.

When we have multiple threads and only one core processor, each thread in a pro-
cess gets a time slice of the processor. This improves responsiveness, and it’s useful in
applications where you need to respond to multiple requests concurrently (such as in
a web server). If multiple processors (or processor cores) are present in a system,
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threads will get to execute in parallel with each other. This gives our application a
speedup.

Earlier in this chapter, we discussed how the operating system manages multipro-
cessing, and we talked about jobs being in different states (such as ready to run, run-
ning, waiting for 1/0O, etc.). In a system that handles multithreaded programs, these
states describe each thread of execution on the system. Only threads that are ready to
run can be picked up and moved to the CPU for execution. If a thread requests 1,/0O,
the system will move it to the waiting for I/O state, and so on.

When we create a new thread, we give it an instruction pointer in our program from
where the new execution should start. Many programming languages hide this pointer
complexity and allow programs to specify target functions (or a method or procedure)
where the threads should start executing. The operating system allocates space only for
the new thread state, a stack, registers, and the program counter (pointing to the func-
tion). The child thread will then run concurrently with the parent, sharing the main
memory and other resources, such as open files and network connections.

Once a thread finishes its execution, it terminates, and the operating system
reclaims the stack memory space. Depending on the thread implementation, however,
a thread terminating does not necessarily terminate the entire process. In Go, when the
main thread of execution terminates, the entire process also terminates, even if other
threads are still running. This is different than in some other languages. In Java, for
instance, a process will terminate only when all the threads in the process have finished.

Operating systems and programming languages implement threads in different
manners. For example, on Windows, we can create a thread using the CreateThread ()
system call. On Linux, we can use the clone () system call with the CLONE_THREAD option.
There are also differences in how languages represent threads. For example, Java
models threads as objects, Python blocks multiple threads from executing in parallel
(using a global interpreter lock), and in Go, as we shall see, there is a finer-grained
concept of the goroutine.

POSIX Threads

IEEE attempted to standardize thread implementations using a standard called POSIX
Threads (pthreads for short). These threads are created, managed, and synchronized
through the use of a standard POSIX Threads API. Various operating systems, includ-
ing Windows and UNIX systems, offer implementations of this standard. Unfortunately,
not all languages support the POSIX Thread standard.

Although differences exist in how threads are created, modeled, and destroyed, the
concurrency concepts and techniques involved in coding concurrent programs will be
very similar regardless of what technology you use. Thus, learning about the models,
techniques, and tools of multithreaded programming in one language will be useful
in whatever language you decide to use. The differences lie only in the language’s
multithreading implementation details.
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A multithreaded application in practice

Let’s now look at an example that makes use of multithreading in a web server appli-
cation. Suppose we have developed an application that feeds users, via a service, infor-
mation and scores from their favorite sports teams. This application lives on a server
and handles users’ requests through their mobile or desktop browsers. For example,
Paul might want to know the latest score of a football game in which his favorite team,
the New York Giants, are playing. One architecture for this application is shown in fig-
ure 2.7. It’s composed of two main parts: the client handler’s threads and a stream
reader thread.

client handler threads

@ ©

New York Giants Boston Celtics

&

touchdown 2 points scored |
sport feed |‘_J1> C:> C> z > g stream reader
AC Mian \ fhread
1 godl scored e

web app server process

X

Figure 2.7 A web server application serving sports scores

The stream reader thread reads match events from a sports feed through a network
connection. Each message received will tell the application what is happening in a
particular game. Some examples are points scored, fouls committed, players on the
field, etc. The stream reader thread uses this information to build a picture of the
game, storing the score of each game in a shared sports scores data structure.

Each client handler thread takes care of user requests. Depending on the request
coming from the user, the thread will look up and read the required match informa-
tion from the sports scores data structure. It will then return the information to the
user’s device. We have a pool of these threads so that we’re able to handle multiple
requests at the same time without making users wait too long for a reply.

Using threads to implement this type of server application has two benefits:
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We consume fewer resources. We can spin up a number of client handler
threads without taking up too much memory. In addition, we can size up this
pool dynamically, increasing the thread count when we expect more traffic and
reducing it during less busy periods. We can do this because spawning and ter-
minating threads is cheap and fast (relative to using processes).

We have the option to use memory to store and share the sports scores data
structure. This is easy to do when using threads because they share the same
memory space.

Using multiple processes and threads together

Let’s now think of a hybrid example, such as a modern browser, that could use both
processes and threads. When a browser is rendering a web page, it needs to download
various resources for the downloaded page: text, images, videos, and so on. To do this
efficiently, the browser can use multiple threads working concurrently to download
and then render the various elements of the page. Threads are ideal for this kind of
work since the result page can be kept in the threads’ shared memory, and the
threads can fill it with the various pieces as they complete their tasks.

If the page includes some scripting that requires heavy computation (such as
graphics), we can allocate more threads to perform this computation, possibly in par-
allel on a multicore CPU. But what happens when one of those scripts misbehaves and
crashes? Will it also kill all the other open windows and tabs of the browser?

This is where processes might come in handy. We can design the browser to take
advantage of the isolation of processes, perhaps by using a separate process for each
window or tab. This ensures that when one web page crashes due to an erroneous
script, it doesn’t bring down everything, ensuring that the tab containing your long
draft email is not lost.

Modern browsers adopt a hybrid thread and process system for this reason. Typi-
cally, they have a limit on how many processes they can create, after which tabs start
sharing the same process. This is done to reduce memory consumption.

What’s so special about goroutines?

Go’s answer to concurrency is the goroutine. As we shall see, it doesn’t tie in directly
with an operating system thread. Instead, goroutines are managed by Go’s runtime at
a higher level to give us an even more lightweight construct, consuming far fewer
resources than an operating system thread. In this section, we’ll start by looking at
how we create goroutines before moving on to describe where goroutines sit in terms
of operating system threads and processes.

Creating goroutines

Let’s now look at how we can create goroutines in Go as we transform a sequential
program into a concurrent one. We’ll start with the following sequential program.
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Listing 2.1 Function simulating some work being done

package main

import (
n fmt n

"time"
) Simulates doing computation
work by sleeping for 1 second

func doWork (id int)
fmt.Printf ("Work %d started at %s\n",id,time.Now () .Format ("15:04:05"))
time.Sleep (1l * time.Second) <
fmt .Printf ("Work %d finished at %s\n",id,time.Now () .Format ("15:04:05"))

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the listings in this book.

As you can see, we have a function that simulates doing some work. This work could
be anything, such as a long-running CPU computation or downloading something
from a web page. In the function, we pass an integer as an identifier for the work.
Then we simulate doing some work by putting the execution to sleep for 1 second. At
the end of this sleep period, we print a message containing the work identifier to the
console to signify that we have completed the work. We also print timestamps at the
beginning and end to show how long the function takes to execute.

Let’s run this function several times sequentially. In listing 2.2, we use a loop to call
the function five times, each time passing a different value for i, starting at 0 and fin-
ishing at 4. This main() function will run in our main thread of execution, and the
doWork () function will be called sequentially in the same execution, with one call after
the other.

Listing 2.2 The main () thread calling the doWork () function sequentially

func main() {
for i := 0; i < 5; i++ {
doWork (1)

}

As you might expect, the output lists the work identifiers one after the other, each tak-
ing 1 second:

$ go run main.go

Work O started at 19:41:03

Work 0 finished at 19:41:04
Work 1 started at 19:41:04

Work 1 finished at 19:41:05
Work 2 started at 19:41:05

Work 2 finished at 19:41:06
Work 3 started at 19:41:06
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Work 3 finished at 19:41:07
Work 4 started at 19:41:07
Work 4 finished at 19:41:08

The entire program takes around 5 seconds to complete. When the main thread has
no more instructions to execute, it terminates the entire process.

How can we change our instructions so that we perform this work concurrently
instead of sequentially? We can put the call to the doWork () function in a goroutine, as
shown in listing 2.3. There are two main changes from our previous sequential pro-
gram. The first is that we are calling the dowork () function with the keyword go. The
result is that the function runs in a separate execution concurrently. The main () func-
tion does not wait for it to complete to continue. Instead, it goes on to the next
instruction, which in this case is to create more goroutines.

Listing 2.3 Main thread calling the doWork () function in parallel

func main() { Starts a new goroutine that
for i := 0; 1 < 5; i++ { calls the doWork() function
go doWork (i)
} Waits for all of the work to
time.Sleep(2 * time.Second) finish using a longer sleep
1

We can also refer to this manner of calling functions as an asynchronous call, meaning
that we don’t have to wait for the function to complete to continue executing. We can
refer to a normal function call as synchronous because we need to wait for the func-
tion to return before proceeding with other instructions.

The second change to our main function is that after we call the dowWork () function
asynchronously, the main() function sleeps for 2 seconds. The sleep instruction needs
to be there because in Go, when the main execution runs out of instructions to run,
the process terminates. Without this sleep, the process would terminate without giving
the goroutines a chance to run. If we try omitting this statement, the program outputs
nothing on the console. The output of the program shown in listing 2.3 will look
something like this:

$ go run main.go

Work 2 started at 20:53:10
Work 1 started at 20:53:10
Work 3 started at 20:53:10
Work 4 started at 20:53:10
Work O started at 20:53:10
Work 0 finished at 20:53:11
Work 2 finished at 20:53:11
Work 3 finished at 20:53:11
Work 4 finished at 20:53:11
1

Work finished at 20:53:11
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The first thing to notice is that the program completes in about 2 seconds instead of
the 5 seconds it took to execute the sequential version. This is simply because we’re
now executing the work in parallel. Instead of working on one thing, finishing, and
then starting another one, we’re doing all of the work at once. You can see a represen-
tation of this in figure 2.8. In part a of the figure, we have the sequential version of this
program, showing the dowork () function being called multiple times, one after the
other. In part b, we have the goroutine executing the main() function and spawning
five child goroutines, each calling the dowWork () function concurrently.

sequentidl concurrent
]

&a b

main main
goroutine goroutine

gox5

doWork(0) doWork(O)| | doWork(1)| | doWork(2)| | doWork(3)] | doWork(H4)

J_)

sleep

doWork(1)

T

w
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(6]

goroutine 1 2
doWork(2)

w
L

time /seconds

doWork(3)

doWork(4)

(6]
P -

Figure 2.8 (a) The doWork () function called sequentially (b) and the function called concurrently

The second thing to notice when we run the Go program is that the order in which
the function messages are output has changed. The program is no longer outputting
the work identifiers in order. Instead, they seem to appear at random. Running the
program again gives us a different ordering:

$ go run main.go

Work O started at 20:58:13
Work 3 started at 20:58:13
Work 4 started at 20:58:13
Work 1 started at 20:58:13
Work 2 started at 20:58:13
Work 2 finished at 20:58:14
Work 1 finished at 20:58:14
Work 0 finished at 20:58:14
Work 4 finished at 20:58:14
3

Work finished at 20:58:14
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This is because when we run jobs concurrently, we can never guarantee the execution
order of those jobs. When our main() function creates the five goroutines and submits
them, the operating system might pick up the executions in a different order than we
created them in.

Implementing goroutines in the user space

Earlier in this chapter, we talked about operating system processes and threads, and
we discussed their differences and roles. Where does a goroutine belong within this
context? Is a goroutine a separate process or a lightweight thread?

It turns out that goroutines are neither OS threads nor processes. The specifica-
tion for the Go language does not strictly specify how goroutines should be imple-
mented, but the current Go implementations group sets of goroutine executions onto
another set of OS thread executions. To better understand this, let’s first talk about
another way to model threads of execution, called user-level threads.

In the previous section, we talked about threads living inside processes and being
managed by the operating system. The operating system knows all about the threads
and decides when or whether each thread should execute. The OS also stores the con-
text of each thread (registers, stack, and state) and uses it whenever the threads need
executing. We refer to these types of threads as kernel-level threads because the operat-
ing system manages them. Whenever there is a need for a context switch, the operat-
ing system intervenes and chooses the next thread to execute.

Instead of implementing threads at the kernel level, we can have threads running
completely in the user space, which means the memory space that is part of our applica-
tion, as opposed to the operating system’s space. Using user-level threads is like having
different threads of execution running inside the main kernel-level thread, as shown
in figure 2.9.

é memory and file handles J

L stack space J
S registers ?
; program counter ? :
user-level
'\:‘") @ threads

kernel-level \

L thread i @

process

Figure 2.9 User-level threads executing
within a single kernel-level thread

From an operating system point of view, a process containing user-level threads will
appear to have just one thread of execution. The OS doesn’t know anything about user-
level threads. The process itself is responsible for managing, scheduling, and context
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switching its own user-level threads. To execute this internal context switch, there needs
to be a separate runtime that maintains a table containing all the data (such as the
state) of each user-level thread. We are replicating on a small scale what the OS does,
in terms of thread scheduling and management, inside the main thread of the process.

The main advantage of user-level threads is performance. Context-switching a user-
level thread is faster than context-switching a kernel-level one. This is because for
kernel-level context switches, the OS needs to intervene and choose the next thread to
execute. When we can switch execution without invoking any kernel, the executing
process can keep hold of the CPU without needing to flush its cache and slow us down.

The downside of using user-level threads comes when they execute code that
invokes blocking 1/0 calls. Consider the situation where we need to read from a file.
Since the operating system sees the process as having a single thread of execution, if a
user-level thread performs this blocking read call, the entire process is descheduled. If
any other user-level threads are present in the same process, they will not get to exe-
cute until the read operation is complete. This is not ideal, since one of the advan-
tages of having multiple threads is to perform computations when other threads are
waiting for I/O. To work around this limitation, applications using user-level threads
tend to use non-blocking calls to perform their I/O operations. However, using non-
blocking I/0 is not ideal, since not every device supports non-blocking calls.

Another disadvantage of user-level threads is that if we have a multiprocessor or a
multicore system, we will be able to utilize only one of the processors at any point in
time. The OS sees the single kernel-level thread, containing all the user-level threads,
as a single execution. Thus, the OS executes the kernel-level thread on a single pro-
cessor, so the user-level threads contained in that kernel-level thread will not execute
in a truly parallel fashion.

What about green threads?

The term green thread was coined in version 1.1 of the Java programming language.
The original green threads in Java were an implementation of user-level threads. They
ran only on a single core and were managed completely by the JVM. In Java version
1.3, green threads were abandoned in favor of kernel-level threads. Since then, many
developers have used the term to refer to other implementations of user-level threads.
It is perhaps inaccurate to refer to Go’s goroutines as green threads since, as we shall
see, Go’s runtime allows its goroutines to take full advantage of multiple CPUs.

To further complicate naming matters, a threading model similar to Go was introduced
in later versions of Java. However, this time, instead of green threads, the name virtual
threads was used.

Go provides a hybrid system that gives us the great performance of user-level threads
without most of the downsides. It achieves this by using a set of kernel-level threads,
each managing a queue of goroutines. Since we have more than one kernel-level
thread, we can utilize more than one processor if multiple ones are available.
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To illustrate this hybrid technique, suppose our hardware has just two processor
cores. We can have a runtime system that creates and uses two kernel-level threads—
one for each processor core—and each of these kernel-level threads can manage a set
of user-level threads. At some point, the operating system will schedule the two kernel-
level threads in parallel, each on a separate processor. We will then have a set of user-
level threads running on each processor.

M:N hybrid threading

The system that Go uses for its goroutines is sometimes called the M:N threading
model. This is when you have M user-level threads (goroutines) mapped to N kernel-
level threads. This contrasts with normal user-level threads, which are referred to as
an N:1 threading model, meaning N user-level threads to 1 kernel-level thread. Imple-
menting a runtime for M:N models is substantially more complex than other models
since it requires many techniques to move around and balance the user-level threads
on the set of kernel-level threads.

Go’s runtime determines how many kernel-level threads to use based on the number
of logical processors. This is set in the environment variable called coMaxprocs. If this
variable is not set, Go populates this variable by querying the operating system to
determine how many CPUs your system has. You can check how many processors Go
sees and the value of coMaxPrROCS by executing the following code.

Listing 2.4 Checking how many CPUs are available

package main

import (

" fme" ) Go defaults the value
runtime of GOMAXPROCS to

) the value of NumCPU().

func main() { C?mngGOMAXPROCﬂn)
fmt.Println ("Number of CPUs:", runtime.NumCPU()) with n < 1 returns the

current value without

fmt . Println ("GOMAXPROCS:", runtime.GOMAXPROCS (0)) altering it.

}

The output of listing 2.4 will depend on the hardware it runs on. Here’s an example
of the output on a system with eight cores:

$ go run cpucheck.go
Number of CPUs: 8
GOMAXPROCS: 8

Go’s runtime will assign a local run queue (LRQ) to each of these kernel-level threads.
Each LRQ will contain a subset of the goroutines in the program. In addition, there is
a global run queue (GRQ) for goroutines that Go hasn’t yet assigned to a kernel-level
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thread (refer to the left side of figure 2.10). Each of the kernel-level threads running
on a processor will take care of executing the goroutines present in its LRQ.
kernel-level threads executing goroutines , work stedling after thread B is I/O blocked
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Figure 2.10 (a) Kernel-level threads A and B are executing goroutines from their respective LRQs; (b) a
goroutine is waiting on 1/0 blocking thread B, resulting in the creation or reuse of a new thread C, stealing work
from the previous thread.

To work around the problem of blocking calls, Go wraps any blocking operations so
that it knows when a kernel-level thread is about to be descheduled. When this hap-
pens, Go creates a new kernel-level thread (or reuses an idle one from a pool) and
moves the queue of goroutines to this new thread, which picks a goroutine from the
queue and starts executing it. The old thread with its goroutine waiting for 1/0 is
then descheduled by the OS. This system ensures that a goroutine making a blocking
call will not block the entire local run queue of goroutines (refer to the right side of
figure 2.10).

This system of moving goroutines from one queue to another is known in Go as
work stealing. Work stealing does not just happen when a goroutine makes a blocking
call. Go can also use this mechanism when there is an imbalance in the number of
goroutines in the queues. For example, if a particular LRQ is empty and the kernel-
level thread has no more goroutines to execute, it will steal work from the queue of
another thread. This ensures that our processors are balanced with work and that
none are idle when there is more work to execute.
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Locking to a kernel-level thread

In Go, we can force a goroutine to lock itself to an OS thread by calling the
runtime.LockOSThread () function. This call binds the goroutine exclusively to its
kernel-level thread. No other goroutines will run on the same OS thread until the
goroutine calls runtime.Unlock0SThread ().

These functions can be used when we need specialized control over the kernel-level
threads—for example, when we are interfacing with an external C library and need to
make sure that the goroutine does not move to another kernel-level thread, causing
problems accessing the library.

Scheduling goroutines

After a kernel-level thread has had its fair share of time on the CPU, the OS scheduler
context switches the next thread from the run queue. This is known as preemptive sched-
uling. It’s implemented using a system of clock interrupts that stops the executing
kernel-level thread and calls the OS scheduler. Since the interrupt calls only the OS
scheduler, the Go scheduler, which runs in the user space, needs a different system.

The Go scheduler needs to execute to perform its context switching. Thus, the Go
scheduler needs user-level events to trigger its execution (see figure 2.11). These
events include starting a new goroutine (using the keyword go), making a system call
(for example, reading from a file), or synchronizing goroutines.

goroutine Go's goroutine

A scheduler B

triggers schedule

user-level event Go chooses next

""""""""""" goroutine fo run

executing
not executing

time

L L L LD PP P,

L
\
\
\
\
\
\
\
\
\
\
|
]
]
]
]
]
]
]
]
]
]
’
’
v

not executing
executing

Figure 2.11 Context switching in Go requires user-level events.

We can also call the Go scheduler in our code to try to get the scheduler to context-
switch to another goroutine. In concurrency lingo, this is usually called a yield com-
mand. It’s when a thread decides to yield control so that another thread gets its turn
on the CPU. In the following listing, we are using the command runtime.Gosched() to
call the scheduler directly in our main() goroutine.
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Listing 2.5 Calling the Go scheduler

package main

import (
n fmt n
"runtime"

)

func sayHello() ({
fmt.Println("Hello")
1

func main() { Calling the Go scheduler

go sayHello() gives the other goroutine
runtime.Gosched () a chance to run.
fmt.Println("Finished")

Without calling the scheduler directly, we have very little chance of getting the
sayHello() function executed. The main() goroutine will terminate before the gorou-
tine calling the sayHello() function gets any time to run on the CPU. Since in Go we
exit the process when the main() goroutine terminates, we wouldn’t get to see the text
“Hello” printed.

WARNING We have no control over which goroutine the scheduler will select
to execute. When we call the Go scheduler, it might pick up the other goroutine
and start executing it, or it might continue the execution of the goroutine that
called the scheduler.

In listing 2.5, the scheduler may very well select the main() goroutine again, and we
may never see the “Hello” message. In fact, by calling runtime.Gosched () in the listing,
we are only increasing the chances that sayHello () will be executed. There is no guar-
antee that it will.

As with the OS scheduler, we cannot predictably determine what the Go scheduler
will execute next. As programmers writing concurrent programs, we must never write
code that relies on an apparent scheduling order, because the next time we run the
program, the ordering might be different. If you try executing listing 2.5 several
times, you will eventually get an execution that will output Finished without executing
the sayHello () function. If we need to control the order of execution of our threads,
we’ll need to add synchronization mechanisms to our code instead of relying on the
scheduler. We’ll discuss these techniques starting in chapter 4.

Concurrency versus parallelism

Many developers use the terms concurrency and parallelism interchangeably, sometimes
referring to them as the same concept. However, many textbooks make a clear distinc-
tion between the two.
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We can think of concurrency as an attribute of the program code and parallelism as a
property of the executing program. Concurrent programming occurs whenever we
write our programs in a way that groups instructions into separate tasks, outlining the
boundaries and synchronization points. These are some examples of such tasks:

Handle one user’s request.

Search one file for some text.

Calculate the result of one row in a matrix multiplication.
Render one frame of a video game.

These tasks then may or may not execute in parallel. Whether they execute in parallel
will depend on the hardware and environment where we execute the program. For
example, if our concurrent matrix multiplication program runs on a multicore sys-
tem, we might be able to perform more than a single row calculation at the same time.
For parallel execution to happen, we require multiple processing units. Otherwise,
the system can interleave between the tasks, giving the impression that it is doing
more than one task at the same time. For example, two threads can take turns and
share a single processor, each taking a time share. Because the OS switches the
threads often and quickly, they both seem to be running at the same time.

NOTE Concurrency is about planning how to do many tasks at the same time.
Parallelism is about performing many tasks at the same time.

Obviously, definitions overlap. In fact, we can say that parallelism is a subset of concur-
rency. Only concurrent programs can execute in parallel, but not all concurrent pro-
grams will execute in parallel.

Can we have parallelism when we have only one processor? You have seen that
parallelism requires multiple processing units, but if we widen our definition of a
processing unit, a thread that is waiting for an I/O operation to complete is not really
idling. Isn’t writing to disk still part of the program’s work? If we have two threads,
where one is writing to disk and another is executing instructions on the CPU, should
we consider this to be parallel execution? Other components, such as disk and network,
can also be working at the same time with the CPU for the program. Even in this
scenario, we typically reserve the term parallel execution to refer to computations and not
to I/O. However, many textbooks mention the term pseudo-parallel execution in this
context. This refers to a system with one processor giving the impression that multiple
jobs are being executed at the same time. The system does this by frequently context-
switching jobs either on a timer or whenever an executing job requests a blocking
I/0 operation.

Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.
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Write a program similar to the one in listing 2.3 that accepts a list of text file-
names as arguments. For each filename, the program should spawn a new
goroutine that will output the contents of that file to the console. You can use
the time.Sleep() function to wait for the child goroutines to complete (until
you know how to do this better). Call the program catfiles.go. Here’s how you
can execute this Go program:

go run catfiles.go txtfilel txtfile2 txtfile3

Expand the program you wrote in the first exercise so that instead of printing
the contents of the text files, it searches for a string match. The string to search
for is the first argument on the command line. When you spawn a new gorou-
tine, instead of printing the file’s contents, it should read the file and search for
a match. If the goroutine finds a match, it should output a message saying that
the filename contains a match. Call the program grepfiles.go. Here’s how you
can execute this Go program (“bubbles” is the search string in this example):

go run grepfiles.go bubbles txtfilel txtfile2 txtfile3

Change the program you wrote in the second exercise so that instead of passing
a list of text filenames, you pass a directory path. The program will look inside
this directory and list the files. For each file, you can spawn a goroutine that will
search for a string match (the same as before). Call the program grepdir.go.
Here’s how you can execute this Go program:

go run grepdir.go bubbles ../../commonfiles

Adapt the program in the third exercise to continue searching recursively in
any subdirectories. If you give your search goroutine a file, it should search for a
string match in that file, just like in the previous exercises. Otherwise, if you
give it a directory, it should recursively spawn a new goroutine for each file or
directory found inside. Call the program grepdirrec.go, and execute it by run-
ning this command:

go run grepdirrec.go bubbles ../../commonfiles

Summary

Multiprocessing operating systems and modern hardware provide concurrency
through their scheduling and abstractions.

Processes are the heavyweight way of modeling concurrency; however, they pro-
vide isolation.

Threads are lightweight and share the same process memory space.
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User-level threads are even more lightweight and performant, but they require
complex handling to prevent the process managing all the user-level threads
from being descheduled.

User-level threads contained in a single kernel-level thread will use only one
processor at a time, even if the system has multiple processors.

Goroutines adopt a hybrid threading system with a set of kernel-level threads
containing a set of goroutines apiece. With this system, multiple processors can
execute the goroutines in parallel.

Go’s runtime uses a system of work stealing to move goroutines to other kernel-
level threads whenever there is a load imbalance or a descheduling takes place.
Concurrency is about planning how to do many tasks at the same time.

Parallelism is about performing many tasks at the same time.
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Thread communication
using memory sharing

This chapter covers

= Using inter-thread communication with
our hardware architecture

= Communicating with memory sharing
= Recognizing race conditions

Threads of execution working together to solve a common problem require some
form of communication. This is what is known as inter-thread communication (ITC),
or inter-process communication (IPC) when referring to processes. This type of com-
munication falls under two main classes: memory sharing and message passing. In
this chapter, we will focus on the former.

Memory sharing is similar to having all our executions share a large, empty can-
vas (the process’s memory) on which each execution gets to write the results of its
own computation. We can coordinate the executions in such a way that they collab-
orate using this empty canvas. In contrast, message passing is exactly what it sounds
like. Just like people, threads can communicate by sending messages to each other.
In chapter 8, we’ll investigate message passing in Go using channels.

42

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



3.1

3.1 Sharing memory 43

The type of thread communication we use in our applications will depend on the
type of problem we’re trying to solve. Memory sharing is a common approach to ITC,
but as we shall see in this chapter, it comes with a certain set of challenges.

Sharing memory

Communication via memory sharing is like trying to talk to a friend, but instead of
exchanging messages, we’re using a whiteboard (or a large piece of paper), and we’re
exchanging ideas, symbols, and abstractions (see figure 3.1).

Figure 3.1 Communication
via memory sharing

In concurrent programming using memory sharing, we allocate a part of the process’s
memory—for example, a shared data structure or a variable—and we have different
goroutines work concurrently on this memory. In our analogy, the whiteboard is the
shared memory used by the various goroutines.

In Go, our goroutines may live under several kernel-level threads. Thus, the hard-
ware and operating system architecture on which we run our multithreaded applica-
tion needs to enable this type of memory sharing between threads belonging to the
same process. If our system has only a single processor, the architecture can be simple.
We can give the same memory access to all kernel-level threads on the same process,
and we can context-switch between threads, letting each thread read and write to mem-
ory as it pleases. However, the situation grows more complex when we have a system
with more than one processor (or a multicore system) because computer architecture
usually involves various layers of caches between the CPUs and main memory.

Figure 3.2 shows a simplified example of a typical bus architecture. Here, the pro-
cessor uses a system bus when it needs to read or write from main memory. Before a
processor uses the bus, it listens to make sure the bus is idle and not in use by another
processor. Once the bus is free, the processor places a request for a memory location
and goes back to listening and waiting for a reply on the bus.

As we scale the number of processors in the system, this bus becomes busier and acts
as a bottleneck on our ability to add more processors. To reduce the load on the bus,
we can use caches to bring memory contents closer to where they’re needed and thus
improve performance. The caches also reduce the load on the system bus since the
CPU can now read most of the required data from cache instead of querying the mem-
ory. This prevents the bus from acting as a bottleneck. The example shown in figure 3.2
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is a simplified architecture with two CPUs and one layer of caching. Typically, modern
architectures contain many more processors and multiple layers of caching.

In figure 3.2, we have two threads running in parallel that want to communicate
via memory sharing. Let’s assume that thread 1 tries to read a variable from main
memory. The system will bring the contents of a block of memory, containing the vari-
able, into a cache closer to the CPU (via the bus). Then, when thread 1 needs to read
again or update that variable, it will be able to perform that operation faster using the
cache. It will not need to overload the system bus by trying to read the variable from
the main memory again. This is shown in figure 3.3.
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Let’s now suppose thread 1 decides to update the value of this variable. This results in
the contents of the cache being updated with this change. If we don’t do anything
else, thread 2 might want to read this very same variable, and when it fetches it from
main memory, it will have an outdated value, without the changes made by thread 1.

One solution to this problem is to perform what is known as a cache write-through:
when thread 1 updates the cache contents, we mirror the update back to the main
memory. However, this doesn’t solve the problem if thread 2 has an outdated copy of
the same memory block in another local CPU cache. To address this case, we can
make caches listen to bus memory update messages. When a cache notices an update
to the memory that it has replicated in its cache space, it either applies the update or
invalidates the cache line containing the updated memory. If we invalidate the cache
line, the next time the thread requires the variable, it will have to fetch it from mem-
ory, obtaining an updated copy. This system is shown in figure 3.4.
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caches

The mechanism for dealing with reads and writes on memory and caches in a multi-
processor system is known as the cache-coherency protocols. The write-back with invalida-
tion, mentioned previously, is an outline of one such protocol. Modern architectures
typically use a mixture of these protocols.

Coherency wall

Microchip engineers worry that cache coherence will be the limiting factor as they
scale the number of processor cores. With many more processors, implementing
cache coherence will become a lot more complex and costly and might eventually limit
performance. This limit is known as the coherency wall.
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Memory sharing in practice

Let’s examine a couple of examples showing how we can use shared memory amongst
goroutines in our concurrent Go programs. First, we’ll look at simple variable sharing
between two goroutines, illustrating the concept of memory escape analysis. Then
we’ll look at a more complex application where multiple goroutines work together to
download and process several web pages in parallel.

Sharing a variable between goroutines

How do we get two goroutines to share memory? In this first example, we’ll create one
goroutine that will share a variable in memory with the main() goroutine (executing
the main () function). The variable will act like a countdown timer. One goroutine will
decrease the value of this variable every second, and another goroutine will read the
variable more frequently and output it on the console. Figure 3.5 shows the two
goroutines doing this.

/5_
goroutine 1 u goroutine 2
=
aD

every | second update

X
shared variable seconds

shared variable and output on console

Figure 3.5 Two goroutines sharing a countdown timer variable

In listing 3.1, the main thread allocates space for an integer variable, called count, and
then shares a memory pointer reference, called *seconds, with a newly created gorou-
tine, calling the countdown () function. This function updates the shared variable every
1 second, decreasing its value by 1 until it’s 0. The main() goroutine reads this shared
variable every half second and outputs it. In this way, the two goroutines share the
memory at the pointer location.

Listing 3.1 Goroutines sharing a variable in memory

package main

import (
n fmt n
"time"
) Allocates memory space
for an integer variable
func main() {
count := 5 Starts goroutine and shares
go countdown (&count) memory at the variable reference
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for count > 0 {
time.Sleep (500 * time.Millisecond)
fmt.Println (count)

The main() goroutine reads the value of
the shared variable every half second.

}

func countdown (seconds *int) {
for *seconds > 0 {

time.Sleep(l * time.Second) | The goroutine updates the
1 value of the shared variable.

*seconds -=

NOTE You can visit http://github.com/cutajarj/ConcurrentProgramming-
WithGo to see any of the listings in this book.

Since we read the value for the shared variable more frequently than we update it, the
same value is recorded more than once in our console output:

go run countdown.go

$
5
4
4
3
3
2
2
1
1
0

What happens here is that we have a very simple memory-sharing concurrent pro-
gram. One goroutine updates the contents of a particular memory location, and
another thread reads its contents.

If you removed the go keyword from listing 3.1, the program would become
sequential. It would create the variable count on the main stack, and it would pass a
reference to it to the countdown () function. The countdown () function would take 5 sec-
onds to return, during which it would update the value on the main() function’s stack
every second by subtracting 1. When the function returns, the count variable would
have a value of 0 and the main() function would not enter the loop but instead would
terminate since the count’s value would be o.

Escape analysis

Where should we allocate memory space for the variable count? This is a decision that
the Go compiler must make for every new variable we create. It has two choices: allo-
cate space on the function’s stack or in the main process’s memory, which we call the
heap space.
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In the previous chapter, we talked about threads sharing the same memory space,
and we saw that each thread has its own stack space but shares the main memory of
the process. When we execute the countdown () function in a separate goroutine, the
count variable cannot exist on the main() function’s stack. It doesn’t make sense for
Go’s runtime to allow a goroutine to read or modify the memory contents of another
goroutine’s stack because the goroutines might have completely different lifecycles.
One goroutine’s stack might not be available anymore by the time another goroutine
needs to modify it. Go’s compiler is smart enough to realize when we are sharing
memory between goroutines. When it notices this, it allocates memory on the heap
instead of the stack, even though our variables might look like they are local ones
belonging on the stack.

DEFINITION In technical speak, when we declare a variable that looks like it

belongs to the local function’s stack but instead is allocated in the heap mem-

ory, we say that the variable has escaped to the heap. Escape analysis consists of
the compiler algorithms that decide whether a variable should be allocated

on the heap instead of the stack.

There are many instances where a variable escapes to the heap. Anytime a variable is
shared outside the scope of a function’s stack frame, the variable is allocated on the
heap. Sharing a variable’s reference between goroutines is one such example, as illus-

trated in figure 3.6.

main stack countdown stack

goroutine
countdown()

goroutine
main()

seconds

0xc0000120705
F

! =
| ; R,
i pointer fo heap Y
; g ‘\\ integer variable .
*.. goroutine reading & S i
heap variable directy ,," \\\ goroutine updating
- Y heap variable
L i through pointer
7 heap s

count $
0xc0000120705 ¥

3

In Go, there is an additional small cost to using memory on the heap as opposed to
the stack. This is because when we are done using the memory, the heap needs to be
cleaned up by Go’s garbage collection. The garbage collector goes through the
objects in the heap that are no longer referenced by any goroutine and marks the

Figure 3.6 Goroutines
sharing variables on the
heap memory
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space as free so that it can be reused. When we use space on the stack, this memory is
reclaimed when the function finishes.

We can tell that a variable has escaped to heap memory by asking the compiler to
show its optimization decisions. We can do this by using the -m compile-time option:

S go tool compile -m countdown.go
countdown.go:7:6: can inline countdown
countdown.go:7:16: seconds does not escape
countdown.go:15:5: moved to heap: count

Here the compiler is telling us which variables are escaping to heap memory and
which ones are staying on the stack. At line 7, the seconds pointer variable is not escap-
ing to the heap and is thus staying on the stack of our countdown () function. However,
the compiler is placing the count variable on the heap since we are sharing the vari-
able with another goroutine.

If we remove the go call from our code, turning it into a sequential program, the
compiler will not move the count variable to the heap. Here is the output after we
remove the go keyword:

$ go tool compile -m countdown.go
countdown.go:7:6: can inline countdown
countdown.go:16:14: inlining call to countdown
countdown.go:7:16: seconds does not escape

Notice that we no longer get the message moved to heap for the count variable. The other
change is that we now get a message saying the compiler is inlining the function call to
countdown (). Inliningis an optimization where, under certain conditions, the compiler
replaces the function call with the contents of the function. The compiler does this to
improve performance since calling a function has a slight overhead, which comes from
preparing the new function stack, passing the input params onto the new stack, and
making the program jump to the new instructions on the function. When we execute
the function in parallel, it doesn’t make sense to inline the function, since the function
is executed using a separate stack, potentially on another kernel-level thread.

By using goroutines, we are forfeiting some compiler optimizations, such as inlin-
ing, and we are increasing overhead by putting our shared variable on the heap. The
tradeoft is that by executing our code concurrently, we potentially achieve a speedup.

Updating shared variables from multiple goroutines

Let’s now look at an example involving more than two goroutines, where the gorou-
tines are updating the same variables at the same time. For this example, we’ll write a
program to find out how often the English alphabet letters appear in common text.
The program will process web pages by downloading them and then counting how
often each letter in the alphabet appears on the pages. When the program completes,
it should give us a frequency table with a count of how often each character occurs.
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Let’s start by first developing this in a normal sequential manner and then chang-
ing our code so that it runs in a concurrent fashion. The steps and data structures
needed to develop such a program are shown in figure 3.7. We’ll use a slice integer
data structure as our letter table, containing the results of each letter count. Our pro-
gram will examine a list of web pages, one at a time, downloading and scanning the
web page’s contents, and reading and updating the count of each English letter
encountered on the page.

deie count AN

K . repeat]tol
%, for every page

frequency [lint e 5

We can start by writing a simple function that downloads all the text from a URL and
then iterates over every character in the downloaded text, as shown in the next listing.
While we’re doing this, we can update the letter frequency count table for any charac-
ters in the English alphabet (excluding punctuation marks, spaces, etc.).

Figure 3.7 A single goroutine
counting letters on various web

pages

Listing 3.2 Function producing a letter-frequency count for a web page
package main

import (
" fmtll
llio n
"net/http"
"strings"

)

const allletters = "abcdefghijklmnopgrstuvwxyz"
Downloads the web page

func countlLetters(url string, frequency []int) ({ from the given URL

resp, _ := http.Get (url)
defer resp.Body.Close() <—— Closes the response at the end of the function
if resp.StatusCode != 200 {

panic("Server returning error status code: " + resp.Status)

}
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body, _ := io.ReadAll (resp.Body)
for _, b := range body { <+—— lterates over every downloaded character
c := strings.ToLower (string (b))

Finds the index of the

if cIndex >= 0 { character in the alphabet

cIndex := strings.Index(allLetters, c) q——w
frequency[cIndex] += 1

}
} If the character is part of the alphabet,
fmt.Println("Completed:", url) increments the count by 1

NOTE For the sake of conciseness, we are ignoring some error handling in
these listings.

The function starts by downloading the contents of the URL in its input argument. It
then iterates over every single character, using the for loop, and converts each to low-
ercase. We do this so that we count uppercase and lowercase characters as equivalent.
If we find the character in the string containing the English alphabet, then we incre-
ment the count of that character in the Go slice entry represented by that character.
Here we are using the Go slice as our character frequency table. In this table, the ele-
ment 0 represents the count of the letter a, element 1 is b, 2 is ¢, and so on. At the end
of our function, after we have processed the entire downloaded document, we output
a message showing which URL the function completed.

Let’s run this function using some web pages. Ideally, we want static pages that
never change. It would also be good if the contents of the web pages were just text
with no document formatting, images, links, etc. For example, a news web page would
not suffice, since the content changes frequently and is rich in formatting.

The www.rfc-editor.org website contains a database of technical documents (called
requests for comments, or RFCs) about the internet, including specifications, standards,
policies, and memos. It’s a good source for this exercise because the documents do
not change, and we can download text-only documents with no formatting. The other
advantage is that the URLs have incremental document IDs, which make them pre-
dictable. We can use the URL format of rfc-editor.org/rfc/rfc{ID}.txt. For example,
we can get document ID 1001 with the URL rfc-editor.org/rfc/rfcl001. txt.

Now we just need a main() function that runs our countLetters() function many
times, each time with a different URL, passing in the same frequency table and letting
it update the character counts. The following listing shows this main () function.

Listing 3.3 main () function calling countLetters () with different URLs

Initializes slice space for the frequency table
func main() {
26)

var frequency = make ([]int, Iterates from document ID 1000
for i := 1000; i <= 1030; i++ { to 1030 to download 31 docs

url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcéd.txt", 1)

countLetters (url, frequency)
} Calls the countLetters()
function sequentially
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for i, ¢ := range allletters {
fmt.Printf ("$c-%d ", ¢, frequencyl[il)
} Outputs each letter with its frequency

In the main() function, we create a new slice that will store the results, containing the
letter frequency table. Then we specify downloading 31 documents from rfc1000.txt
to rfc1030.txt. The program calls our countLetters () function sequentially to down-
load and process each web page (i.e., one after the other). Depending on the speed of
our internet connection, the program can take anywhere from a few seconds to a cou-
ple of minutes. Once it’s finished, the main() function will output the contents of the
frequency slice variable:

$ time go run charcountersequential.go
Completed: https://rfc-editor.org/rfc/rfcl000.txt
Completed: https://rfc-editor.org/rfc/rfcl001.txt

Completed: https://rfc-editor.org/rfc/rfcl028.txt

Completed: https://rfc-editor.org/rfc/rfcl029.txt

Completed: https://rfc-editor.org/rfc/rfcl030.txt

a-103445 b-23074 c-61005 d-51733 e-181360 f£-33381 g-24966 h-47722 1-103262 j-
3279 k-8839 1-49958 m-40026 n-108275 0-106320 p-41404 g-3410 r-101118 s-
101040 t-136812 u-35765 v-13666 w-18259 x-4743 y-18416 z-1404

real Oml7.035s

user 0m0.447s

sys 0mo0.308s

The last line of the program output (before the times) contains the count of each let-
ter in all 31 documents. The first entry in the list represents the count for the letter «,
the second for b, and so on. A quick glance tells us that the letter ¢ is the most fre-
quent letter in our documents. The program took about 17 seconds to complete.

Let’s now try to improve the speed of our program by using concurrent program-
ming. Figure 3.8 shows how we can use multiple goroutines to download and process
each web page concurrently instead of one after the other. The trick here is to run our
countLetters () function concurrently by using the go keyword.

To implement this, we have to make two changes to our main() function, as shown
in listing 3.4. The first is that we’ll add go to our countLetters () function call. This just
means that we will be creating 31 goroutines, one per web page. Each goroutine will
then download and process its document concurrently (i.e., all at the same time,
instead of one after the other). The second change is that we’ll wait for a few seconds
until all the goroutines are complete. We need this step; otherwise, when the main ()
goroutine finishes, the process would terminate before we had finished processing all
the downloads. This is because in Go, when the main() goroutine completes, the
entire process terminates. This happens even if other goroutines are still executing.
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WARNING Using the countLetters() function from multiple goroutines will
produce erroneous results due to a race condition that will be discussed in
the next section. We are doing this here for demonstration purposes only.

Figure 3.8 Goroutines
working together to
count characters

Listing 3.4 main () function creating goroutines and sharing the frequency slice

func main() {
var frequency = make([]int, 26)
for i := 1000; i <= 1030; i++
Waits url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcéd.txt", 1)
for the go countLetters (fmt.Sprintf (url), frequency)
goroutines } 4_‘ Starts a goroutine that calls
to finish time.Sleep (10 * time.Second) the countLetters() function
for i, ¢ := range alllLetters {

Outputs each letter

fmt.Printf ("%c-%d ", ¢, frequencyl[i])
with its frequency

}

NOTE Using Sleep() is not a great way to wait for another goroutine to com-
plete. In fact, if you have a slow internet connection, you might need to
increase the wait time in listing 3.4. In chapter 5, we’ll discuss how to use con-
dition variables and semaphores for this task. Additionally, in chapter 6, we
will introduce the concept of waitgroups, which allow us to block the execu-
tion of a goroutine until certain tasks have completed.

Notice how, in this example, the goroutines all share the same data structure in mem-
ory. When we initialize the Go slice in the main() function, we allocate space for it on
the heap. When we create the goroutines, we pass them all the same reference to the
memory location containing the Go slice. The 31 goroutines then go about reading
and writing to the same frequency slice concurrently. In this way, the threads are coop-
erating and working together to update the same memory space. That’s all there is to
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thread memory sharing. You have a data structure or a variable that you’re sharing
with other threads. The difference compared to sequential programming is that a gor-
outine might write a value to a variable, but when it reads it back, the value might be
different since another goroutine might have changed it.

If you ran this program, you might have noticed a problem with it. Here’s what the
output looks like after running it:

$ time go run charcounterconcurrent.go
Completed: https://rfc-editor.org/rfc/rfcl022.txt
Completed: https://rfc-editor.org/rfc/rfcl019.txt

Completed: https://rfc-editor.org/rfc/rfcl0l2.txt

Completed: https://rfc-editor.org/rfc/rfcl021.txt

Completed: https://rfc-editor.org/rfc/rfcl010.txt

a-103074 b-23054 c-60854 d-51609 e-179936 f-33356 g-24933 h-47637 1-102856 j-
3279 k-8835 1-49873 m-39962 n-107840 0-105948 p-41334 g-3408 r-100730 s-
100659 t-136100 u-35709 v-13659 w-18240 x-4743 y-18411 z-1404

real Omll.485s

user 0m0.940s

sys 0m0.430s

First, you’ll notice that the downloads finish much faster than in the sequential ver-
sion. We were expecting this. Doing the downloads all in one go should be faster than
doing them one after the other. Second, the output messages are no longer in order.
Since we start downloading all the documents at the same time, some will finish ear-
lier than others because they all have different sizes. The ones that finish earlier out-
put their completed messages first. The order in which we process the pages doesn’t
really matter for this application.

The problem is in the result. When we compare the character counts of the
sequential run against the concurrent one, we notice a difference: most characters
have a lower count in the concurrent version. For example, the letter ¢ has a count of
181,360 in the sequential run and a count of 179,936 in the concurrent one (your
concurrent results may differ).

We can try running both the sequential and concurrent programs multiple times.
The results will vary depending on the computer setup, such as the internet connec-
tion and processor speed. However, when we compare them, we’ll see that the sequen-
tial version gives us the same results each time, but the parallel version gives us slightly
different values on each run. What is going on?

This is the result of what’s known as a race condition—when we have multiple
threads (or processes) sharing a resource and they step over each other, giving us
unexpected results. Let’s go into more detail on why race conditions happen. (In the
next chapter, we’ll see how we can fix this problem with our concurrent letter fre-
quency program.)
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Race conditions

Race conditions are what happens when your program is trying to do many things at
the same time, and its behavior is dependent on the exact timing of independent
unpredictable events. As we saw in the previous section, our letter frequency program
ends up giving unexpected results, but sometimes the outcome is even more dra-
matic. Our concurrent code might be happily running for a long period, and then
one day it may crash, resulting in more serious data corruption. This can happen
because the concurrent executions are lacking proper synchronization and are step-
ping over each other.

System-wide outage

The mood in the meeting on the 24th floor of Turner Belfort, a huge international
investment bank, was as bleak as it gets. The firm’s software developers met to dis-
cuss the best way forward after a critical core application failed and caused a system-
wide outage. The system failure caused client accounts to report erroneous amounts
in their holdings.

“Guys, we have a serious issue here. | found that the outage was caused by a race
condition in our code, introduced a while ago and triggered last night,” said Mark
Adams, senior developer.

The room went silent. The tiny cars outside the floor-to-ceiling windows slowly and
silently crept along in the heavy city traffic. The senior developers immediately under-
stood the severity of the situation, realizing that they would now be working around the
clock to fix the problem and sort out the mess in the datastore. The less experienced
developers understood that a race condition was serious, but they didn’t know exactly
what caused it and, therefore, kept their mouths shut.

Eventually, David Holmes, delivery manager, broke the silence with this question: “The
application has been running for months without any problems, and we haven’t
released any code recently, so how on earth is it possible that the software just broke
down?”

Everyone shook their heads and returned to their desks, leaving David in the room
alone, puzzled. He took out his phone and searched for the term “race condition.”

This type of error doesn’t just apply to computer programs. Sometimes we see exam-
ples of this in real life when we have concurrent actors interacting. For example, a
couple might share a household shopping list, such as a list of groceries written on the
fridge door. In the morning, before both head out to the office, they independently
decide that they’ll shop for groceries after work. The two take a picture of the list and
later drop by the shops to purchase all the items. Unbeknownst to each, the other has
decided to do the same thing. This is how they end up with two of everything they
need (see figure 3.9).
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Figure 3.9 Race conditions
happen in real life too,
sometimes.

Other race conditions

A software race condition is one that occurs in a concurrent program. Race conditions
occur in other environments as well, such as in distributed systems, electronic cir-
cuits, and sometimes even in human interactions.

In the letter-frequency application, we had a race condition that resulted in the pro-
gram underreporting the letter counts. Let’s write a simpler concurrent program that
highlights a race condition so that we can understand this problem better. In the
upcoming chapters, we’ll discuss different ways to avoid race conditions, such as fixing
the letter counter program using mutexes (discussed in the next chapter).

Stingy and Spendy: Creating a race condition

Stingy and Spendy are two separate goroutines. Stingy works hard and earns the cash
but never spends a single dollar. Spendy is the opposite, spending money without
earning anything. Both goroutines share a common bank account. To demonstrate a
race condition, we’ll make Stingy and Spendy earn and spend 10 dollars each time for
1 million times. Since Spendy is spending the same exact amount that Stingy is earn-
ing, we should finish with the same amount we started with if our programming is cor-
rect (see figure 3.10).

¥ N\ ¥ N

repeat 1 milion times repeat 1 milion times

Figure 3.10 A race
condition with two
Stingy goroutine Spendy goroutine goroutines
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In listing 3.5, we first create the Stingy and Spendy functions. Both stingy() and
spendy () iterate 1 million times, adjusting a shared money variable each time—the
stingy () function adding 10 dollars each time and the spendy() function subtract-
ing it.

WARNING Using the following stingy () and spendy () functions from multiple

goroutines will produce race conditions. We are doing it here for demonstra-
tion purposes only.

Listing 3.5 Stingy and Spendy functions

func stingy (money *int) {

stin for i := 0; i < 1000000; i++ { .
functgiz;(.z *money += 10 The function accepts a
adds 10 } pointer to the variable
dollars fmt.Println ("Stingy Done") holding the sum in the
} bank account.

func spendy (money *int) {
for i := 0; i < 1000000; i++ {

) rmoney -= 10 spendy() function
subtracts 10 dollars

fmt.Println ("Spendy Done")

We now need to call these two functions using a separate goroutine for each. We can
write a main() function that initializes the shared money variable, creates the gorou-
tines, and passes the variable reference to the newly created goroutines.

In listing 3.6, we initialize the common bank account to have 100 dollars. We also
have the main () goroutine sleep for 2 seconds after creating the goroutines to wait for
them to terminate. (In chapter 6, we will discuss waitgroups, which will allow us to
block until a task has finished instead of having to sleep for several seconds.) After the
main thread reawakens, it prints the amount of money in the money variable.

Listing 3.6 Stingy and Spendy main () function

package main

import (
n fmt n
"time"

Initializes money value
func main() { to have 100 dollars
money := 100

go stingy (&money) Starts goroutines and passes a
go spendy (&money) reference to the money variable
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time.Sleep (2 * time.Second)

) ; Waits for 2 seconds for the
println("Money in bank account: ", money) .
} goroutines to complete

In this listing, we expect that it will output 100 dollars as a result. After all, we are just
adding and subtracting 10 to the variable 1 million times. This is simulating Stingy
earning 10 million and Spendy spending the same amount, leaving us with the initial
value of 100. However, here’s the output of the program:

$ go run stingyspendy.go
Spendy Done

Stingy Done

Money in bank account: 4203750

More than $4 million remains in the account! Stingy would be very happy with this
outcome. However, this result was pure chance. In fact, if we run it again, our account
might end up below zero:

$ go run stingyspendy.go
Stingy Done

Spendy Done

Money in bank account: -1127120

Heisenbugs

We can try to debug what is going on in our Stingy and Spendy program by putting
some breakpoints in key places. However, it would be very unlikely that we would spot
the problem, since pausing on the breakpoints would slow down the execution, making
it less likely for the race condition to occur.

A race condition is a good example of a Heisenbug. Named after the physicist Werner
Heisenberg, with reference to his quantum mechanics uncertainty principle, a Heisen-
bug is a bug that disappears or changes behavior when we attempt to debug and iso-
late it. Since they’re very hard to debug, the best way to deal with Heisenbugs is to
not have them at all. Thus, it's vital to understand what causes race conditions and
learn techniques for preventing them in our code.

Let’s try to understand why we’re getting these weird results by walking through a sce-
nario. To keep things simple for now, let’s assume we have only one processor, so no
processing is happening in parallel. Figure 3.11 shows one such race condition that is
happening in our Stingy and Spendy program.

At timestamps 1 through 3, Spendy is executing. The thread reads the value of 100
from shared memory and puts it on the processor’s register. Then it subtracts 10 and
writes back 90 dollars to the shared memory. At timestamps 4 through 6, it’s Stingy’s
turn. It reads the value of 90, adds 10, and writes back 100 to the shared variable on the
heap. Timestamps 7 through 11 are when things start to go bad. At timestamp 7, Spendy
reads the value of 100 from main memory and writes this value to its processor registers.
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Figure 3.11 Race condition between Stingy and Spendy explained

At timestamp 8, a context switch happens, and Stingy’s goroutine starts executing on
the processor. It goes about reading the value of 100 from the shared variable since
Stingy’s thread didn’t get the chance to update it yet. At timestamps 9 and 10, the
goroutines subtract and add 10. Spendy then writes back the value of 90, and at time 11,
Stingy’s thread overwrites this by writing 110 to the shared variable. In total, we have
spent $20 and earned back $20, but we ended up with an extra $10 in our account.

DEFINITION The word atomic has its origins in the ancient Greek language,
meaning “indivisible.” In computer science, when we mention an alomic opera-
lion, we mean an operation that cannot be interrupted.

We are having this problem because the operations *money += 10 and *money -= 10 are
not atomic; after compilation, they translate to more than one instruction. An inter-
ruption in the execution can occur in between the instructions. Different instructions
from another goroutine can interfere and cause race conditions. When this overstep-
ping happens, we get unpredictable results.

DEFINITION A critical section in our code is a set of instructions that should be
executed without interference from other executions affecting the state used
in that section. When this interference is allowed to happen, race conditions
may arise.

Even if the instructions were atomic, we might still run into issues. Remember how at
the start of this chapter, we talked about processor caches and registers? Each processor
core hasalocal cache and registers to store the variables that are used frequently. When
we compile our code, the compiler sometimes applies optimizations to keep the
variables on the CPU registers or caches before giving instructions to flush them back
to memory. This means that there is a possibility that the two goroutines operating on
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separate CPUs are not seeing each other’s changes until they complete the periodic
flush to memory.

When we are executing a badly written concurrent program in a parallel environ-
ment, it is even more likely that these types of errors will arise. Goroutines running in
parallel increase the chance of these types of race conditions happening since now we
will be performing some steps at the same time. In our Stingy and Spendy program,
the two goroutines are more likely to read the money variable at the same time before
writing it back when running in parallel.

When we are using goroutines (or any user-level threads) and we are running only
on a single processor, it is unlikely that the runtime will interrupt the execution in the
middle of these instructions. This is because user-level scheduling is usually non-
preemptive; it will only do a context switch in specific cases such as I/O or when the
application calls a thread yield (Gosched() in Go). This is unlike the OS scheduling,
which is usually preemptive and can interrupt the execution at any time. It’s also
unlikely that any goroutine will see an outdated version of a variable, since all the
goroutines will be running on the same processor, using the same caches. In fact, if you
try listing 3.6 with runtime.GOMAXPROCS (1), you probably won’t see the same issue.

Obviously, this is not a good solution, mainly because we would be giving up the
advantage of having multiple processors, but also because there is no guarantee that it
will solve the problem completely. A different or a future version of Go might do
scheduling differently and then break our program. Regardless of the scheduling sys-
tem we are using, we should guard against race conditions. This way, we are safe from
problems regardless of the environment that the program will run on.

Yielding execution does not help with race conditions

What if we tell Go’s runtime exactly when it should run the scheduler? In the previous
chapter, we saw how we could use the runtime.Gosched() call to invoke the scheduler
so that we might yield execution to another goroutine. The following listing shows
how we could modify our two functions and make this call.

Listing 3.7 Stingy and Spendy functions invoking Go’s scheduler

func stingy (money *int) {
for i := 0; i < 1000000; i++ {

*money += 10 Calls the Go scheduler after
runtime.Gosched () we perform the addition
1

fmt.Println("Stingy Done")

}

func spendy (money *int) {

for i := 0; i < 1000000; i++ {
*money -= 10 Calls the Go scheduler after
runtime.Gosched () we perform the subtraction

}

fmt.Println("Spendy Done")
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Unfortunately, this does not solve our problem. The output of this listing will vary
depending on system differences (the number of processors, the Go version and
implementation, the type of operating system, etc.). However, on a multicore system,
this was the output:

$ go run stingyspendysched.go
Stingy Done

Spendy Done

Money in bank account: 170

Running this one more time produced this result:

$ go run stingyspendysched.go
Spendy Done

Stingy Done

Money in bank account: -190

It looks like the race condition is happening less frequently, but it’s still occurring. In
this snippet, the two goroutines were running in parallel on separate processors.
There are various reasons why the race condition might occur less frequently, but it’s
unlikely to be because we are instructing the scheduler when to run. Let’s first remind
ourselves what this call does by looking at the Go documentation at https://
pkg.go.dev/runtime#Gosched:

func Gosched ()

Gosched vyields the processor, allowing other goroutines to run. It does not suspend the
current goroutine, so execution resumes automatically.

Our program is now spending a smaller proportion of time on the critical sections
(addition and subtraction). It’s spending a considerable amount of time invoking the
Go scheduler, so it’s much less likely that the two goroutines read or write the shared
variable at the same time.

Another reason why the race condition happens less often might be that the
compiler has fewer options to optimize the code in the loop since we’re now calling
runtime.Gosched ().

WARNING Never rely on telling the runtime when to yield the processor to solve
race conditions. There is no guarantee that another parallel thread will not
interfere. In addition, even if the system has one processor, if we were using
more than one kernel-level thread—for example, by setting a different value
using runtime.GOMAXPROCS (n) —the OS could interrupt the execution atany time.

Proper synchronization and communication eliminate race conditions
How can we write concurrent programs that avoid race conditions? There is no magic
bullet here. There is no single technique best used to solve every case.

The first step is to make sure that we’re using the right tool for the job. Is memory
sharing really needed for the problem? Is there another way we can communicate
between goroutines? In chapter 7 of this book, we will look at a different way of
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communicating—using channels and communicating sequential processes. This man-
ner of modeling concurrency eliminates many of these types of errors.

The second step to good concurrent programming is recognizing when a race con-
dition can occur. We must be mindful when we are sharing resources with other
goroutines. Once we know where these critical code parts are, we can think about the
best practices to employ so that the resources are shared safely.

Earlier we discussed a real-life race condition involving two people sharing a shop-
ping list. This led to them buying the groceries twice since they didn’t know that the
other person had also decided to do the shopping. We can prevent this situation from
occurring again by having a better way of synchronizing and communicating, as
shown in figure 3.12.

shopping in progress
marker

hal someone is
diready doing the
shopping!

U Figure 3.12 Proper synchronization and
communication eliminates race conditions.

For example, we could leave a note or a mark on the shopping list to show that some-
one is already doing the shopping. This would indicate to others that there is no need
to shop again. To avoid race conditions in our programming, we need good synchro-
nization and communication with the rest of the goroutines to make sure they don’t
step over each other. Good concurrent programming involves effectively synchroniz-
ing your concurrent executions to eliminate race conditions while improving perfor-
mance and throughput. In later chapters of this book, we’ll use different techniques
and tools to synchronize and coordinate the threads in our programs. In this way, we
can work around these race conditions and synchronization problems, sometimes
avoiding them altogether.

The Go race detector

Go gives us a tool to detect race conditions in our code: we can run the Go compiler
with the -race command-line flag. With this flag, the compiler adds special code to all
memory accesses to track when different goroutines are reading from and writing to
memory. When we use this flag and a race condition is detected, it outputs a warning
message on the console. If we try running with this flag on our Stingy and Spendy pro-
gram (listings 3.5 and 3.6), we’ll get this result:
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$ go run -race stingyspendy.go

WARNING: DATA RACE
Read at 0x00c00001a0f8 by goroutine 7:
main.spendy ()
/home/james/go/stingyspendy.go:21 +0x3b
main.main.func2 ()
/home/james/go/stingyspendy.go:29 +0x39

Previous write at 0x00c00001a0f8 by goroutine 6:
main.stingy ()
/home/james/go/stingyspendy.go:14 +0x4d
main.main.funcl ()
/home/james/go/stingyspendy.go:28 +0x39

Goroutine 7 (running) created at:
main.main ()
/home/james/go/stingyspendy.go:29 +0x116

Goroutine 6 (running) created at:
main.main ()
/home/james/go/stingyspendy.go:28 +0xae

Stingy Done

Spendy Done

Money in bank account: -808630
Found 1 data race(s)

exit status 66

In this example, Go’s race detector found our one race condition. It points to critical
sections in our code on lines 21 and 14, the parts where we add to and subtract from
the money variable in our stingy () and spendy () functions. It also gives us information
about the reads from and writes to memory. In the preceding snippet, we can see that
memory location 0x00c00001a0£8 was first written by goroutine 6 (running stingy())
and then later read by goroutine 7 (running spendy () ).

WARNING Go’s race detector finds race conditions only when a particular
race condition is triggered. For this reason, the detector is not infallible.
When using the race detector, you should test your code with production-like
scenarios, but enabling it in a production environment is usually not desir-
able, since it slows performance and uses a lot more memory.

Recognizing race conditions gets easier with experience as you write more concurrent
code. It’s important to remember that whenever you are sharing resources (such as
memory) with other goroutines in a critical section of code, race conditions may arise
unless you synchronize access to the shared resource.

Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.
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Modify our sequentialletter frequency program to produce a list of word fre-
quencies rather than letter frequencies. You can use the same URLs for the RFC
web pages as were used in listing 3.3. Once it’s finished, the program should
output a list of words with the frequency with which each word appears in the
web page. Here’s some sample output:

$ go run wordfrequency.go

the -> 5
a -> 8
car -> 1

program -> 3

What happens when you try to convert the sequential program into a concur-
rent one, creating a goroutine for each page? We will fix these errors in the
next chapter.

Run Go’s race detector on listing 3.1. Does the result contain a race condition?
If it does, can you explain why it happens?

Consider the following listing. Can you find the race condition in this program
without running the race detector? Hint: Try running the program several
times to see if it results in a race condition.

Listing 3.8 Find the race condition

package main

import (
" Fmen
n time n

)

func addNextNumber (nextNum * [101]int) {

i

:= 0

for nextNuml[i] != 0 { i++ }
nextNum([i] = nextNum[i-1] + 1

}

func main() {
nextNum := [101]int{1}
for i := 0; i < 100; i++ {

}

go addNextNumber (&nextNum)

for nextNum[100] == 0 {

}

println("Waiting for goroutines to complete")
time.Sleep (10 * time.Millisecond)

fmt.Println (nextNum)
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Summary
Memory sharing is one way in which multiple goroutines can communicate to
accomplish a task.
Multiprocessor and multicore systems give us hardware support and systems to
share memory between threads.
Race conditions are when unexpected results arise due to sharing resources,
such as memory, between goroutines.
A critical section is a set of instructions that should execute without interfer-
ence from other concurrent executions. When interference is allowed to hap-
pen, race conditions might occur.
Invoking the Go scheduler outside critical sections is not a solution to the prob-
lem of race conditions.
Using proper synchronization and communication eliminates race conditions.

Go gives us a race detector tool that helps us spot race conditions in our code.
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This chapter covers

= Protecting critical sections with mutex locks
= |Improving performance with readers—writer locks
= |Implementing a read-preferred readers—writer lock

We can protect critical sections of our code with mutexes so that only one gorou-
tine at a time accesses a shared resource. In this way, we eliminate race conditions.
Variations on mutexes, sometimes called locks, are used in every language that sup-
ports concurrent programming. In this chapter, we’ll start by looking at the func-
tionality that mutexes provide. Then we’ll look at a variation on mutexes called
readers—writer mutexes.

Readers—writer mutexes give us performance optimizations in situations where
we need to block concurrency only when modifying the shared resource. They give
us the ability to perform multiple concurrent reads on shared resources while still
allowing us to exclusively lock write access. We will see a sample application of
readers—writer mutexes, and we’ll learn about its internals and build one ourselves.

66
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Protecting critical sections with mutexes

What if we had a way to ensure that only one thread of execution runs critical sec-
tions? This is the functionality that mutexes give us. Think of them as being physical
locks that block certain parts of our code from more than one goroutine at any time.
If only one goroutine is accessing a critical section at a time, we are safe from race con-
ditions. After all, race conditions happen only when there is a conflict between two or
more goroutines.

How do we use mutexes?

We can use mutexes to mark the beginnings and ends of our critical sections, as illus-
trated in figure 4.1. When a goroutine comes to a critical section of the code pro-
tected by a mutex, it first locks this mutex explicitly as an instruction in the program
code. The goroutine then starts to execute the critical section’s code, and when it’s
done, it unlocks the mutex so that another goroutine can access the critical section.

waiting for

instruction 1
instruction 2
instruction 3 A ... locks
. . mutex
instruction 4 -
) ) critical
instruction 5 ;
section
instruction 6 ok
- + .l . . 7 r i uniocks
oroutine .. pe
} ' nstruction =] mutex Figure 4.1 Only one goroutine
., executing instruction 8 is allowed in a mutex-protected

critical section critical section.

If another goroutine tries to lock a mutex that is already locked, the goroutine will be
suspended until the mutex is released. If more than one goroutine is suspended, wait-
ing for a lock to become available, only one goroutine is resumed, and it is the next to
acquire the mutex lock.

DEFINITION  Mutex, short for mutual exclusion, is a form of concurrency control
with the purpose of preventing race conditions. A mutex allows only one exe-
cution (such as a goroutine or a kernel-level thread) to enter a critical sec-
tion. If two executions request access to the mutex at the same time, the
semantics of the mutex guarantee that only one goroutine will acquire access
to the mutex. The other execution will have to wait until the mutex becomes
available again.

In Go, mutex functionality is provided in the sync package, under the type Mutex. This
type gives us two main operations, Lock () and Unlock (), which we can use to mark the
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beginning and end of our critical code sections, respectively. As a simple example, we
can modify our stingy () and spendy () functions from the previous chapter to protect
our critical sections. In the following listing, we’ll use the mutex to protect the shared
money variable, preventing both goroutines from modifying it at the same time.

Listing 4.1 Stingy’s and Spendy’s functions using a mutex

package main

import (
" Fmen
"sync"
"time"

)

—> func stingy(money *int, mutex *sync.Mutex) {

for i := 0; i < 1000000; i++ {
Accepts mutex.Lock () !
a pointer *money += 10
to the mutex.Unlock () <+
shared }
mutex fmt.Println("Stingy Done") t::::et::t:!?":lr:;:he
struct J critical section
L> func spendy (money *int, mutex *sync.Mutex) {
for i := 0; i < 1000000; i++ {
mutex.Lock () <
*money -= 10
mutex.Unlock () <
} Unlocks after exiting
fmt .Println ("Spendy Done") the critical section

NOTE All listings in this book are available on github.com/cutajarj/
ConcurrentProgrammingWithGo.

If both Stingy’s and Spendy’s goroutines attempt to lock the mutex at exactly the same
time, we are guaranteed by the mutex that one and only one goroutine will be able to
lock it. The other goroutine will have its execution suspended until the mutex becomes
available again. So, for example, Stingy will have to wait until Spendy subtracts the
money and releases the mutex. When the mutex becomes available again, Stingy’s sus-
pended goroutine will be resumed, acquiring the lock to the critical section.

The following listing shows the modified main() function creating a new mutex
and passing a reference to stingy () and spendy ().

Listing 4.2 main () function creating the mutex

func main() {
money := 100
mutex := sync.Mutex{} <—— Creates a new mutex
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go stingy (&money, &mutex) Passes a reference to the mutex
go spendy (&money, &mutex) to the two goroutines
time.Sleep (2 * time.Second)
mutex.Lock .

. 0 , N Protects reading the shared
fmt.Println("Money in bank account: ", money) . .

variable with a mutex

mutex.Unlock () <

NOTE When we create a new mutex, its initial state is always unlocked.

In our main () function, we’re also using a mutex when we read the money variable after
the goroutines finish. A race condition here is very unlikely since we sleep for a period
to make sure that the goroutines are complete. However, it’s always good practice to
protect shared resources even if you're sure that there will be no conflict. Using
mutexes (and other synchronization mechanisms covered in later chapters) ensures
that the goroutine reads an updated copy of the variable.

NOTE We should protect all critical sections, including parts where the
goroutine is only reading the shared resources. The compiler’s optimizations
might re-order instructions, causing them to execute in a different manner.
Using proper synchronization mechanisms, such as mutexes, ensures that
we’re reading the latest copy of the shared resources.

If we now run listings 4.1 and 4.2 together, we can see that we have eliminated the race
condition. The balance in the account is $100 after the Stingy and Spendy goroutines
are complete. Here’s the output:

$ go run stingyspendymutex.go
Stingy Done

Spendy Done

Money in bank account: 100

We can also try running this code with the -race flag to check that there are no race
conditions.

How are mutexes implemented?

Mutexes are typically implemented with help from the operating system and hardware.
If we had a system with just one processor, we could implement a mutex just by dis-
abling interrupts while a thread is holding the lock. This way, another execution will not
interrupt the current thread, and there is no interference. However, this is not ideal,
because badly written code can end up blocking the entire system for all the other pro-
cesses and threads. A malicious or poorly written program can have an infinite loop
after acquiring a mutex lock and crash the system. Also, this approach will not work
on a system with multiple processors, since other threads could be executing in par-
allel on another CPU.
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(continued)

The implementation of mutexes involves support from the hardware to provide an
atomic test and set operation. With this operation, an execution can check a memory
location, and if the value is what it expects, it updates the memory to a locked flag
value. The hardware guarantees that this test and set operation is atomic—that is, no
other execution can access the memory location until the operation completes. Early
hardware implementations guaranteed this atomicity by blocking the entire bus so that
no other processor could use the memory at the same time. If another execution per-
formed this operation and found it already set to a locked flag value, the operating sys-
tem would block the execution of that thread until the memory location changed back
to free.

We’ll explore how mutexes can be implemented using atomics and operating system
calls in chapter 12. In that chapter, we’ll also examine how Go implements its own
mutex.

Mutexes and sequential processing

We can, of course, also use mutexes when we have more than two goroutines. In the
previous chapter, we implemented a letterfrequency program that used multiple
goroutines to download and count the occurrence of characters in the English alpha-

bet. The code lacked any synchronization and gave us erroneous counts when we ran

the program. If we want to use mutexes to fix this race condition, at which point in

V2 1/1//10111 17017777

our code should we lock and unlock the mutex (see figure 4.2.)?

which steps
should we protect
with a mutex?

steps performed in
each letter-frequency
goroutine

O

"y
(D download a O

e
@ scandoc @mwex lock

@ read letter count
mutex unlock

-~ S~

r‘epeaJr

@ update letter count

Figure 4.2 Deciding where to place the locking and unlocking of the mutex

NOTE Using mutexes has the effect of limiting concurrency. The code in
between locking and unlocking a mutex is executed by one goroutine at any
time, effectively turning that part of the code into sequential execution. As we
saw in chapter 1, and according to Amdahl’s law, the sequential-to-parallel
ratio will limit the performance scalability of our code, so it’s essential that we
reduce the time spent holding the mutex lock.
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Listing 4.3 shows how we can first modify the main() function to create the mutex and
pass its reference to our countLetters () function. This is the same pattern we used for
the Stingy and Spendy program, creating the mutex in the main () goroutine and shar-
ing it with others. We are also protecting the read of the frequency variable at the end
when we come to output the results.

Listing 4.3 main () function creating a mutex for letter frequency (imports omitted)

package main

import ( ... )

const AllLetters = "abcdefghijklmnopgrstuvwxyz"
func main()

{ Creates new mutex
mutex := sync.Mutex{}

var frequency = make([]int, 26)

for i := 1000; i <= 1030; i++

url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcéd.txt", 1)

go CountLetters (url, frequency, &mutex)
} 4—‘ Passes a reference of the
time.Sleep (60 * time.Second) mutex to the goroutines
mutex.Lock ()
for i, ¢ := range AllLetters ( Protects reading

fmt.Printf ("$c-%d ", c, frequencyl[il) the shared variable
} with the mutex

mutex.Unlock ()

What happens if we lock the mutex at the start of our CountLetters() function and
release it at the very end? You can see this in the following listing, where we lock the
mutex immediately after we call the function and release it after we output the com-
pleted message.

Listing 4.4 Incorrect (slow) way of locking and unlocking mutexes

func CountLetters (url string, frequency []lint, mutex *sync.Mutex) {

mutex.Lock ()
resp, _ := http.Get(url) Locks the mutex for the entire execution,
defer resp.Body.Close() making everything sequential
if resp.StatusCode != 200 {
panic ("Server returning error status code: " + resp.Status)
}
body, _ := io.ReadAll (resp.Body)
for , b := range body {
c := strings.ToLower (string (b))
cIndex := strings.Index(AllLetters, c)

if cIndex >= 0 {
frequency[cIndex] += 1
}
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fmt.Println("Completed:", url, time.Now () .Format ("15:04:05"))
mutex.Unlock ()
} Unlocks the mutex

By using mutexes in this manner, we have changed our concurrent program into a
sequential one. We will end up downloading and processing one web page at a time
since we’re needlessly blocking the entire execution. If we go ahead and run this, the
time taken will be the same as the non-concurrent version of the program, although
the order of execution will be random:

$ go run charcountermutexslow.go
Completed: https://rfc-editor.org/rfc/rfcl002.txt 08:44:21
Completed: https://rfc-editor.org/rfc/rfcl030.txt 08:44:23

Completed: https://rfc-editor.org/rfc/rfcl028.txt 08:44:33

Completed: https://rfc-editor.org/rfc/rfcl029.txt 08:44:34

Completed: https://rfc-editor.org/rfc/rfcl001l.txt 08:44:34

Completed: https://rfc-editor.org/rfc/rfcl000.txt 08:44:35

a-103445 b-23074 c-61005 d-51733 e-181360 £-33381 g-24966 h-47722 1-103262 j-
3279 k-8839 1-49958 m-40026 n-108275 0-106320 p-41404 g-3410 r-101118 s-
101040 t-136812 u-35765 v-13666 w-18259 x-4743 y-18416 z-1404

Figure 4.3 shows a simplified scheduling chart of this manner of locking, using only
three goroutines. The figure shows that our goroutines are spending most of their
time downloading the document and a shorter time processing it. (In this figure, we
are understating the proportion of time between the download and processing for
illustration purposes. In reality, this difference is much bigger.) Our goroutines spend
the vast majority of their time downloading the document and a tiny fraction of a sec-
ond processing it. Performance-wise, it doesn’t make sense to block the entire execu-
tion. The document download step doesn’t share anything with other goroutines, so
there is no risk of a race condition happening then.

mutex mutex
acquired released downloading document
. .

{ j letter processing D = o
; o=

goroutine 1
T x| : fime "T _
mutex lock . goroutine 2
attempt 7 o

e o

> goroutine 3

Figure 4.3 Locking too much code turns our letter-frequency concurrent program into a sequential one.
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TIP When deciding how and when to use mutexes, it’s best to focus on which
resources we should protect and discover where critical sections start and
end. Then we need to think about how to minimize the number of Lock () and
Unlock () calls.

Depending on the mutex implementation, there is usually a performance cost if we
call the Lock () and Unlock() operations too often. (In chapter 12, we’ll see why.) In
our letter-frequency program, we can try to use the mutex to protect just the one state-
ment:

mutex.Lock ()
frequency[cIndex] += 1
mutex.Unlock ()

However, this means that we’ll be calling these two operations for every letter in the
downloaded document. Since processing the entire document is a very fast operation,
it’s probably more performant to call Lock () before the loop and Unlock() after we exit
the loop. This is shown in the following listing.

Listing 4.5 Using mutexes on the processing part (imports omitted)

package listing4 5
import (...)
const AllLetters = "abcdefghijklmnopgrstuvwxyz"

func CountLetters (url string, frequency []int, mutex *sync.Mutex) {

resp, _ := http.Get (url)
defer resp.Body.Close () Plel’formrst tl}e
if resp.StatusCode != 200 { slow pal .0
panic ("Server returning error code: " + resp.Status) the function
} (the download)
; concurrently
body, _ := io.ReadAll (resp.Body)

mutex.Lock ()

for , b := range body {
¢ := strings.ToLower (string (b))
cIndex := strings.Index(AllLetters, c) .
if cIndex >= 0 { fast-processing

frequency [cIndex] += 1 sectl(?n of the
} function

Locks only the

}

mutex.Unlock ()
fmt.Println("Completed:", url, time.Now() .Format ("15:04:05"))

In this version of the code, the download part, which is the lengthy part of our func-
tion, will execute concurrently. The fast letter-counting processing will then be done
sequentially. We are basically maximizing the scalablity of our program by using the
locks only on the code sections that run very quickly in proportion to the rest. We can
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run the preceding listing, and as expected, it runs much more quickly and gives us
consistent correct results:

$ go run charcountermutex.go
Completed: https://rfc-editor.org/rfc/rfcl026.txt 08:49:52
Completed: https://rfc-editor.org/rfc/rfcl025.txt 08:49:52

Completed: https://rfc-editor.org/rfc/rfcl008.txt 08:49:53

Completed: https://rfc-editor.org/rfc/rfcl024.txt 08:49:53

a-103445 b-23074 c-61005 d-51733 e-181360 £-33381 g-24966 h-47722 1-103262 j-
3279 k-8839 1-49958 m-40026 n-108275 0-106320 p-41404 g-3410 r-101118 s-
101040 t-136812 u-35765 v-13666 w-18259 x-4743 y-18416 z-1404

The execution of the program is illustrated in figure 4.4. Again, the proportion
between the downloading and processing parts is exaggerated for visual purposes. In
reality, the time spent on processing is a tiny fraction of the time spent downloading
the web page, so the speedup is more extreme. In fact, in our main () function, we can
reduce the time spent sleeping to a few seconds (we had 60 seconds before).

mutex mutex

acquired released
] downloading document

H Qno
letter processing D "T@ '
goroutine 1
i 5 .
mutex lock [E] time ;

attempt . goroutine 2

4

free OF

> goroutine 3

Figure 4.4 Locking only the processing part of our countLetters () function

This second solution is faster than our first attempt. If you compare figures 4.3 and
4.4, you’ll see that we finish earlier when we’re locking a smaller part of the code. The
lesson here is to minimize the amount of time spent holding the mutex lock, while
also trying to lower the number of mutex calls. This makes sense if you think back to
Amdahl’s law, which tells us that if our code spends more time on the parallel parts,
we can finish faster and scale better.

Non-blocking mutex locks

A goroutine will block when it calls the Lock () operation if the mutex is already in use
by another execution. This is what’s known as a blocking function: the execution of the
goroutine stops until Unlock () is called by another goroutine. In some applications, we
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might not want to block the goroutine, but instead perform some other work before
attempting again to lock the mutex and access the critical section.

For this reason, Go’s mutex provides another function called TryLock (). When we
call this function, we can expect one of two outcomes:

The lock is available, in which case we acquire it, and the function returns the
Boolean value of true.

The lock is unavailable because another goroutine is currently using the mutex,
and the function will return immediately (instead of blocking) with a Boolean
value of false.

Uses of non-blocking

Go added the TryLock () function for mutexes in version 1.18. Useful examples of this
non-blocking call are hard to come by. This is because in Go, creating a goroutine is
very cheap compared to creating a kernel-level thread in other languages. It doesn’t
make much sense to have a goroutine do something else if the mutex is not available,
since in Go it’'s easier to just spawn another goroutine to do the work while we’re wait-
ing for the lock to be released. In fact, Go's mutex documentation mentions this (from
pkg.go.dev/sync#Mutex.TryLock):

Note that while correct uses of TryLock do exist, they are rare, and use of TryLock
is often a sign of a deeper problem in a particular use of mutexes.

One example of using TryLock () is a monitor goroutine that checks the progress of a
certain task without wanting to disrupt the task’s progress. If we use the normal Lock ()
operation and the application is busy with many other goroutines wanting to acquire
the lock, we are putting extra contention on the mutex just for monitoring purposes.
When we use TryLock (), if another goroutine is busy holding a lock on the mutex, the
monitor goroutine can decide to try again later when the system is not so busy. Think
about going to the post office for a non-important errand and deciding to try again
another day when you see the big queue at the entrance (see figure 4.5).

’rrfy lock Figure 4.5 Try to acquire a mutex,
and if it’s busy, try again later.

We can modify our letter-frequency program to have the main () goroutine periodically
monitor the frequency table while we are performing the downloads and document
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scanning with the other goroutines. Listing 4.6 shows the main () function printing the
contents of the frequency slice every 100 ms. To do so, it must acquire a hold on the
mutex lock; otherwise, we run the risk of reading erroneous data. However, we don’t
want to needlessly disrupt the CountLetters() goroutines if they are busy. For this rea-
son, we’re using the TryLock () operation, which attempts to acquire the lock, but if it’s
not available, it will try again in the next 100 ms cycle.

Listing 4.6 Using TryLock () to monitor the frequency table

package main

import (
"fmt"
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapter4/listing4.5"
"sync"
"time"
)
func main() {
mutex := sync.Mutex{}
var frequency = make([]int, 26)
for i := 2000; i <= 2200; i++ {
url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcéd.txt", 1i)
go listing4 5.CountLetters(url, frequency, &mutex)
}
for i := 0; i < 100; i++ {
time.Sleep (100 * time.Millisecond) <—— Sleeps for 100 ms
Tries to if mutex:TryLock() { o
acquire for i, c = range listing4 5 .AllLetter§ { If the mutex lock is available,
the mutex fmt.Printf ("%c-%d ", c, frequencyl[il]) it outputs frequency counts
} and releases the mutex.
mutex.Unlock ()
} else {

fmt.Println("Mutex already being used") If the mutex is not available
’

it outputs a message and
tries again later.

}

When we run listing 4.6, we can see in the output that the main() goroutine tries to
acquire the lock to print out the frequency table. Sometimes it is successful; at other
times, when it’s not, it waits for the next 100 ms to try again:

$ go run nonblockingmutex.go
a-0 b-0 c-0 d-0 e-0 £-0 g-0 h-0 i-0 j-0 k-0 1-0 m-0 n-0 o-0 p-0 g-0 r-0 s-0
t-0 u-0 v-0 w-0 x-0 y-0 z-0

Completed: https://rfc-editor.org/rfc/rfc2005.txt 11:18:39

a-2367 b-334 c-1270 d-1196 e-3685 £-1069 g-599 h-957 1-2537 j-22 k-112 1-1218
m-927 n-2131 0-2321 p-722 g-64 r-1673 s-2188 t-2609 u-628 v-204 w-510 x-
65 y-364 z-15

Completed: https://rfc-editor.org/rfc/rfc2122.txt 11:18:39
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Completed: https://rfc-editor.org/rfc/rfc2027.txt 11:18:41

Mutex already being used

Completed: https://rfc-editor.org/rfc/rfc2006.txt 11:18:41

a-462539 b-90971 c-258306 d-235639 e-766999 f£-142655 g-106497 h-212728 i-
460748 j-10833 k-32495 1-213285 m-170227 n-433419 0-426131 p-174817 g-
12578 r-419110 s-441282 t-597287 u-160276 v-60274 w-63028 x-28231 y-
80664 z-6908

Completed: https://rfc-editor.org/rfc/rfc2178.txt 11:18:41

Improving performance with readers-writer mutexes

At times, mutexes might be too restrictive. We can think of mutexes as blunt tools that
solve concurrency problems by blocking concurrency. Only one goroutine at a time
can execute our mutex-protected critical section. This is great for guaranteeing that
we don’t suffer from race conditions, but this might needlessly restrict performance
and scalability for some applications. Readers—writer mutexes give us a variation on
standard mutexes that only block concurrency when we need to update a shared
resource. Using readers—writer mutexes, we can improve the performance of read-
heavy applications where we are doing a large number of read operations on shared
data in comparison with updates.

Go’s readers-writer mutex

What if we had an application serving mostly static data to many concurrent clients? We
outlined one such application in chapter 2 when we had a web server application serv-
ing sports information. Let’s take the example of a similar application serving users
updates about a basketball game. One such application is illustrated in figure 4.6.

client handler
goroutine
(one per user)

ﬁ read match events
1000s read / second

match events match events
f\_/\/\ shared data structure
X update match events
@ G 1 update / second

Miomi Heat _x Boston Celtics =
= holding foul =, oints scored > | match recorder

’ Figure 4.6 Example of a
QOT‘OUhne read-heavy server application

In this application, users are checking updates about a live basketball game from their
devices. The Go application, running on our servers, serves these updates. In this
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application, we have a match-recorder goroutine that changes the content of the
shared data every time an event happens in the game. An event can be a point scored,
a foul committed, a ball passed, and so on.

Basketball is a fast-paced game, so on average, we get a few of these events every
second. At the other end, we have a large set of goroutines serving the entire list of
game events to a huge number of connected users. Users are using this data for vari-
ous reasons: to display game stats, understand the match strategy, or just check the
score and game time. The game is a popular one, so we should build something that
can handle as many user requests per second as possible. We expect to have thousands
of requests per second for our match event data.

Let’s write the two different types of goroutines, starting with the match-recorder
function, shown in listing 4.7. A goroutine running this function listens to events
happening during the game, such as points scored, fouls committed, etc., and then
appends them to a shared data structure. In this case, the shared data structure is a Go
slice of string type. In our code, we are simulating an event happening every 200
milliseconds by adding a string containing "Match Event i". In the real world, the
goroutine would be listening to a sports feed or periodically polling an API, and the
events would be of the type "3 pointer from Team A".

Listing 4.7 Match recorder function simulating periodic game events

package main

import (
n fmt n
"strconv"
n SYHC’"
"time"

)

func matchRecorder (matchEvents *[]string, mutex *sync.Mutex) {

for i := 0; ; i++ {
mutex.Lock () <—— Protects access to matchEvents with a mutex
*matchEvents = append (*matchEvents,
. Adds?'POCk "Match event " + strconv.Itoa(i))
string containing a mutex.Unlock () <— Unlocks the mutex

match event every

o time.Sleep (200 * time.Millisecond)
200 milliseconds

fmt.Println ("Appended match event")

Listing 4.8 shows a client handler function together with a function that copies all the
events in the shared slice. We can run the clientHandler() function as a goroutine,
each handling a connected user. The function locks the shared slice containing the
game events and makes a copy of every element in the slice. This function simulates
building a response to send to the user. In the real world, we could send this response
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formatted in something like JSON. The clientHandler() function has a loop that
repeats 100 times to simulate the same user making multiple requests.

Listing 4.8 Client handler using exclusive access to a shared list

func clientHandler (mEvents *[]string, mutex *sync.Mutex, st time.Time) {

£ i := 0; 1 100; 1 . .
Unlocks or ;utex Lo;:() 1o Protects access to the list of match events with the mutex
the mutex )
allEvents := copyAllEvents (mEvents . . .
mutez Unlock () 124 v (mEv ) Copies the entire contents of the match slice,
Calculates ’ simulating building a response to the client
the time timeTaken := time.Since(st)
taken since fmt.Println(len(allEvents), "events copied in", timeTaken)
the start | }
} Outputs to the console the
time taken to serve the client
func copyAllEvents (matchEvents *[]string) []string {
allEvents := make([]lstring, 0, len(*matchEvents))
for , e := range *matchEvents {
allEvents = append(allEvents, e)
1
return allEvents
1

In listing 4.9, we connect everything together and start our goroutines in a main()
function. In this main() function, after we create a normal mutex, we prepopulate the
match event slice with many match events. This simulates a game that has been going
on for a while. We do this so we can measure the performance of our code when the
slice contains some events.

Listing 4.9 main () function prepopulating events and starting goroutines

func main() { Initializes a new mutex Prepopulates the events slice
mutex := sync.Mutex{} with many events, simulating
var matchEvents = make([]string, 0, 10000) an ongoing game
Starts the for j := 0; j < 10000; Jj++ {
match- matchEvents = append(matchEvents, "Match event")
recorder }

Go routine go matchRecorder (smatchEvents, smutex) Records the start time before starting
start := time.Now () the client handler goroutines

for j := 0; j < 5000; j++ {
go clientHandler (&matchEvents, &mutex, start) <k41

time.Sleep (100 * time.Second)

Starts a large number of
client handler goroutines

In the main() function, we then start a match-recorder goroutine and 5,000 client han-
dler goroutines. Basically, we are simulating a game that is ongoing and that has a
large number of users making simultaneous requests to get game updates. We also
record the time before we start the client handler goroutines so that we can measure
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the time it takes to process all the requests. At the end, our main() function goes to
sleep for a number of seconds to wait for the client hander goroutines to finish.

In comparison to the number of read queries, the data changes very slowly. When
we use normal mutex locks, every time a goroutine reads the shared basketball data, it
blocks all the other serving goroutines until it’s finished. Even though the client han-
dlers are just reading the shared slice without any modifications, we are still giving
each one of them exclusive access to the slice. Note that if multiple goroutines are just
reading shared data without updating it, there is no need for this exclusive access;
concurrent reading of shared data does not cause any interference.

NOTE Race conditions only happen if we change the shared state without
proper synchronization. If we don’t modify the shared data, there is no risk of
race conditions.

It would be better if all client handler goroutines had non-exclusive access to the slice
so that they could read the list at the same time if needed. This would improve perfor-
mance, as it would allow multiple goroutines that are just reading the shared data to
access it at the same time. We would only block access to the shared data if there was a
need to update it. In this example, we are updating the data very infrequently (a few
times per second) compared to the number of reads we’re doing (thousands per sec-
ond). Thus, we would benefit from a system that allows multiple concurrent reads but
exclusive writes.

This is what the readers—writer lock gives us. When we just need to read a shared
resource without updating it, the readers—writer lock allows multiple concurrent
goroutines to execute the read-only critical section part. When we need to update the
shared resource, the goroutine executing the write critical section requests the write
lock to acquire exclusive access. This concept is depicted in figure 4.7. On the left side
of the figure, a read lock allows for concurrent read access while blocking any write
access. On the right side, obtaining a write lock blocks all other access, both read and
write, just like a normal mutex.

shared
resource

shared
resource

read locked

read locked
critical section

critical section

write locked

read locked
critical section

critical section

write locked o

n _ write locked
critical section

critical section

o)
o &

Figure 4.7 Goroutines using a readers—writer lock
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Go comes with its own implementation of a readers—writer lock. In addition to offer-
ing the normal exclusive locking and unlocking functions, Go’s sync.RWMutex gives us
extra methods to use the reader’s side of the mutex. Here’s a list of the functions we
can use:

type RWMutex
//Locks mutex
func (rw *RWMutex) Lock ()
//Locks read part of mutex
func (rw *RWMutex) RLock ()
//Returns read part locker of mutex
func (rw *RWMutex) RLocker () Locker
//Unlocks read part of mutex
func (rw *RWMutex) RUnlock ()
//Tries to lock mutex
func (rw *RWMutex) TryLock() bool
//Tries to lock read part of mutex
func (rw *RWMutex) TryRLock () bool
//Unlock mutex
func (rw *RWMutex) Unlock ()

The locking and unlocking functions that have an r in the function name, such as the
RLock () functions, give us the reader’s side of the rRwWMutex. Everything else, such as
Lock (), lets us operate the writer part. We can now modify our application serving bas-
ketball updates to use these new functions. In the following listing, we’ll initialize one
of these readers—writer mutexes and pass it on to the other goroutines in our main ()
function.

Listing 4.10 main () function creating the RWMutex

func main() { Initializes a new readers—writer mutex
mutex := sync.RWMutex{}

var matchEvents = make([]string, 0, 10000)
for j := 0; j < 10000; j++ {

matchEvents = append(matchEvents, "Match event")
1

go matchRecorder (&matchEvents, &mutex) Passes readers—writer
mutex to match recorder

start := time.Now ()
for j := 0; j < 5000; j++ {
go clientHandler (&matchEvents, &mutex, start) .
} Passes reaqers—wrlter
time.Sleep (100 * time.Second) nunexfochenthandhr
: : goroutine

Next, our two functions, the matchRecorder () and clientHandler (), need to be updated
so that they call the write and read locks mutex functions, respectively. In listing 4.11,
the matchRecorder () calls Lock () and UnLock () since it needs to update the shared data
structure. The clientHandler () goroutines use RLock () and RUnlock() since they are
only reading the shared data structure. The read locks used here are needed because
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we don’t want the slice data structure to change while we are traversing it. For exam-
ple, modifying the pointer and contents of the slice while another goroutine is travers-
ing it might lead us to follow an invalid pointer reference.

Listing 4.11 Match-recorder and client handler functions calling the read-write mutex

func matchRecorder (matchEvents *[]string, mutex *sync.RWMutex) {

for i := 0; ; i++ {
mutex.Lock ()
*matchEvents = append (*matchEvents, Protects critical section
"Match event " + strconv.Itoa(i)) with a write mutex

mutex.Unlock ()
time.Sleep (200 * time.Millisecond)
fmt.Println ("Appended match event")

}

func clientHandler (mEvents *[]string, mutex *sync.RWMutex, st time.Time) {

for i := 0; i < 100; 1 ++ {
mutex. RLock () Protects critical section
allEvents := copyAllEvents (mEvents) with a read mutex
mutex.RUnlock ()
timeTaken := time.Since (st)
fmt.Println(len(allEvents), "events copied in", timeTaken)

A goroutine executing the critical code section between RLock () and Runlock (), in our
clientHandler () function, blocks a goroutine from acquiring a write lock in our match-
Recorder () function. However, it does not block another goroutine from also acquiring
areaders’ lock to a critical section. This means that we can have concurrent goroutines
executing clientHandler () without any read goroutines blocking each other.

When there is a game update, the goroutine in the matchRecorder () acquires a write
lock by calling the Lock () function on the mutex. The write lock will only be acquired
when any active matchRecorder () goroutine releases its read lock. When the write lock
is acquired, it will block any other goroutine from accessing the critical section in our
clientHandler () function until we release the write lock by calling UnLock () .

If we have a system running multiple cores, this example should give us a speedup
over a system with a single core. That’s because we would be running a number of cli-
ent handler goroutines in parallel since they can access the shared data at the same
time. In a test run, I achieved a threefold increase in throughput performance using
the readers—writer mutex:

$ go run matchmonitor.go
10064 events copied in 33.033974291s

Appended match event
Appended match event

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



4.2.2

4.2  Improving performance with readers—writer mutexes 83

$ go run matchmonitor.go

10033 events copied in 10.228970583s
Appended match event
Appended match event

Figure 4.8 converts the preceding result into requests per second and shows the
advantage of using the readers—writer mutex for this simple application running on a
10-core machine. The chart assumes that the application handled a total of 500,000
requests (100 requests from 5,000 clients).

NOTE Running this application on different hardware will produce different
results. Running on a slower machine might require changing the sleep
period at the end or reducing the number of client handler goroutines.

---~._  readers-writer throughput advantage

mutex

readers-writer
mutex

o unu O uw o v O v O uw o umw o
- N N m M 4 T n v O O

requests handling rate [1000/second ]

Figure 4.8 Performance differences in our read-heavy server application
running on a multicore processor

Building our own read-preferred readers-writer mutex

Now that we have seen how to use readers—writer mutexes, it would be good to see
how they work internally. In this section, we’ll try to build our own readers—writer
mutex similar to the one bundled in Go’s sync package. To keep things simple, we will
build only the four important functions: ReadLock (), ReadUnlock (), WriteLock (), and
WriteUnlock (). We named them slightly differently from the sync versions so that we
can distinguish our implementations from the ones in Go’s libraries.

To implement our readers—writer mutex, we need a system that, when a goroutine
calls ReadLock (), blocks any access to the write part while allowing other goroutines to
still call ReadLock () without blocking. We’ll block the write part by making sure that a
goroutine calling WriteLock () suspends execution. Only when all the read goroutines
call Readunlock () will we allow another goroutine to unblock from wWriteLock ().
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To help us visualize this system, we can think of goroutines as entities trying to
access a room with two entrances. This room signifies access to a shared resource. The
reader goroutines use a specific entrance, and the writers use another. Entrances only
admit one goroutine at a time, although multiple goroutines can be in the room at
the same time. We keep a counter that a reader goroutine increments by 1 when it
enters via the reader’s entrance and reduces by 1 when it leaves the room. The writer’s
entrance can be locked from the inside using what we call a global lock. This concept
is shown on the left side of figure 4.9.

. ]
readers’ counter '
5 |
\ J ] d \
readers v : readers =
=
entrance [:] j < if counteris 1, : entrance [2:) r*eo'd~er~1
2=+ lock mutex global : i readen 2
7 \ -
bl e -~ Vv ~lock | =
e e rI!h,. ~
reader 2 reader 1 (- ........... : reader 3
| A Z
i ; iter’ H ... unblocked iter'
first goroutine locks writer's ' - ffgéh writer's
. . i o]
writer's entrance enfrance  <° H ':E blocked riten entrance
a L7

Figure 4.9 Locking the read part of a readers—-writer mutex

The procedure is that when the first reader goroutine enters the room, it must lock
the writers’ entrance, as depicted on the right side of figure 4.9. This ensures that a
writer goroutine will find access impassable, blocking the goroutine’s execution. How-
ever, other reader goroutines will still have access through their own entrance. The
reader goroutine knows that it’s the first one in the room because the counter has a
value of 1.

The writer’s entrance here is just another mutex lock that we call the global lock. A
writer needs to acquire this mutex in order to hold the writer’s part of the readers-
writer lock. When the first reader locks this mutex, it blocks any goroutine requesting
the writer’s part of the lock.

We need to make sure that only one goroutine is using the readers’ entrance at any
time because we don’t want two simultaneous read goroutines to enter at the same time
and believe they are both the first in the room. This would result in both trying to lock
the global lock and only one succeeding. Thus, to synchronize access so only one
goroutine can use the readers’ entrance at any time, we can make use of another
mutex. In the following listing, we’ll call this mutex readersLock. The readers’ counter
is represented by the readersCounter variable, and we’ll call the writer’s lock globalLock.
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Listing 4.12 Type struct for the readers-writer mutex

package listing4 12

import "sync"
Integer variable to count the

type ReadWriteMutex struct { | Number of reader goroutines

readersCounter int currently in the critical section

readersLock sync.Mutex  <—— Mutex for synchronizing readers access

globalLock sync.Mutex  <——— Mutex for blocking any writers access

The following listing shows an implementation of the locking mechanism we’ve out-
lined. On the readers side, the ReadLock() function synchronizes access, using the
readersLock mutex, to ensure that only one goroutine at a time is using the function.

Listing 4.13 Implementation of the ReadLock () function

func (rw *ReadWriteMutex) ReadLock () { Syndenqesaumsssothat?Myone
rw.readersLock. Lock () goroutine is allowed at any time

Reaqer rw.readersCounter++ L.
_ goroutine if rw.readersCounter == 1 { !f a.reader goroutine is the first one
increments rw.globalLock . Lock () in, it attempts to lock globalLock.
readersCounter }
by 1 rw.readersLock.Unlock ()
} ’ ’ Synchronizes access so that only one

goroutine is allowed at any time

func (rw *ReadWriteMutex) WriteLock() {

rw.globalLock.Lock ()
} Any writer access requires a lock on globalLock.

Once the caller gets hold of the readersLock, it increments the readers’ counter by 1,
signifying that another goroutine is about to have read access to the shared resource.
If the goroutine realizes that it’s the first one to get read access, it tries to lock the
globalLock so that it blocks access to any write goroutines. (The globalLock is used by
the WriteLock () function when it needs to obtain the writer’s side of this mutex.) If the
globalLock is free, it means that no writer is currently executing its critical section. In
this case, the first reader obtains the globalLock, releases the readersLock, and goes
ahead to execute its reader’s critical section.

When a reader goroutine finishes executing its critical section, we can think of it as
exiting through the same passageway. On its way out, it decreases the counter by 1.
Using the same passageway simply means that it needs to get hold of the readersLock
when updating the counter. The last one out of the room (when the counter is 0),
unlocks the global lock so that a writer goroutine can finally access the shared
resource. This is shown on the left side of figure 4.10.
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Figure 4.10 The read unlocking and locking of the write part in a readers—writer mutex

While a writer goroutine is executing its critical section, accessing the room in our
analogy, it holds a lock on the globalLock. This has two effects. First, it blocks other
writers’ goroutines since writers need to acquire this lock before gaining access. Sec-
ond, it also blocks the first reader goroutine when it tries to acquire the globalLock.
The first reader goroutine will block and wait until the globalLock becomes available.
Since the first reader goroutine also holds the readersLock, it will also block access to
any other reader goroutine that follows while it waits. This is akin to the first reader
goroutine not moving and thus blocking the readers’ entrance, not letting any other
goroutines in.

Once the writer goroutine has finished executing its critical section, it releases the
globalLock. This has the effect of unblocking the first reader goroutine and later
allowing in any other blocked readers.

We can implement this releasing logic in our two unlocking functions. Listing 4.14
shows both the ReadUnlock () and WriteUnlock () functions. ReadUnlock () again uses the
readersLock to ensure that only one goroutine is executing this function at a time,
protecting the shared readersCounter variable. Once the reader acquires the lock, it
decrements the readersCounter count by 1, and if the count reaches o, it also releases
the globalLock. This allows the possibility of a writer gaining access. On the writer’s
side, wWriteUnlock() simply releases the globallock, giving either readers or a single
writer access.

Listing 4.14 Implementation of the ReadUnlock () function

func (rw *ReadWriteMutex) ReadUnlock () { Synchrfmlz.es access so that t.)nly one
rw. readersLock. Lock () goroutine is allowed at any time

rw.readersCounter-- <1—‘ R
if rw.readersCounter == o { | Ihe reader goroutine decrements readersCounter by 1.

rw.globalLock.Unlock ()
! If the reader goroutine is the last one

out, it unlocks the global lock.
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rw.readersLock.Unlock () <+ .
Synchronizes access so that only one
} goroutine is allowed at any time
func (rw *ReadWriteMutex) WriteUnlock() {
rw.globalLock.Unlock () <+
} The writer goroutine, finishing its critical
section, releases the global lock.

NOTE This implementation of the readers—writer lock is read-preferring. This
means that if we have a consistent number of readers’ goroutines hogging the
read part of the mutex, a writer goroutine would be unable to acquire the
mutex. In technical terms, we say that the reader goroutines are starving the
writer ones, not allowing them access to the shared resource. In the next
chapter, we will improve this when we discuss condition variables.

4.3 Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.

1 Listing 4.15 (originally from chapter 3) does not use any mutexes to protect
access to its shared variable. This is bad practice. Change this program so that
access to the shared seconds variable is protected by a mutex. Hint: you might
need to copy a variable.

Listing 4.15 Goroutines sharing a variable without synchronization

package main

import (
" fmen
n time"

)

func countdown (seconds *int) {
for *seconds > 0 {
time.Sleep (1l * time.Second)

*seconds -= 1
}
}
func main() {
count := 5
go countdown (&count)
for count > 0 {
time.Sleep (500 * time.Millisecond)
fmt.Println (count)
}
}
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Add a non-blocking TryLock () function to the implementation of the readers-
writer mutex. The function should try to lock the writer’s side of the lock. If the
lock is acquired, it should return a true value; otherwise, the function should
return immediately, without blocking, with a false return value.

Add anon-blocking TryReadLock () function to the implementation of the readers-
writer lock. The function should try to lock the readers’ side of the lock. Just like
in exercise 2, the function should return immediately with true if it managed to
obtain the lock and return false otherwise.

In the previous chapter, in exercise 3.1, we developed a program to output the
frequencies of words from downloaded web pages. If you used a shared mem-
ory map to store the word frequencies, access to the shared map would need to
be protected. Can you use a mutex to guarantee exclusive access to the map?

Summary

Mutexes can be used to protect critical sections of our code from concurrent
executions.

We can protect critical sections using mutexes by calling the Lock() and
UnLock () functions at the start and end of critical sections, respectively.

Locking a mutex for too long can turn our concurrent code into sequential
execution, reducing performance.

We can test whether a mutex is already locked by calling TryLock ().
Readers—writer mutexes can provide performance improvements for read-
heavy applications.

Readers—writer mutexes allow multiple readers’ goroutines to execute critical
sections concurrently and provide exclusive access to a single writer goroutine.
We can build a read-preferred readers—writer mutex with a counter and two
normal mutexes.
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This chapter covers

= Waiting on conditions with condition variables

Implementing a write-preferring readers—writer lock
Storing signals with counting semaphores

In the previous chapter, we saw how we can use mutexes to protect critical sections
of our code and prevent multiple goroutines from executing at the same time.
Mutexes are not the only synchronization tool that we have available: condition
variables give us extra controls that complement exclusive locking. They give us the
ability to wait for a certain condition to occur before unblocking the execution.
Semaphores go one step further than mutexes in that they allow us to control how
many concurrent goroutines can execute a certain section at the same time. In
addition, semaphores can be used to store a signal (of an occurring event) for later
access by an execution.

Apart from being useful in our concurrent applications, condition variables and
semaphores are additional primitive building blocks that we can use to build more
complex tools and abstractions. In this chapter, we will also re-examine our readers-
writer lock, developed in the previous chapter, and improve it using condition
variables.

89
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Condition variables

Condition variables give us extra functionality on top of mutexes. We can use them in
situations where a goroutine needs to block and wait for a particular condition to
occur. Let’s look at an example to understand how they’re used.

Combining mutexes with condition variables

In previous chapters, we saw examples of two goroutines (Stingy and Spendy) sharing
the same bank account. Stingy’s and Spendy’s goroutines would repeatedly earn and
spend $10 respectively. What if we try to create an imbalance where Spendy is spend-
ing at a faster rate than Stingy is earning? Previously we had the total earnings and
expenditure balanced at $10 million. In this example, we’ll keep the same total
amount balanced at $10 million, but we’ll increase the rate of spending to $50 and
reduce the total number of iterations to 200,000. In this way, the bank account will go
into the negative very quickly (see figure 5.1) since we’re now spending at a faster rate
than we’re earning. The bank might also have additional costs when we go into a neg-
ative balance. Ideally, we need a way to slow down the spending so that the balance
doesn’t go below zero.

100

money in bank Neeell /
account ) N 7
A% N

@ o fit o
ﬁg bonih;jz:guﬁ $50

Stingy goroutine \_x  Spendy goroutine

Figure 5.1 The Spendy goroutine spends the same amount as Stingy earns,
but at a faster rate.

Listing 5.1 shows a modified spendy () function to show this scenario. In this listing,
when the bank account goes negative, we print a message and exit the program.
Notice that in both functions, the value earned and spent is the same. It’s just that at
the start, Spendy is spending at a faster rate than Stingy is earning. If we omit
os.Exit (), the spendy () function will complete earlier, and then the stingy () function
will eventually fill up the bank account to the original value.
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Listing 5.1 Spending at a faster rate (main () function omitted for brevity)

package main

import (
"fmt"
n os n
"sync"
"time"

)

func stingy(money *int, mutex *sync.Mutex) {
for i := 0; i < 1000000; i++ {
mutex.Lock ()
*money += 10 4
mutex.Unlock ()

}

fmt.Println("Stingy Done")

) Spends 50 while
func spendy (money *int, mutex *sync.Mutex) { earning 10
for i := 0; i < 200000; i++ {
mutex.Lock ()

*money -= 50 4 ]

if *money < 0 { When the money variable goes
fmt.Println("Money is negative!") negative, outputs message and
os.Exit (1) terminates program

}

mutex.Unlock ()

}

fmt.Println ("Spendy Done")

}

When we run listing 5.1 using the main() method from chapter 4, the balance goes
into the negative quickly, and the program terminates:

$ go run stingyspendynegative.go
Money 1is negative!
exit status 1

Is there anything we can do to stop the balance from going into the negative? Ideally,
we want a system that doesn’t spend money we don’t have. We can try to have the
spendy () function check if there is enough money before it goes ahead and spends it.
If there isn’t enough, we can have the goroutine sleep for some time and then check
again. This approach for the spendy () function is shown in the next listing.

Listing 5.2 Spendy function retrying when it runs out of money

func spendy (money *int, mutex *sync.Mutex) {

for i := 0; i < 200000; i++ { .
Keeps trying if mutex.Lock () Unl:ocks mutex, allowing th}f
there isn’t for *money < 50 { other goroutine access to the
enough money mutex.Unlock () money variable
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Sleeps for a time.Sleep (10 * time.Millisecond)
shorl‘)t while mutex.Lock ()
} Locks the mutex again to ensure

*money -= 50 we access the latest money value
if *money < 0 {

fmt.Println("Money is negative!")

os.Exit (1)

}

mutex.Unlock ()

}

fmt.Println ("Spendy Done")

This solution will work for our use case, but it’s not ideal. In our example, we choose
the arbitrary sleep value of 10 milliseconds, but what would be the optimal number to
choose? At one extreme, we can choose not to sleep at all. This ends up wasting CPU
resources, as the CPU would be cycling needlessly, checking the money variable even if
it doesn’t change. At the other extreme, if the goroutine sleeps for too long, we might
waste time waiting for a change in the money variable that has already happened.

This is where condition variables come in. Condition variables work together with
mutexes and give us the ability to suspend the current execution until we have a signal
that a particular condition has changed. Figure 5.2 shows a common pattern for using
a condition variable with a mutex.

(@ condition not met

- ~
- ~
- ~

mutex auto locked
== after wakeup

atomically unlocks and
suspends execution

B wake upon ®

signal or broadcast

(D B check condition < T===-oo-- O, WO”L’ﬁ\( ......

'
i

A 27 S~o_ N
Y mutexlocked R ~@ condition met T
*=-= while checking Ghared T TTTmmmmmmmT
condition <tate

mutex unlocked
dllowing A to acquire
it after wake up

,
,

mutex locked
while updating

® B update shared state ~~< _ @E{J\signal or broadcast
Rt | See e .

Figure 5.2 Common pattern for using a condition variable with a mutex
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Let’s go into the details of each step in figure 5.2 to understand this common pattern

for using condition variables:

While holding a mutex, goroutine A checks for a particular condition on some

shared state. In our example, the condition would be “Is there enough money

in the shared bank account variable?”

If the condition is not met, goroutine A calls the wait () function on the condi-

tion variable.

The wait () function performs two operations atomically (defined after this list):

It releases the mutex.

It blocks the current execution, effectively putting the goroutine to sleep.

Since the mutex is now available, another goroutine (goroutine B) acquires it

to update the shared state. For example, goroutine B increases the amount of

funds available in the shared bank account variable.

After updating the shared state, goroutine B calls Signal () or Broadcast() on

the condition variable and then unlocks the mutex.

Upon receiving Signal() or Broadcast (), goroutine A wakes up and automati-
cally reacquires the mutex. Goroutine A can recheck the condition on the
shared state, such as by checking whether there is enough money in the shared

bank account before spending it. Steps 2 through 6 might repeat until the con-

dition is met.

The condition is eventually met.

The goroutine continues executing its logic, such as by spending the money

now available in the bank account.

NOTE The key to understanding condition variables is to grasp that the
wait () function releases the mutex and suspends the execution in an atomic
manner. This means that another execution cannot come in between these
two operations, acquire the lock, and call the Signal() function before the
execution calling wait () has been suspended.

An implementation of a condition variable in Go can be found in the sync.cond type.

If we look at the functions available on this type, we find the following:

type Cond
func NewCond (1 Locker) *Cond
func (¢ *Cond) Broadcast ()
func (¢ *Cond) Signal ()
func (¢ *Cond) Wait ()

Creating a new Go condition variable requires a Locker, which defines two functions:

type Locker interface ({
Lock ()
Unlock ()
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To use Go’s condition variable, we need something that implements these two func-
tions, and a mutex is one such type. The following listing shows a main() function that
creates 2 mutex and then uses it in a condition variable. Later it passes the condition
variable to the stingy () and spendy () goroutines.

Listing 5.3 main () function creating a condition variable with a mutex

package main

import (
" Fmtn
n OS"
"sync"
"time"

)

func main()

money := 100 Creates a new condition

Creates a FD mutex := sync.Mutex{} QJ variable using a mutex
new mutex cond := sync.NewCond (&mutex)

go stingy (&money, cond) Passes the condition

go spendy (&money, cond) variable to both goroutines

time.Sleep (2 * time.Second)

mutex.Lock ()

fmt.Println("Money in bank account: ", money)
mutex.Unlock ()

}

We can use the pattern outlined previously in figure 5.2 in our stingy () and spendy ()
functions by using the functions available on the Go’s sync.cond type. Figure 5.3 shows
the timings of a run with both goroutines using this pattern. If we have the Spendy
goroutine check the condition before subtracting $50, we are protecting the balance

o2 eamn10 .. $100 o spend 50 i
I - $ 50 | i . spend 50
w4 earn10 .. = L
07 earn10 o $ 60 e
e } Calaias o money >507 Brp=
08 ean 10, [ e $10 [ =z,
- ~ IR B, e e g b wait 05
0% eamn 10, F.. e ~ {$ Q)= g e [
% signal = ~~~~~~~~~ > oA wake up & B "
e N $40 | =

Stingy goroutine Spendy goroutine

Figure 5.3 Stingy and Spendy using condition variables to prevent the balance from going negative
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from ever going negative. If there aren’t enough funds, the goroutine waits, suspend-
ing its execution until more money is available. When Stingy adds money, it sends a
signal to resume any execution that is waiting for more funds.

Changing the Stingy goroutine is simpler because we only need to signal. Listing
5.4 shows our modifications to this goroutine. Every time we add money to our shared
money variable, we send a signal by calling the signal () function on the condition vari-
able. The other change is that we’re using the mutex present on the condition vari-
able to protect access to our critical section.

Listing 5.4 Stingy function signaling that more funds are available

func stingy(money *int, cond *sync.Cond) {

for i := 0; i < 1000000; i++ {
cond.L.Lock ()
Uses mute.x.on *money += 10 Signals on the condition
the c?{gﬂ;;mz cond.Signal () :;ria:le every time we add to
cond.L.Unlock () e shared money variable

}

fmt.Println("Stingy Done")

Next, we can modify our spendy () function so that it waits until we have enough funds
in our money variable. We can implement this condition-checking using a loop that
calls wait () every time the money amount is below the $50 mark. In listing 5.5, we use
a for loop that continues to iterate as long as *money is less than $50. In each iteration,
it calls wait (). The function also now makes use of the mutexes contained on the con-
dition variable type.

Listing 5.5 Spendy waiting for more funds to be available

func spendy (money *int, cond *sync.Cond) {

for i := 0; i < 200000; i++ {
Uses the cond.L.Lock ()
mutex for *money < 50 { Waits while we don’t have enough money,
on the cond.Wait () releasing mutex and suspending execution
condition }
variable *money -= 50
if *money < 0 { Returning from Wait(), reacquires
fmt.Println("Money is negative!") the mutex and subtracts money
os.Exit (1) once there is enough money

}

cond.L.Unlock ()

}

fmt.Println ("Spendy Done")

NOTE Whenever a waiting goroutine receives a signal or broadcast, it will try
to reacquire the mutex. If another execution is holding on to the mutex, the
goroutine will remain suspended until the mutex becomes available.
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When we execute listings 5.3, 5.4, and 5.5 together, the program does not exit with a
negative balance. Instead, we get the following output:

$ go run stingyspendycond.go
Stingy Done

Spendy Done

Money in bank account: 100

Monitors

Sometimes we hear the term monitor used in the context of condition variables and
mutexes. A monitor is a synchronization pattern that has a mutex with an associated
condition variable. We can use these to wait or signal other threads waiting on the con-
dition, just as we have done in this section. Some languages, such as Java, have a
monitor construct on every object instance. In Go, we use the monitor pattern every
time we use a mutex with a condition variable.

Missing the signal

What happens if a goroutine calls Signal () or Broadcast () and there is no execution
waiting for it? Will it be lost or stored for the next goroutine to call wait () ? The answer
is shown in figure 5.4. If there is no goroutine in a waiting state, the Signal() or
Broadcast () call will be missed. Let’s look at this scenario by using condition variables
to solve another problem—that of waiting for our goroutines to complete their tasks.

\\\\\ DN

missed Si‘gnal( )

or Broadcast() busy goroutine
not on Wait() Figure 5.4 Calling
Signal () without
Wait () will result
doWork() main() in a missed signal.

So far, we have been using time.Sleep() in our main() function to wait for our gorou-
tines to complete. This is not great, since we’re only estimating how long the gorou-
tines will take. If we run our code on a slower computer, we will have to increase the
amount of time we have to sleep.

Instead of using sleep, we can have our main() function wait on a condition vari-
able and then have the child goroutine send a signal when it’s ready. The following
listing shows an incorrect way of doing this.
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Listing 5.6 Incorrect way of signaling

package main

import (
n fmt n
n Syﬂc"

func doWork (cond *sync.Cond) {
fmt.Println ("Work started")
fmt.Println ("Work finished")

.81 1 . . .
} cond.Signal() Goroutine signals that it
has finished the work.
func main()
cond := sync.NewCond (&sync.Mutex{})

cond. L. Lock () . Starts a goroutine,
for i := 0; 1 < 50000; i++ { simulating doing some work
go doWork (cond)
fmt.Println("Waiting for child goroutine ")

cond.Wait () . . .
fmt.Println("Child goroutine finished") Waits for a ﬁms}]ed signal
from the goroutine

}

cond.L.Unlock ()

When we run listing 5.6, we get the following output:

$ go run signalbeforewait.go
Waiting for child goroutine
Work started

Work finished

Child goroutine finished
Waiting for child goroutine
Work started

Work finished

Child goroutine finished

Work started

Work finished

Waiting for child goroutine

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [sync.Cond.Wait]:
sync.runtime_notifyListWait (0xc000024090, 0x9a9)
sema.go:517 +0x152
sync. (*Cond) .Wait (Oxedelc4?)
cond.go:70 +0x8c
main.main ()
signalbeforewait.go:19 +0xaf
exit status 2
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TIP Listing 5.6 might behave differently depending on the hardware and
operating system we run it on. To increase the chance of the preceding error
happening, we can insert a runtime.Gosched () call just before cond.wait () in
the main () function. This gives the child goroutine more chances to execute
before the main() goroutine is in a wait state.

The problem in the preceding output is that we might end up signaling when the
main() goroutine is not waiting on the condition variable. When this happens, we miss
the signal. Go’s runtime detects that a goroutine is waiting in vain since there are no
other goroutines that might call the signal function, and it throws a fatal error.

NOTE We need to ensure that when we call the signal or broadcast function,
there is another goroutine waiting for it; otherwise, the signal or broadcast is
not received by any goroutine, and it’s missed.

To ensure that we don’t miss any signals and broadcasts, we need to use them in con-
junction with mutexes. That is, we should call these functions only when we’re hold-
ing the associated mutex. In this way, we know for sure that the main() goroutine is in
a waiting state because the mutex is only released when the goroutine calls wait (). Fig-
ure 5.5 shows both scenarios: missing the signal and signaling with a mutex.

main goroutine main goroutine

missing the signal using signal while holding the mutex

'
|
1
i
J} : ﬁ
x H o
1 ! )
' doWork goroutine ! = doWork goroutine
_______________________ 3 1 running mmmmmmmmmmmmmmm——eeoy 3
1 ST
go doWork() [ go doWork() z, % mgfex not
( ( : 2z available yet
(" : 8 1@
oo o : i .T |
= waiting
gemmmmmmmeeeeas Signal() i .2 mufex becomes
! ; ( (( . & available
Wait) 5 9eroufne woud 5 o T W0 =
“eee” signal is missed ! wg . Sién‘_ol() H
' fa=h | |R— goroutine wakes
H running *+==* " up on signdl
A Go runtime redlizes this H
“...--=" and gives fatdl error !
a b
el
1
'
]

Figure 5.5 (a) Missing the signal when no goroutine is waiting; (b) using a mutex in the dowork () goroutine
and calling a signal when holding the mutex

We can modify the dowork () function from listing 5.6 so that it locks the mutex before
calling signal (), as shown on the right side of figure 5.5. This ensures that the main ()
goroutine is in a waiting state, as shown in the next listing.
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Listing 5.7 Holding a mutex while signalling

func doWork (cond *sync.Cond) {
fmt.Println ("Work started")
fmt.Println ("Work finished")

cond.L.Unlock ()

cond.L.Lock ()
cond.Signal () Locks mutex before signaling
Signals on condition variable

TIP Always use Signal(), Broadcast (), and Wait () when holding the mutex
lock to avoid synchronization problems.

Synchronizing multiple goroutines with waits and broadcasts

We have only looked at examples using signal () instead of Broadcast () so far. When
we have multiple goroutines suspended on a condition variable’s wait (), Signal () will
arbitrarily wake up one of these goroutines. The Broadcast () call, on the other hand,
will wake up all goroutines that are suspended on a Wait ().

NOTE When a group of goroutines is suspended on wait () and we call sig-
nal (), we only wake up one of the goroutines. We have no control over which
goroutine the system will resume, and we should assume that it can be any
goroutine blocked on the condition variable’s wait (). Using Broadcast (), we
ensure that all suspended goroutines on the condition variable are resumed.

Let’s now demonstrate the Broadcast() functionality with an example. Figure 5.6
shows a game that has players waiting for everyone to join before the game begins.
This is a common scenario in both online multiplayer gaming and game consoles.
Let’s imagine our program has a goroutine handling interactions with each player.
How can we write our code to suspend execution to each goroutine until all the play-
ers have joined the game?

player 1
connected

layer 2 N

four players ... player U4 establishing
o

) connection ...
Figure 5.6 Server waiting
player 3 for four players to join before
connected starting game play

To simulate the goroutines handling four players, with each player connecting to the
game at a different time, we can have a main() function creating each of the gorou-
tines at a time interval (see listing 5.8). In our main() function, we are also sharing a
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playersInGame variable. This tells the goroutines how many players are participating in
the game. Each goroutine executes a playerHandler () function, which we’ll imple-
ment later.

Listing 5.8 main () function starting player handlers with a time interval

package main

import (
n fmt n
n sync"
"time"
) Creates a new
condition variable Initializes the
func main() total number of
cond := sync.NewCond (&sync.Mutex{}) players to be 4 Starts goroutine
playersInGame := 4 sharing a condition
for playerId := 0; playerId < 4; playerId++ { variable, players in
go playerHandler (cond, &playersInGame, playerId) game, and player ID
time.Sleep(l * time.Second)
} Sleeps for a 1-second interval
} before the next player connects

We can make use of condition variables by having more than one goroutine wait on
the same condition. Since we have a goroutine handling each player, we can have
each one wait on a condition that tells us when all the players have connected. We can
then use the same condition variable to check if all the players are connected, and if
not, we call wait (). Each time a new goroutine connects to a new player, we reduce
this shared variable by 1. When it reaches a count of 0, we can wake up all the sus-
pended threads by calling Broadcast ().

Figure 5.7 shows the four different goroutines checking a playersRemaining vari-
able and waiting until the last player connects and its goroutine calls Broadcast (). The
last goroutine knows that it’s the last one since the playersRemaining shared variable
has a value of o.

The player handler goroutine is shown in listing 5.9. Each goroutine follows the
same condition variable pattern. We hold the mutex lock while subtracting a count
from the playersRemaining variable and checking to see if more players need to con-
nect. We also release this mutex atomically when we call wait (). The difference here is
that a goroutine will call Broadcast () if it finds out that there are no more players
remaining to connect. The goroutine knows that there are no more players to con-
nect because the playersRemaining variable is o.
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Figure 5.7 Using the wait () and Broadcast () pattern to wait for four players to connect
When all the other goroutines unblock from the wait (), as a result of the Broadcast (),

they exit the condition-checking loop and release the mutex. From this point onward,
if this were a real multiplayer game, we would have code that handles game play.

Listing 5.9 Player handler function

func playerHandler (cond *sync.Cond, playersRemaining *int, playerId int) {

cond.L.Lock ()
fmt.Println(playerId, ": Connected") Locks the mutex on the condition
variable to avoid race conditions

*playersRemaining--
1S;‘:tml‘atclf: if *playersRemaining == {
shared cond. Broadeast () Sends a broadcast when all
remaining } . players have connected
players for *playersRemaining > 0 {
variable fmt.Println(playerId, ": Waiting for more players")
cond.Wait ()

Waits on a condition variable as long

}
cond.L.Unlock () as there are more players to connect

fmt.Println("All players connected. Ready player", playerId)
//Game started

}

Unlocks the mutex so that all goroutines
can resume execution and start the game

When we run the code in listings 5.8 and 5.9 together, each goroutine waits for all the
players to join until the last goroutine sends the broadcast and unblocks all the

goroutines. Here is the output:
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$ go run gamesync.go
0 : Connected

0 : Waiting for more players

1 : Connected

1 : Waiting for more players

2 : Connected

2 : Waiting for more players

3 : Connected

All players connected. Ready player
All players connected. Ready player
All players connected. Ready player
All players connected. Ready player

o B N W

Revisiting readers-writer locks using condition variables

In the previous chapter, we used mutexes to develop our own implementation of a
readers—writer lock. That implementation was read-preferring, meaning that as long
as we have at least one reader goroutine holding the lock, the writer goroutine can’t
access the resource in its critical section. A writer goroutine can only acquire the lock
if all the readers have released their locks. If we don’t have a readers’ free window, the
writer will be left out. Figure 5.8 shows a scenario where two goroutines take turns
holding the reader’s lock, blocking the writer from acquiring a lock.

resource

reader counter

readers’
entrance

never unlocked due
to a reader dways
[ using the resource

writer's
blocked indeFini’rer 12 entrance Figure 5.8 The writer goroutine is unable
(write-starvation) - writer to access the resource indefinitely due to
- - readers hogging resource access.

In technical-speak, we call this scenario write-starvation—we can’t update our shared
data structures because the reader parts of the execution are continuously accessing
them, blocking access to the writer. The following listing simulates this scenario.

Listing 5.10 Reader goroutines hogging the reader’s lock, blocking write access

package main

import (
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n fmt n
"github.com/cutajarj/Concurrent ProgrammingWithGo/chapter4/listing4.12"
"time"

func main() { Uses readers—writer mutex
rwMutex := listing4_ 12.ReadWriteMutex({} developed in chapter 4

Startstwo | £ 5 .- 0, i < 2; i++4 {

goroutines go func() {
for {
Repeats rwMutex.ReadLock () QJ Slee;_)s for 1 second while
forever time.Sleep (1l * time.Second) holding the reader lock

fmt.Println ("Read done")
rwMutex.ReadUnlock ()

}

Tries to acquire the writer’s lock

HO from the main() goroutine

1

time.Sleep (1l * time.Second)

rwMutex.WriteLock () After the writer’s lock is acquired,
fmt.Println("Write finished") outputs message and terminates

Even though we have an infinite loop in our goroutines, we expect that eventually the
main() goroutine will acquire a hold on the writer’s lock, output the message Write
finished, and terminate. This should happen because in Go, whenever the main()
goroutine terminates, the entire process exits. However, when we run listing 5.10, this
is what happens:

$ go run writestarvation.go
Read done
Read done
Read done
Read done
Read done
Read done
Read done
Read done
continues indefinitely

Our two goroutines constantly hold the reader part of our mutex, which prevents our
main() goroutine from ever acquiring the writer’s part of the lock. If we are lucky, the
readers might release the readers” lock at the same time, enabling the writer goroutine
to acquire it. However, in practice, itis unlikely that both reader threads will release the
lock at the same time. This leads to the writer-starvation of our main() goroutine.

DEFINITION  Starvation is a situation where an execution is blocked from gain-
ing access to a shared resource because the resource is made unavailable for a
long time (or indefinitely) by other greedy executions.

We need a different design for a readers—writer lock that is not read-preferred—one
that doesn’t starve our writer goroutines. We could block new readers from acquiring
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the read lock as soon as a writer calls the writeLock () function. To achieve this, instead
of having the goroutines block on a mutex, we could have them suspended using a
condition variable. With a condition variable, we can have different conditions on
when to block readers and writers. To design a write-preferred lock, we need a few
properties:

Readers’ counter—Initially set to o, this tells us how many reader goroutines are
actively accessing the shared resources.

Writers” waiting counter—Initially set to 0, this tells us how many writer goroutines
are suspended waiting to access the shared resource.

Writer active indicator—Initially set to false, this flag tells us if the resource is cur-
rently being updated by a writer goroutine.

Condition variable with mutex—This allows us to set various conditions on the
preceding properties, suspending execution when the conditions aren’t met.

Go’s RWMutex

The rRwMutex bundled with Go is write-preferring. This is highlighted in Go’s documen-
tation (from https://pkg.go.dev/sync#RWMutex; calling Lock () acquires the writer’'s
part of the mutex):

If a goroutine holds a RWMutex for reading and another goroutine might call Lock,
no goroutine should expect to be able to acquire a read lock until the initial read
lock is released. In particular, this prohibits recursive read locking. This is to
ensure that the lock eventually becomes available; a blocked Lock call excludes
new readers from acquiring the lock.

Let’s look at different scenarios to help us understand the implementation. The first
scenario is when nothing is accessing the critical sections and no goroutines are
requesting write access. In this case, we allow reader goroutines to acquire the read
part of the lock and access the shared resource. This scenario is shown on the left side
of figure 5.9.

We know that there are no writers using the resource because the writer active indi-
cator is off. We can implement the writer active indicator as a Boolean flag that is set
to true when the writer acquires access to the lock. We also know that no writers are
waiting to acquire the lock because the writers’ waiting counter is set to 0. This waiting
counter can be implemented as an integer data type.

The second scenario, shown on the right side of figure 5.9, is when readers acquire
the lock. When this happens, they must increment the readers’ counter. This indicates
to any writers wanting to acquire the writer’s lock that the resource is busy being read.
If a writer tries to acquire the lock at this time, it must wait on a condition variable as
long as readers are using the resource. It must also update the writers’ waiting counter
by incrementing it.

The writers’ waiting counter ensures that any newcomer reader will know there are
waiting writers. The reader will then give priority to the writer by blocking until the
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5.9 (a) Readers can access the shared resource when no writers are active or waiting. (b) We block

writers from accessing the shared resource when readers or a writer are using it. We also block new readers
when writers are waiting.

writers’ waiting counter is back to 0. This is what makes our readers—writer mutex
write-preferring.

To implement these two scenarios, we first need to create the properties we have
outlined. In the following listing, we set up a new struct with the required properties
and a function that initializes the condition variable and mutex.

Listing 5.11 Write-preferring readers—writer mutex type

package main

import (

n s ncll
v Stores the number of readers

) currently holding the read lock

type ReadWriteMutex struct {
readersCounter int Stores the number of
writersWaiting int writers currently waiting
writerActive bool
cond *sync.Cond | Indicates if a

} writer is holding
the write lock

Initializes a new
ReadWriteMutex with a
new condition variable

func NewReadWriteMutex () *ReadWriteMutex { and associated mutex

return &ReadWriteMutex{cond: sync.NewCond (&sync.Mutex({})}

}
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Listing 5.12 shows the implementation of the read-locking function. When acquiring
the readers’ lock, the ReadLock () function uses the mutex on the condition variable
and then conditionally waits as long as there are writers waiting or active. Waiting for
the writersWaiting count to be 0 ensures we give priority to writer goroutines. Once
the reader checks these two conditions, the readersCounter is incremented and the
mutex is released.

Listing 5.12 Readers’ lock function

func (rw *ReadWriteMutex) ReadLock () { Waits on condition
rw.cond.L.Lock () variable while writers
(4> for rw.writersWaiting > 0 || rw.writerActive { are waiting or active
rw.cond.Wait ()
} 4_‘ Increments readers’ counter
rw.readersCounter++
rw.cond.L.Unlock () <—— Releases mutex

—

In the writeLock () function, shown in listing 5.13, we use the same mutex and condi-
tion variable to wait as long as readers or a writer are active. In addition, the function
increments the writers’ waiting counter variable to indicate that it’s waiting for the
lock to become available. Once we can acquire the writer’s lock, we decrement the
writers’ waiting counter by 1 and set the writeActive flag to true.

Listing 5.13 Writer’s lock function

func (rw *ReadWriteMutex) WriteLock () {
rw.cond.L.Lock () Increments the writers’ Waits on condition
FD waiting counter variable as long as
rw.writersWaiting++ thereargreadgrs
for rw.readersCounter > 0 || rw.writerActive { or an active writer
rw.cond.Rait () Once the wait is over, decrements
) , . the writers’ waiting counter
rw.writersWaiting--
rw.writerActive = true
LD Once the wait is over, marks writer active flag
rw.cond.L.Unlock ()

—

The goroutine calling the WriteLock () function sets the writeactive flag to true so that
no other goroutine tries to access the lock at the same time. A writeActive flag set to
true will block both readers’ and writers’ goroutines from acquiring the lock. This sce-
nario is shown on the left side of figure 5.10.

The last scenario is what we do when our goroutines release the lock. When the last
reader releases the lock, we can notify any suspended writer by broadcasting on the con-
ditional variable. A goroutine knows that it’s the last reader because the readers’
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Figure 5.10 (a) Readers and writers blocked when writer has access; (b) last reader broadcasts to resume
any writer so that it can have access

counter will be 0 after it decrements it. This scenario is shown on the right side of figure
5.10. The rReadunlock () function is shown in the following listing.

Listing 5.14 Readers’ unlock function

func (rw *ReadWriteMutex) ReadUnlock ()
Acquires ’—l> rw.cond.L.Lock ()

mutex rw.readersCounter-- <+—— Decrements readers’ counter by 1
if rw.readersCounter == 0
. d.B d t . .
Releases } zw.cond. Broadeast () Sends broadcast if the goroutine
is the last remaining reader
mutex rw.cond.L.Unlock () g
}

The writer’s unlock function is simpler. Since there can only ever be one writer active
at any point in time, we can send a broadcast every time we unlock. This will wake up
any writers or readers that are currently waiting on the condition variable. If there are
both readers and writers waiting, a writer will be preferred since the readers will go
back into suspension when the writers’ waiting counter is above 0. The writeUnlock ()
function is shown in the following listing.

Listing 5.15 Writer’s unlock function

func (rw *ReadWriteMutex) WriteUnlock() {

Acquires rw.cond.L.Lock ()
g1utex rw.writerActive = false <—— Unmarks writer active flag

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



108

5.2

5.2.1

CHAPTER 5 Condition variables and semaphores

rw.cond. Broadcast () <+—— Sends a broadcast
rw.cond.L.Unlock (
} Releases mutex

With this new writer-preferred implementation, we can rerun our code from listing
5.10 to confirm that we don’t get writer starvation. As expected, as soon as we have a
goroutine asking for write access, the reader goroutines wait and give way to the
writer. Our main() goroutine then completes, and the process terminates:

$ go run readwritewpref.go
Read done

Read done

Write finished

$

Counting semaphores

In the previous chapter, we saw how mutexes allow only one goroutine to have access
to a shared resource, while a readers—writer mutex allows us to specify multiple con-
current reads but exclusive writes. Semaphores give us a different type of concurrency
control, in that we can specify the number of concurrent executions that are permit-
ted. Semaphores can also be used as building blocks for developing more complex
concurrency tools, as we shall see in the following chapters.

What’s a semaphore?

Mutexes give us a way to allow only one execution to happen at a time. What if we
need to allow a variable number of executions to happen concurrently? Is there a
mechanism that can allow us to specify how many goroutines can access our resource?
A mechanism that allows us to limit concurrency would enable us to limit the load on
a system. Think, for example, about a slow database that only accepts a certain num-
ber of simultaneous connections. We could limit the number of interactions by allow-
ing a fixed number of goroutines to access the database. Once the limit is reached, we
can either make the goroutines wait or return an error message to the client saying
the system is at capacity.

This is where semaphores come in handy. They allow a fixed number of permits that
enable concurrent executions to access shared resources. Once all the permits are
used, further requests for access will have to wait until a permit is freed again (see fig-
ure 5.11).

To better understand semaphores, let’s compare them to mutexes. A mutex
ensures that only a single goroutine has exclusive access, whereas a semaphore
ensures that at most /N goroutines have access. In fact, a mutex gives the same func-
tionality as a semaphore where N has a value of 1. A counting semaphore allows us the
flexibility to choose any value of N.

DEFINITION A semaphore with only one permit is sometimes called a binary
semaphore.
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permits remaining

Figure 5.11 A fixed number of

blocked goroutines cc;unﬁng goroutines are allowed to have

executing goroutines
semaphore access.

NOTE Although a mutex is a special case of a semaphore with one permit,
there is a slight difference in how they are expected to be used. When using
mutexes, the execution that is holding a mutex should also be the one to
release it. When using semaphores, this is not always the case.

To understand how we can use semaphores, let’s first have a look at the three func-
tions it provides:
= New semaphore function—Creates a new semaphore with X permits.
= Acquire permit function—A goroutine will take one permit from the semaphore.
If none are available, the goroutine will suspend and wait until one becomes
available.
= Release permit function—Releases one permit so a goroutine can use it again with
the acquire function.

Building a semaphore

In this section, we will implement our own semaphore so that we can better under-
stand how they work. Go does not come with a semaphore type in its bundled librar-
ies, but there is an extension sync package at https://pkg.go.dev/golang.org/x/sync
containing an implementation of a semaphore. This package is part of the Go project,
but it is developed under looser compatibility requirements than the core packages.

To build a semaphore, we need to record how many permits we have left, and we
can also use a condition variable to help us wait when we don’t have enough permits.
The following listing shows the type structure of our semaphore, containing the per-
mit counter and the condition variable. There is also a create semaphore function
that accepts the initial number of permits contained on the semaphore.

Listing 5.16 The Semaphore type

package listing5 16
import (

" SYHC"

)
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type Semaphore struct { | permits remaining on the semaphore
permits int

da * .Cond e . sre
} cond Teyne.ton Condition variable used for waiting
when there are not enough permits

func NewSemaphore (n int) *Semaphore {

return &Semaphore Initi .
nitial number of permits on the new semaphore
permits: n, <F4444J P P

cond: sync.NewCond (&sync.Mutex , eie e e .
¥ (&sy h Initializes a new condition variable and

) associated mutex on the new semaphore
To implement the Acquire () function, we need to call wait () on a condition variable
whenever the permits are 0 (or less). If there are enough permits, we simply subtract 1
from the permit count. The Release () function does the opposite: it increases the per-
mit count by 1 and signals that a new permit is available. We use the Signal () function
instead of Broadcast () since only one permit is released and we only want one gorou-
tine to be unblocked.

Listing 5.17 Acquire () and Release () functions

func (rw *Semaphore) Acquire()

rw.cond.L.Lock () <+—— Acquires mutex to protect permits variable
for rw.permits <= 0 {
rw.cond.Wait () <+—— Waits until there is an available permit
}
rw.permits-- <—— Decreases the number of available permits by 1
rw.cond.L.Unlock ()
}
func (rw *Semaphore) Release()
rw.cond.L.Lock () <+—— Acquires mutex to protect permits variable
rw.permits++ <—— Increases the number of available permits by 1

rw.cond.Signal ()
Signals condition variable that one more permit is available
rw.cond.L.Unlock ()

}

Never miss a signal with semaphores

Looking at semaphores from another perspective, they provide similar functionality
to the wait and signal of a condition variable, with the added benefit of recording a
signal even if no goroutine is waiting.

What'’s in a name?

Semaphores were invented by the Dutch computer scientist Edsger Dijkstra in his
unpublished 1962 paper “Over Seinpalen” (“About Semaphores”). The name takes
inspiration from an early railway signaling system, which used a pivot arm to signal
train drivers. The signal had different meanings depending on the angle of inclination
of the pivoted arm.
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In listing 5.6, we saw an example of using condition variables to wait for a goroutine to
finish its task. The problem we had was that we could end up calling the signal () func-
tion before the main() goroutine had called wait (), resulting in a missed signal.

We can solve this problem by using a semaphore initialized with o permits. This
gives us a system in which calling the Release () function acts as our signal of work com-
plete. The Acquire () function then acts as our Wait (). In this system, it doesn’t matter
if we call Acquire() before or after the work is complete, as the semaphore keeps a
record of how many times the Release () has been called by using the permits count. If
we call it before, the goroutine will block and wait for the Release () signal. If we call it
after, the goroutine will return immediately since there is an available permit.

Figure 5.12 shows an example of using semaphores to wait for a concurrent task to
complete. It shows a goroutine executing a doWork () function, which calls Release ()
after it finishes its task. Our goroutine executing main() wants to know if this task is
complete, but it’s still busy and hasn’t yet stopped to wait and check. Since we’re using
semaphores, this release call is recorded as a permit. Later, when the main () goroutine
calls Acquire(), the function will return immediately, indicating that the dowork ()
goroutine has completed its assigned work.

busy goroutine

permits
remaining

/
counting
semaphore

o —
-—

main()

Figure 5.12 Using a semaphore to know when a goroutine is done

Listing 5.18 shows the implementation of this. When we start the doWork () goroutine,
we pass a reference to our semaphore, which is used as shown in figure 5.11. In this
function, we are simulating the goroutine doing some concurrent quick task. When
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the goroutine finishes its task, it calls Release() to signal that it’s finished. In the
main() function, we create many of these goroutines, and after each creation, we wait
for it to complete by calling Acquire () on the semaphore.

Listing 5.18 Using semaphores to signal completion of a task

package main

import (
n fmt n
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapter5/1isting5.16"
)
. Creates a new semaphore using
func main() { the previous implementation
semaphore := listing5 16.NewSemaphore (0)
for i := 0; i < 50000; i++ { Starts the goroutine passing a
go doWork (semaphore) reference to the semaphore
fmt.Println("Waiting for child goroutine ")
semaphore.Acquire () Waits ilabl it
fmt.Println("Child goroutine finished") aits for an avariable permit on
) the semaphore indicating the task
is complete

}

func doWork (semaphore *listing5 16.Semaphore) {

fmt.Println("Work started")
fmt .Println ("Work finished") | When the goroutine finishes, it releases

semaphore .Release () a permit to notify the main() goroutine

If Release() is called first, the semaphore stores this release permit, and when the
main() goroutine calls the Acquire() function, it will immediately return without
blocking. If we were using a condition variable without mutex locking, this would have
resulted in our main () goroutine missing the signal.

Exercises

NOTE You can see all code solutions at https://github.com/cutajarj/
ConcurrentProgrammingWithGo.

1 In listing 5.4, Stingy’s goroutine is signaling on the condition variable every
time we add money to the bank account. Can you change the function so that it
signals only when there is $50 or more in the account?

2 Change the game-sync listings 5.8 and 5.9 so that, still using condition variables,
the players wait for a fixed number of seconds. If the players haven’t all joined
within this time, the goroutines should stop waiting and let the game start with-
out all the players. Hint: try using another goroutine with an expiry timer.

3 A weighted semaphoreis a variation on a semaphore that allows you to acquire and
release more than one permit at the same time. The function signatures for a
weighted semaphore are as follows:
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func (rw *WeightedSemaphore) Acquire (permits int)
func (rw *WeightedSemaphore) Release (permits int)

Use these function signatures to implement a weighted semaphore with a simi-
lar functionality to a counting semaphore. It should allow you to acquire or
release more than one permit.

Summary
An execution can be suspended, waiting until a condition is met, by using a
condition variable together with a mutex.
Calling wait () on a condition variable atomically unlocks the mutex and sus-
pends the current execution.
Calling signal () resumes the execution of one suspended goroutine that has
called wait ().
Calling Broadcast () resumes the execution of all suspended goroutines that
have called wait ().
If we call signal() or Broadcast () and no goroutines are suspended on a Wait ()
call, the signal or broadcast is missed.
We can use condition variables and mutexes as building blocks to build more
complex concurrency tools, such as semaphores and write-preferring readers—
writer locks.
Starvation occurs when an execution is blocked from a shared resource because
the resource is made unavailable for a long time by other executions.
Write-preferring readers—writer mutexes solve the problem of write starvation.
Semaphores give us the ability to limit concurrency on a shared resource to a
fixed number of concurrent executions.
Like condition variables, semaphores can be used to send a signal to another
execution.
When used to signal, semaphores have the added advantage that the signal is
stored if the execution is not yet waiting for it.
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This chapter covers

Waiting for completed tasks with waitgroups
Building waitgroups with semaphores

Implementing waitgroups using condition
variables

Synchronizing concurrent work using barriers

Waitgroups and barriers are two synchronization abstractions that work on groups
of executions (such as goroutines). We typically use waitgroups to wait for a group of
tasks to complete. We use barriers to synchronize many executions at a common
point.

We’ll start this chapter by examining Go’s bundled waitgroups using a couple of
applications. Later, we’ll investigate two implementations of waitgroups: one built
using semaphores and a more functionally complete one using condition variables.

114
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Go does not bundle barriers in its libraries, so we’ll build our own barrier type.
Then we’ll employ this barrier type in a simple concurrent matrix multiplication algo-
rithm.

Waitgroups in Go

With waitgroups, we can have a goroutine wait for a set of concurrent tasks to com-
plete. We can think of a waitgroup as a project manager managing a set of tasks given
to different workers. Once the tasks are all complete, the project manager notifies us.

Waiting for tasks to complete with waitgroups

In previous chapters, we saw a concurrency pattern where a main goroutine splits a
problem into multiple tasks and passes each task to a separate goroutine. The gorou-
tines then complete these tasks concurrently. For example, in chapter 3, we saw this
pattern when we were developing the letter-frequency program. The main goroutine
created many goroutines, each of which downloaded and processed a separate web
page. In our first implementation, we used a sleep() function to wait for some sec-
onds until all the goroutines completed their downloads. Using a waitgroup will make
it easier to wait for all the goroutines to complete their tasks.

Figure 6.1 shows a typical pattern of using a waitgroup. We set the size of the wait-
group and then use the two operations Wait () and Done ()d. In this pattern, we typi-
cally have multiple goroutines that need to complete a few tasks concurrently. We can
create a waitgroup and set its size to be equal to the number of assigned tasks. The
main goroutine will hand over the tasks to the newly created goroutines, and its exe-
cution will be suspended after it calls the wait () operation. Once a goroutine finishes
its task, it calls the Done () operation on the waitgroup (see the left side of figure 6.1).
When all the goroutines have called the Done () operation for all their assigned tasks,
the main goroutine will unblock. At this point, the main goroutine knows that all the
tasks have been completed (see the right side of figure 6.1).

Go comes bundled with a WaitGroup implementation in its sync package. It con-
tains the three functions that allow us to use the pattern described in figure 6.1:

Done ()—Decrements the waitgroup size counter by 1
wait ()—Blocks until the waitgroup size counter is 0
Add(delta int)—Increments the waitgroup size counter by delta

Listing 6.1 shows a simple example of how we can use these three operations. We have
a doWork () function that simulates completing a task by sleeping for a random length
of time. Once it finishes, it prints out a message and calls the Done () function on the
waitgroup. The main() function calls the add(4) function, creates four of these
dowWork () goroutines, and calls wait () on the waitgroup.
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wait group size [Ll:]
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all are done

P

goroutine blocked on Wait() until all goroutines call Done()

Figure 6.1 Typical use of a waitgroup

Once all the goroutines have signaled that they’re finished, the wait () unblocks, and
the main () function resumes.

Listing 6.1 Simple use of a waitgroup

package main

import (
n fmtll
"math/rand"
n syncll
n time n

)

. Adds 4 to the waitgroup since we
func main() { have four pieces of work
Creates wg := sync.WaitGroup({}
a new wg.Add (4) . .

. for i := 1; i <= 4; i++ { Creates four goroutines, passing
waitgroup / / f h it

go doWork (i, &wg) a reference to the waitgroup
}
wg.Wait () <+—— Wiaits for the work to be complete
fmt.Println("All complete™)

}

func doWork (id int, wg *sync.WaitGroup) ({
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i := rand.Intn(5)
time.Sleep (time.Duration (i) * time.Second) Sleeps for a random
fmt.println(id, "Done working after", 1, "seconds") . P
time (up to 5 seconds)
wg .Done ()
} Signals that the goroutine
has completed its task

When we run listing 6.1, all the goroutines complete after sleeping for slightly differ-
ent times. They call Done () on the waitgroup, and the main() goroutine unblocks, giv-
ing us the following output:

go run waitforgroup.go

Done working after 1 seconds
Done working after 2 seconds
Done working after 2 seconds
Done working after 4 seconds
All complete

W N P

Now that we have this extra tool at our disposal, let’s fix the letter-frequency program
(from listing 4.5) so that it uses waitgroups. In the main () goroutine, instead of calling
the sleep() function for 10 seconds, we can create a goroutine that calls our existing
CountLetters () function and then calls Done () on the waitgroup, as shown in the fol-
lowing listing. Notice that we didn’t need to modify the CountLetters () function to call
Done () ; instead, we use an anonymous function running in a separate goroutine, call-
ing both functions.

Listing 6.2 Count frequency using waitgroups

package main

import (
n fmt n
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapter4/listing4.5"
n Syncll

)

func main() { Adds a delta of 31—one
Creates wg := sync.WaitGroup{} | for each web page to be

2 new wg.Add (31) downloaded concurrently
waitgroup mutex := sync.Mutex{}
var frequency = make([]int, 26)
for i := 1000; i <= 1030; i++
url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcéd.txt", 1)
go func() {
Waits until all listing4 5.CountLetters(url, frequency, &mutex) Creates a goroutine
goroutines are wg . Done () with an anonymous
complete HO Q—‘ Calls Done() after it function
} finishes counting letters
wg.Wait ()
mutex.Lock ()
for i, ¢ := range listing4 5.AllLetters {
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fmt.Printf ("%c-%d ", c, frequencyl[il])

}

mutex.Unlock ()

When we run listing 6.2, instead of having to wait a fixed time for all the goroutines to
complete, the main() function will output the result as soon as the waitgroup
unblocks.

Creating a waitgroup type using semaphores

Let’s now take a look at how we can implement a waitgroup ourselves instead of using
the implementation bundled with Go. We can create a simple version of a waitgroup
just by building on top of the semaphore type that we developed in the previous
chapter.

We can include logic in the wait () function to call the semaphore’s Acquire () func-
tion. In a semaphore, the Acquire () call will suspend the execution of the goroutine if
the permits available are o or less. We can use a trick and initialize a semaphore with
the number of permits equal to 1 - n to act as our waitgroup of size n. This means that
our wWait () function will block until the number of permits is increased n times, from
1 - n up to 1. Figure 6.2 shows an example of a waitgroup of size 3. For a group of
size 3, we can use a semaphore of size -2.

©) wait group size [3:]

initialize permits
. tol-size

®

not enough permits,
goroutine suspended

= N Acquire() o
semaphore e
--------- @ Figure 6.2 Initializing a semaphore with
to wait, try fo a negative number of permits to use as a
acquire semaphore waitgroup

Every time a goroutine calls Done () on the waitgroup, we can call the Release () opera-
tion on the semaphore. This will increment the number of permits available on the
semaphore by 1 each time. Once all the goroutines finish their task and have all called
Done (), the number of permits in the semaphore will end up being 1. This process is
shown in figure 6.3.
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size [3] ﬁ later ...

@ when done,

release semaphore

wait
1 permit available =2
¢ when dll done @
A

Done()ﬂ
Sy
-2 -10
ALY ) T ; Figure 6.3 When a goroutine
@ Donel) T ' " Wait() is done, it results in an
every time we semaphore AN Acquire() e Acquire (), increasing the
release permits, R -7 permits by 1 and leaving 1
increase by 1 permit available in the end.

When the number of permits is greater than o, the Acquire () call unblocks, releasing
our suspended goroutine. In figure 6.4, the permit is acquired by the main() gorou-
tine, and the number of permits goes back down to 0. In this way, the main () goroutine
is resumed, and it knows that all goroutines have completed their assigned tasks.

wait group size

Permit acquired
by main goroutine
] @ goroutine knows

| everything is done,
N on i 3 ‘ execution resumes
o
main
.'..3
A
L.
.. Acquire() e
semaphore . o Figure 6.4 Once a permit is
_________________ available, Acquire () unblocks
(@ acquire call unblocks the main () goroutine.

Listing 6.3 shows an implementation of a waitgroup using a semaphore. In this listing,
we’re using the implementation of semaphores from chapter 5. As discussed previ-
ously, when we create the waitgroup, we initialize a semaphore of 1 - size permits. We
try to acquire one permit when we call the wait () function and release one permit
when we call Done ().

Listing 6.3 Waitgroup implementation using a semaphore

package listing6 3
import (

"github.com/cutajarj/ConcurrentProgrammingWithGo/chapter5/listing5.16"
)
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type WaitGrp struct {

sema *1listing5 16.Semaphore
I>— P Stores semaphore reference

J (developed in the previous
) ) , ) chapter) on WaitGrp type
func NewWaitGrp (size int) *WaitGrp
} return &WaitGrp{sema: listing5 16.NewSemaphore(l - size)} Initializes a new
semaphore with
. 1 - size permits
func (wg *WaitGrp) Wait () { Falls Acqu.lre() on t.he semaphore P
wg. sema.Acquire () in the Wait() function

1
func (wg *WaitGrp) Done() { When done, calls Release()

wg.sema.Release () on the semaphore

}

Listing 6.4 shows a simple use of our semaphore waitgroup. The main difference
between Go’s bundled waitgroup and our implementation is that we need to specify
the size of the waitgroup at the start before we use it. In the waitgroup in Go’s sync
package, we can increase the size of the group at any point—even when we have
goroutines waiting on the work to be completed.

Listing 6.4 Simple use of the semaphore waitgroup

package main

import (
n fmt n
"github.com/cutajarj/Concurrent ProgrammingWithGo/chapter6/listing6.3"

)

func doWork (id int, wg *listing6 3.WaitGrp) {
fmt.Println(id, "Done working ")

wg .Done ()
} When the goroutine is complete,
it calls Done() on the waitgroup.
func main() {
wg := listing6 3 .NewWaitGrp (4)

for i := 1; i <= 4; i++ { Creates a goroutine, passing
go doWork (i, wg) a reference to the waitgroup
}

wg.Wait () . .

fmt.Println("All complete") Waits on the waitgroup
} for work to be complete
Changing the size of our waitgroup while waiting

Our waitgroup implementation using semaphores is limited because we must specify
the size of the waitgroup at the start. This means we cannot change the size after we
create our waitgroup. To better understand this limitation, let’s look at an application
in which we need to resize the waitgroup after creation.
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Imagine we are writing a filename search program using multiple goroutines. The
program will search recursively for a filename string starting from an input directory.
We want the program to accept the input directory and the filename string as two
input arguments. It should output a list of matches with a full path:

$ go run filesearch.go /home cat
/home/photos/holiday/cat.jpg
/home/art/cat.png
/home/sketches/cat.svg

Using multiple goroutines would help us find files quicker, especially when we are search-
ing across multiple drives. We can take the approach of creating a separate goroutine
for each directory that we encounter in our search. Figure 6.5 shows the concept.

repeat(1) to @

® check if filename
matches pattern

N

read dll files  / o
@ in directory ! if directory, Add(1)
! to wait group and

1 1
spawn a goroutine  / / D search completes when
/}'—"“) . -
® & all goroutines call [Done()

-0

1

S

repeat(D) to @)

~

~——
N T T
S
N
\
\
v
N
. \

~
N

once directory is processed,
call Done() on waitgroup

Figure 6.5 Recursive concurrent filename search

The idea here is to have a goroutine find files that match the input string. If this
goroutine encounters a directory, it adds 1 to a global waitgroup and spawns a new
goroutine that runs the same exact logic for that directory. The search ends after
every goroutine calls Done () on the waitgroup. This means that we have explored every
single subdirectory of our first input directory. The following listing implements this

recursive search function.
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Listing 6.5 Recursive search function (error handling omitted for brevity)

package main

import (
n fmt n
n os n
"path/filepath"
"strings"
n sync"

)

func fileSearch(dir string, filename string, wg *sync.WaitGroup) ({

files, _ := os.ReadDir (dir) .

for , file := range files ( ]mnseafhﬁh
fpath := filepath.Join(dir, file.Name()) to the directory:
if strings.Contains(file.Name (), filename) { cat.)pg becomes,

fmt . Println (fpath) /home/pics/cat.jpg

} ) ) If it is a directory, adds 1 to the
if file.IsDir() { waitgroup before starting a new goroutine
wg.Add (1)

o fileSearch(fpath, filename, w .
g (fp 9 Creates goroutine

} Marks Done() on the waitgroup recursively, searching

wg . Done () after processing all files in the new directory

Now we just need a main() function that creates a waitgroup, adds 1 to it, and then
starts a goroutine that calls our fileSearch() function. The main() function can just
wait on the waitgroup for the search to complete, as shown in the following listing. In
this listing, we are using command-line arguments to read the search directory and
the filename string to be matched.

Listing 6.6 main () function calling the file search function and waiting on the waitgroup

func main() { ' Adds a delta of 1 Cre?tes a netvl: g?routme,h
wg := sync.WaitGroup{} to the waitgroup periorming the Tile searc
wg.Add (1) and passing a reference to

go fileSearch(os.Args[1], os.Args([2], &wg) the waitgroup

wg.Wait ()
} Waits for the search to complete

Building a more flexible waitgroup

The file search program shows us the advantage of using Go’s bundled waitgroup over
our own semaphore waitgroup implementation. Not knowing how many goroutines
we are going to create at the start forces us to resize our waitgroup as we go along. In
addition, our semaphore waitgroup implementation had the limitation that only one
goroutine could wait on the waitgroup. If we had multiple goroutines calling the
wait () function, only one would be resumed because we only incremented the permit
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count on the semaphore to 1. Can we change our implementation to match the func-
tionality of Go’s bundled waitgroup?

We can use condition variables to implement a more complete waitgroup. Figure
6.6 shows us how we can implement both the add (delta) and wait () functions with a
condition variable. The add() function simply adds to a waitgroup’s size variable. We
can protect this variable with a mutex so that we don’t modify it at the same time as
another goroutine (see the left side of figure 6.6). To implement the wait () opera-
tion, we can have a condition variable that waits while the size of the waitgroup is big-
ger than o (see the right side of figure 6.6).

goroutine cdlling Add(1) condition wait whie ...

) release
increase
lock

/" size

acquire

lock

counter for o
wait group size v @

new goroutine to
participate in the wait group +

3

goroutine may add more to
wait group while working on task

i I

o

“...wait group a
&

adding a goroutine on the wait group

N

waiting on a condition variable until the size is O

Figure 6.6 (a) An Add () operation on a waitgroup; (b) a wait () operation results in waiting on a condition
variable.

The next listing implements a WaitGrp type containing this waitgroup size variable and
a condition variable. Go initializes the group size to the value of 0 by default. The list-
ing also shows a function that initializes the condition variable with its mutex.

Listing 6.7 |Initializing a waitgroup using condition variables

package listingé6_ 7
import (
n SyHC"

)

type WaitGrp struct {
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groupSize int <+—— The waitgroup size property, initialized to 0 by default
cond *sync.Cond

} The condition variable to be used in the waitgroup

func NewWaitGrp() *WaitGrp ({
return &WaitGrp{ Initializes the condition
cond: sync.NewCond (&sync.Mutex{}), variable with a new mutex
}

To write our Add (delta) function, we need to acquire the mutex on the condition vari-
able, add the delta to the groupsize variable, and then finally release the mutex. In the
Done () operation, we again need to protect the groupSize variable with a mutex Lock ()
and Unlock (). We also perform a condition wait while the group size is larger than o.
This logic is shown in the following listing.

Listing 6.8 Add(delta) and Wait () operations for the waitgroup

func (wg *WaitGrp) Add(delta int) {

. .L.Lock . .
Increas_es vg . cond o 0 Protects the update to groupSize with
groupSue wg.groupSize += delta e .
by delta wg. cond. L. Unlock () a mutex lock on the condition variable
1

func (wg *WaitGrp) Wait () {
—> wg.cond.L.Lock ()
for wg.groupSize > 0 { Waits and atomically releases the mutex

wg.cond.Wait () while groupSize is greater than 0

}

> wg.cond.L.Unlock ()

}

Protects the read of the groupSize variable
with a mutex lock on the condition variable

A goroutine calls the Done () function when it wants to signal that it has completed its
task. When this happens, inside the waitgroup’s Done () function, we can reduce the
group size by 1. We also need to add logic so that the last goroutine to call the Done ()
function in the waitgroup broadcasts to any other goroutines currently suspended on
the wait () operation. The goroutine knows that it’s the last goroutine because the
group size will be o0 after it decrements the group size.

The left side of figure 6.7 shows how a goroutine acquires the mutex lock, reduces
the value of the group size, and then releases the mutex lock. The right side of figure
6.7 shows that when the group size reaches o, the goroutine knows that it’s the last
one, and it broadcasts on the condition variable so that any suspended goroutines are
resumed. In this way, we’re indicating that all the work done by the waitgroup is com-
plete. We use a broadcast call instead of a signal since there might be more than one
goroutine suspended on the wait () operation.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



6.1 Waitgroups in Go 125

still suspended

S (B resumed by broadcast
z o

broadcast E:> H

goroutine knows
it's last, as sizeis O

|

“-..wait group 2

last goroutine must broadcast to indicate wait group is empty

|
[}
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

[
I
[
|
I
|
o]
L
calling Done() reduces the wait group size by 1 :

Figure 6.7 (a) The Done () operation decrements group size; (b) last Done () operation results in a
broadcast.

Listing 6.9 implements the Done () operation of our waitgroup. As usual, we protect the
groupsize variable by using a mutex. Afterward, we reduce this variable by 1. Finally,
we check to see whether we’re the last goroutine in the waitgroup by checking
whether the value is 0. If it is 0, we call the Broadcast () operation on the condition
variable to resume any suspended goroutines.

Listing 6.9 Done () operation for the waitgroup using condition variables

func (wg *WaitGrp) Done () {

Reduces the wg.cond.L.Lock ()
. wg.groupSize--
groupSize by 1 F if wg.groupSize == 0 { Protects the update to the groupSize

wg.cond.Broadcast () | variable with a mutex lock

}

wg.cond.L.Unlock ()
}

If it’s the last goroutine to be done in the
waitgroup, it broadcasts on the condition variable.

This new implementation satisfies both our initial requirements. We can change the
size of the waitgroup after creating the waitgroup, and we can unblock more than one
goroutine suspended on the wait () operation.
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Barriers

Waitgroups are great for synchronizing after a task has been completed. But what if we
need to coordinate our goroutines before we start a task? We might also need to align
different executions at different points in time. Barriers give us the ability to synchro-
nize groups of goroutines at specific points in our code.

Let’s look at a simple analogy to help us compare waitgroups and barriers. A pri-
vate plane will only leave when all the passengers arrive at the departure terminal.
This represents a barrier. Everyone has to wait until every passenger arrives at this bar-
rier (the airport terminal). When everyone has finally arrived, the passengers can pro-
ceed and board the plane.

For the same flight, the pilot must wait for a number of tasks to be complete before
departing, such as refueling, stowing luggage, and loading passengers. In our analogy,
this represents the waitgroup. The pilot is waiting for these concurrent tasks to be
complete before the plane can depart.

What is a barrier?

To understand program barriers, think about a set of goroutines, all working together
on different parts of the same computation. Before the goroutines start, they all need
to wait for their input data. Once they have completed, they again need to wait for
another execution to collect and merge the results of their computations. The cycle
might repeat multiple times, as long as there is more input data that needs to be com-
puted. Figure 6.8 illustrates this concept.

wait for

goroutine at barrier cdlls
everyone

Wait() and is suspended until
all goroutines call Wait()

barrier

suspends executions at
barrier until all goroutines ™.
are at the barrier e

goroutines not ...,
yet at barrier” {2

Figure 6.8 Barriers suspend executions until all goroutines catch up.

When thinking about barriers, we can visualize our goroutines as being in one of two
possible states: either executing their task or suspended and waiting for others to
catch up. For example, a goroutine might perform some computation and then wait
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(by calling a wait () function) for the other goroutines to finish their computations.
This wait () function would suspend the goroutine’s execution until all the other
goroutines participating in this barrier group catch up by also calling wait () them-
selves. At this point, the barrier releases all the suspended goroutines together (see
figure 6.9) so that they can continue or restart their execution.

everyone
go go go!

all goroutines resume
once dll participants call
Wait() operation

barrier

barriers are
synchronization points
for goroutines

Figure 6.9 Goroutines resume execution after they all call the wait () operation.

Barriers are different from waitgroups in that they combine the waitgroup’s Done ()
and wait () operations together into one atomic call. The other difference is that
depending on the implementation, barriers can be reused multiple times.

DEFINITION A barrier that can be reused is sometimes called a cyclic barrier.

Implementing a barrier in Go

Unfortunately, Go does not come with a bundled implementation of a barrier, so if we
want to use one, we need to implement it ourselves. As with waitgroups, we can use a
condition variable to implement our barrier.

To start with, we need to know the size of the group of executions that will be using
this barrier. In the implementation, we’ll call this the barrier size. We can use this size
to know when enough goroutines are at the barrier.

In the barrier implementation, we’ll only need to worry about the wait () operation.
Figure 6.10 shows the two scenarios of calling this function. The first scenario is when
a goroutine calls this function and not all executions are at the barrier (shown on the
left side of figure 6.10). In this scenario, calling the wait () function results in an incre-
ment of the wait counter, which tells us how many goroutines are currently waiting on
the barrier to be released. When the number of goroutines waiting is less than the size
of the barrier, we suspend the goroutine by waiting on a condition variable.
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wait counter barrier wait counter

Twe (a9
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when: when:
wait counter < size wait counter == size
z Z .
t wait count
z (D reset wait counter Figure 6.10 Waiting when
2 oo Kk\(‘ not all goroutines are at barrier,

= and broadcasting and resuming
= barriers when all goroutines are
@ broadcast at the barrier

When the wait counter reaches the size of the barrier (on the right side of figure
6.10), we need to reset the counter to 0 and broadcast on the condition variable to
wake up any suspended goroutines. In this way, any goroutines that were waiting on
the barrier become unblocked and can resume their execution.

In listing 6.10, we implement the struct type and NewBarrier (size) construct func-
tion for the barrier. The Go struct contains the size of the barrier, a wait counter, and
a reference to the condition variable. In the constructor, we then initialize the wait
counter to 0, create a new condition variable, and set the barrier size to be the same
value as the input parameter in the function.

Listing 6.10 Type struct and NewBarrier () function for Barrier

package listing6_10
Total number of participants in the barrier
import "sync"

Counter variable representing

type Barrier struct { the number of currently

size int suspended executions
waitCount int
cond *sync.Cond
} Condition variable used in the barrier
func NewBarrier(size int) *Barrier { Creates new condition variable
condVar := sync.NewCond (&sync.Mutex{}) QAAAJ
return &Barrier{size, 0, condvVar}
} Creates and returns reference to new barrier

Listing 6.11 implements the wait () function with its two scenarios. In the function, we
immediately acquire the mutex lock on the condition variable and then increment
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the wait count. If the wait counter hasn’t yet reached the size of the barrier, we sus-
pend the goroutine’s execution by calling the wait () function on the condition vari-
able. This second part of our if statement represents the left side of figure 6.10, where
the counter reaches the barrier’s size. In this case, we simply reset the counter to 0 and
broadcast on the condition variable. This will wake up all of the suspended goroutines
waiting on the barrier.

Listing 6.11 wait () function for barrier

func (b *Barrier) Wait() { Protects access to the waitCount
b.cond.L.Lock () variable by using a mutex

b.waitCount += 1
If waitCount has reached the barrier

Increments if b.waitCount == b.size { size, resets waitCount and broadcasts
the count b.waitCount = 0 on the condition variable
b.cond.Broadcast ()
} else {
b.cond.Wait () If waitCount hasn’t reached the barrier
} size, waits on the condition variable

. .L.Unlock .
} b.cond.L.Unlock () Protects access to the waitCount
variable by using a mutex

We can test our barrier by having two goroutines simulate executing for different peri-
ods of time. In listing 6.12, we have a workandwait () function that simulates doing
work for a period of time and then goes to wait on a barrier. As usual, we simulate
doing work by using the time.Sleep() function. After the goroutine is unblocked from
the barrier, it goes back to work for the same amount of time. At each stage, the func-
tion prints the time in seconds from the start of the goroutine.

Listing 6.12 Simple use of a barrier

package main

import (
n fmtll
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapteré6/listing6.10"
n timell

)

func workAndWait (name string, timeToWork int, barrier *1listingé_10.Barrier) {
start := time.Now ()

for { Simulates doing

work for a number

fmt.Println(time.Since (start), name,"is running") of seconds
time.Sleep (time.Duration (timeToWork) * time.Second)
fmt.Println(time.Since (start), name,"is waiting on barrier")

barrier.Wait ()

} Waits for other goroutines to catch up
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We can now start two goroutines that use the workandwait () function, each with a dif-
ferent timeToWork. In this way, the goroutine that completes the work earlier will have
its execution suspended by the barrier, and it will wait for the slower goroutine before
starting work again. In the next listing, we create a barrier and start two goroutines,
passing a reference to both. We call the two goroutines Red and Blue, giving them 4
and 10 seconds to work, respectively.

Listing 6.13 Starting slow and fast goroutines and sharing a barrier

func main() { Creates a new barrier with two participants
barrier := listingé 10.NewBarrier (2) using the implementation from listing 6.10

kAndWait ("Red", 4, b i . .
go workAndWwait ("ke arrier) Starts goroutine with the name
Red and a timeToWork of 4

Waits go workAndWait ("Blue", 10, barrier)
for 1%0 Starts goroutine with the name
seconds time.Sleep (100 * time.Second) Blue and a timeToWork of 10

1

When we run listings 6.12 and 6.13 together, the program runs for 100 seconds, after
which the main() goroutine terminates. As expected, the fast 4-second goroutine,
called Rred, finishes early and waits for the slower one, called Blue, which takes 10 sec-
onds. We can see this reflected in the output timestamps:

$ go run simplebarrierexample.go

0s Blue is running

0s Red is running

4.0104152s Red is waiting on barrier
10.0071386s Blue is waiting on barrier
10.0076689s Blue is running
10.0076689s Red is running

14.0145434s Red is waiting on barrier
20.0096403s Blue is waiting on barrier
20.010348s Blue is running

20.010348s Red is running

Let’s now look at a real-world application that uses barriers to synchronize multiple
executions.

6.2.3 Concurrent matrix multiplication using barriers

Matrix multiplication is a fundamental operation from linear algebra that is used in
various computer science fields. Many algorithms in graph theory, artificial intelli-
gence, and computer graphics adopt matrix multiplication in their algorithms. Unfor-
tunately, computing this linear algebra operation is a time-consuming process.
Multiplying two n X n matrices together using the simple iterative approach gives
us a runtime complexity of O(n?’). This means that the time spent on computing the
result will grow cubically with regard to the matrix size n. For example, if it takes us 10
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seconds to compute the multiplication of two 100 x 100 matrices, then when we dou-
ble the size of the matrices to 200 x 200, it will take us 80 seconds to compute the
result. Doubling the input size results in scaling the time taken by 2%,

Faster matrix multiplication algorithms

There are matrix multiplication algorithms with a better runtime complexity than O(n3).
In 1969, Volker Strassen, a German mathematician, devised a faster algorithm with
a runtime complexity of O(n2'807). Although this is a big improvement over the simple
approach, the speedup is significant only when the size of the matrices is very large.
For smaller matrix sizes, the simple approach seems to work best.

Other more recent algorithms have even better runtime complexities. However, these
algorithms are not used in practice because they perform faster only if the input size
of the matrices is extremely large—so large, in fact, that they wouldn’t fit in the mem-
ory of today’s computers. These solutions belong to a class of algorithms called galac-
tic algorithms, where the algorithms outperform other algorithms for inputs that are too
big to be used in practice.

How can we use parallel computing and build a concurrent version of the matrix mul-
tiplication algorithm to help speed up this operation? Let’s start by reminding our-
selves how matrix multiplication works. To keep the implementation simple, we’ll
consider only square matrices (n X n) in this section. For example, when computing
the multiplication of matrix A by matrix B, the result of the first cell (row 0, col 0) is
the result of multiplying row 0 from A with column 0 from B. An example of a 3 x 3
matrix multiplication is shown in figure 6.11. To compute the second cell (row 0, col
1), we need to multiply row 0 from A with column 1 from B, and so on.

(D result (row 0, col 0): -5*1+0*-4+3*7=-2

- 7 :‘_\_ separate goroutines

DR . each working on a row

AN

L

>S
7 AYRVAN /\:l - N

2 col0 coll col2 @ @

r~owO 1173 .._]2 A row 0xed 01,2

3
O X _L" "3 _2 q ]3 row 1xcol 01,2
O ] -2 ] ]b ” _2 ° row 2 x col 0,1,2

matrix a matrix b result

Figure 6.11 Parallel matrix multiplication using a separate goroutine on each result row

The following listing shows a function that does this multiplication in a single gorou-
tine. The function uses three nested loops iterating first over the rows, then over the
columns, and multiplying and adding each together in the final loop.
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Listing 6.14 A simple matrix multiplication function

package main
const matrixSize = 3

func matrixMultiply (matrixA, matrixB, result *[matrixSize] [matrixSizelint)
for row := 0; row < matrixSize; row++ { <F———1

.= 0- i xSize: Iterates over every row
lterates for col := g, col < matrixSize; col++ { ry
sum :=
over ever
coh"nz for i := 0; i < matrixSize; i++ { Sums up each value
sum += matrixA[row] [i] * matrixB[i] [col] °fth9(°Wfr°"‘A
} multiplied by each
value of the column
result [row] [col] = sum
} (row] feol] Updates the result from B
matrix with the sum

One way to convert our algorithm to be executed in parallel by multiple processors is
to break down the matrix multiplication into different parts and let each part be com-
puted by a goroutine. Figure 6.11 shows how we can compute the result of each row
separately, using a goroutine for each row. For an n X n result matrix, we can create n
goroutines and assign one goroutine to each row. Each goroutine would then be
responsible for computing the result for its row.

To make our matrix multiplication application more realistic, we can make it go
through three steps and then have these three steps repeat, simulating a long-running
computation:

1 Load the inputs of matrices A and B.
2 Compute the result of A X B concurrently, using one goroutine per row.
2 Output the result on the console.

For step 1, loading the input matrices, we can just generate them using random inte-
gers. In a real-world application, we would read these inputs from a source, such as a
network connection or a file. The following listing shows a function we can use to pop-
ulate a matrix with random integers.

Listing 6.15 Generate a matrix using random integers

package main
import (
"math/rand"
)
const matrixSize = 3
func generateRandMatrix (matrix * [matrixSize] [matrixSizelint) {

for row := 0; row < matrixSize; row++ {
for col := 0; col < matrixSize; col++ {
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assigns a random number

matrix[row] [col] = rand.Intn(10) - 5
For every row and column,
between -5 and 4

To compute the concurrent multiplication (step 2), we need a function that evaluates
the multiplication for a single row in our result matrix. The idea is that we run this
function from multiple goroutines, one per row. Once the goroutines compute all the
rows of our result matrix, we can output the resulting matrix on the console (step 3).

If we are going to perform steps 1 through 3 multiple times, we also need a mech-
anism to coordinate the steps. For example, we cannot perform the multiplication
before loading up the input matrices. Nor should we output the result before our
goroutines are finished computing all the rows.

This is where the barrier utility that we developed in the previous section comes in
handy. We can ensure proper synchronization between the various steps by using our
barrier so that we don’t start one step before finishing the other. Figure 6.12 shows
how we can do this. The figure shows that for a 3 X 3 matrix, we can use a barrier with
a size of 4 (total number of rows + 1). This is the total number of goroutines in our Go

program when we include the main() goroutine.

row goroutines loading row row dl rows row goroutines
wait for ma+mces® complete @ @ multiplication  complete @ comp|e+e© @ wait for matrices
! Wait() Wait()

' ' Wait( ) ch’r( )

II Wait() r\epecﬂ'

'y

main

_WaitQ)

I T I L

T ! v ‘Al T T T ﬁ
exeCUﬁng barrier's size = U4 time
~ for a 3x3 matrix

suspended

Figure 6.12 Synchronization using a barrier during matrix multiplication

Let’s walk through the various steps of the concurrent matrix multiplication program,

shown in figure 6.12:
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1 Initially, the main() goroutine loads up the input matrices while the row gorou-
tines wait on a barrier. In our application, we will be randomly generating the
matrices using the function developed in listing 6.15.

2 Once the loading is complete, the main() goroutine calls the final wait () opera-
tion, releasing all the goroutines.

3 Itis now the main() goroutine’s turn to wait on the barrier for the goroutines to
complete their row multiplication.

4 Once a goroutine calculates its result on its row, it will call another wait () on
the barrier.

5 Once all goroutines finish and call wait () on the barrier, all goroutines will
unblock, and the main() goroutine will output the results and load the next
input matrices.

6 Each row goroutine will wait by calling wait () on the barrier until the loading
from the main() goroutine is complete.

7 Repeat from step 2 as long as we have more matrices to multiply.

Listing 6.16 shows how we can implement the single row multiplication. The function
accepts two input matrices, a space where the resulting matrix can be put, a barrier,
and a row number representing which row it is supposed to work out. Instead of
iterating over every row, it will only work on the row number passed in as a parameter.
It has the same implementation as listing 6.14, but it’s missing the outer row loop. In
terms of parallelism, depending on how many free processors we have, Go’s runtime
should be able to balance the row computations on the available CPU resources. In an
ideal scenario, we would have one CPU available for each goroutine executing each
row calculation.

Listing 6.16 A matrix single-row multiplication function for separate goroutines

package main

import (
n fmt"
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapter6/listing6.10"

const matrixSize = 3

func rowMultiply (matrixA, matrixB, result *[matrixSize] [matrixSize]int,
row int, barrier *1listing6_10.Barrier) {

for { Waits on the barrier until the main()
Starts an ; ; oroutine loads the matrices
infinite barrier.Wait () gorouti !
|°°P for col := 0; col < matrixSize; col++ {
sum := 0
for i := 0; i < matrixSize; i++ { Calculates the result of
Assigns the result sum += matrixAl[row] [i] * matrixB[i] [col] the row in this goroutine
to the correct row
and column result [row] [col]l = sum
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}

ier.Wai . . .
} barrier.Wait() Waits on the barrier until every

} other row has been computed

The rowMultiply () function from listing 6.16 uses the barrier twice. The first time is to
wait until the main () goroutine loads up the two input matrices. The second time, at the
end of the loop, it waits for all the other goroutines to finish working out their own
respective rows. In this way, it can stay synchronized with the main and other goroutines.

Now we can write our main () function, which will perform the loading of the matri-
ces, wait on the barrier, and output the results. The main() function also initializes the
barrier of size matrixSize + 1 and starts up the goroutines at the beginning, as the fol-
lowing listing shows.

Listing 6.17 main () function for matrix multiplication

. Creates a new
£ . . .
unc main() { barrier with size of

var matrixA, matrixB, result [matrixSize] [matrixSize]int .
row goroutines +

barrier := listingé6_10.NewBarrier (matrixSize + 1) mahﬂ) oroutine
for row := 0; row < matrixSize; row++ { g
go rowMultiply (&matrixA, &matrixB, &result, row, barrier)
J Creates a goroutine per row,
for i = 0; i < 4; i++ { assigning the correct row numbers
generateRandMatrix (&matrixa)
generateRandMatrix (&matrixB) Loads up both matrices by
randomly generating them
barrier.Wait ()
Releases the barrier so the goroutines
Waits barrier.wWait () can start their computations
until the ) ) o )
gorouﬁnes for ; := 0; 1l< matrixSize; 1i++ { .
. : mt.Println(matrixA[i], matrixB[i], result[i
co:::I:tha:il:)el:: ) ( (i) (i) i Ouputs rlesults
to console
fmt.Println()
}
}

Running listings 6.15, 6.16, and 6.17 together, we get the following results on the
console:

$ go run matrixmultiplysimple.go
[-4 2 2] [-5 -1 -4] [12 4 22]

[4 -4 3] [-3 4 3] [-11 -32 -28]
[0 -5 1] [-1 -4 0] [14 -24 -15]

[-5 0 3] [1 1 3] [-2 -11 -12]

[3 -2 0] [-4 -3 -2] [11 9 13]
[-4 -5 0] [1 -2 1] [16 11 -2]
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Barriers or no barriers?

Barriers are useful concurrency tools that let us synchronize executions at certain
points in our code, as we saw in the matrix multiplication application. This pattern of
loading work, waiting for it to complete, and collecting the results is a typical applica-
tion for barriers. However, it is mostly useful when creating new executions is a fairly
expensive operation, such as when we use kernel-level threads. Using this pattern,
you save the time taken to create new threads on every load cycle.

In Go, creating goroutines is cheap and fast, so using a barrier for this pattern does
not bring huge performance improvements. It is usually easier to just load work, create
your worker goroutines, wait for their completion using a waitgroup, and then collect
the results. Nonetheless, barriers might still have performance benefits in scenarios
when you need to synchronize large numbers of goroutines.

Exercises

In listings 6.5 and 6.6, we developed a recursive concurrent file search. When a
goroutine finds a file match, it outputs it on the console. Can you change the
implementation of this file search so that it prints all the file matches, sorted
into alphabetical order, after the search completes? Hint: try collecting the
results in a shared data structure instead of printing them on the console from
the goroutine.

In previous chapters, we saw the TryLock () operation on mutexes. This is a non-
blocking call that returns immediately without waiting. If the lock is not avail-
able, the function returns false; otherwise, it locks the mutex and returns true.
Can you write a similar non-blocking function called TrywWait () on our imple-
mentation of a waitgroup from listing 6.8? This function will return immedi-
ately with false if the waitgroup is not done; otherwise, it returns true.

In listings 6.14 and 6.15 and again in 6.16 and 6.17, we implemented single- and
multi-threaded matrix multiplication programs. Can you measure the time it
takes to compute the multiplication for large matrices of size 1000 x 1000 or
larger? For the time measurement to be accurate, you should remove the
println() calls because large matrices will take a long time to be printed on the
console. You might notice a difference only if your system has multiple cores.
In listings 6.16 and 6.17, the concurrent matrix multiplication, we used a barrier
to reuse the goroutines when they needed to start working on a new row. Since
in Go it’s cheap and quick to create new threads, can you change this implemen-
tation so that it doesn’t use barriers? Instead, you can create a set of goroutines
(one per row) every time you generate a new matrix. Hint: you still need a way to
notify the main() goroutine that all the rows have been calculated.
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Summary

Waitgroups allow us to wait for a set of goroutines to finish their work.

When using a waitgroup, a goroutine calls Done () after it finishes a task.

To wait for all tasks to complete using a waitgroup, we call the wait () function.
We can use a semaphore initialized to a negative permit number to implement
a fixed-size waitgroup.

Go’s bundled waitgroup allows us to resize the group dynamically after we cre-
ate the waitgroup by using the add () function.

We can use condition variables to implement a dynamically sized waitgroup.
Barriers allow us to synchronize our goroutines at specific points in their
executions.

Barriers suspend the execution when a goroutine calls wait () until all the gor-
outines participating in the barrier also call wait ().

When all the goroutines participating in the barrier call wait (), all the sus-
pended executions on the barrier are resumed.

Barriers can be reused multiple times.

We can also implement barriers using condition variables.
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Part 2

Message passing

n the first part of the book, we talked about how to use memory sharing to
enable communication between threads of execution. In this second part, we’ll
explore message passing, which is a different way for executions to communi-
cate. In message passing, threads of executions pass copies of messages to each
other whenever they need to communicate. Since these executions are not shar-
ing memory, we eliminate the risks of many types of race conditions.

Go takes inspiration from a concurrency model called communicating
sequential processes (CSP), which is a formal language for describing interac-
tions of concurrent programs. In this model, processes connect to each other by
communicating via synchronous message passing. In the same fashion, Go pro-
vides us with the concept of the channel, which enables goroutines to connect,
synchronize, and share messages with one another.

In this part of the book, we’ll explore message passing and the various tools
and programming patterns we can use to manage this form of communication.
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Communication
using message passing

This chapter covers

Exchanging messages for thread communication

Adopting Go’s channels for message passing

Collecting asynchronous results using channels

Building our own channels

So far, we have talked about having our goroutines solve problems by sharing
memory and using synchronization controls to prevent them from stepping over
each other. Message passing is another way to enable infer-thread communication
(ITC), which is when goroutines send messages to or wait for messages from other
goroutines.

In this chapter, we will explore using Go’s channels to send and receive mes-
sages among our goroutines. This chapter will serve as an introduction to program-
ming concurrency using an abstraction that takes ideas from a formal language
called communicating sequential processes (CSP). We’ll go into more detail about
CSP in the following chapters.

141
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Passing messages

Whenever we converse or communicate with friends, family, or colleagues, we do so by
passing messages to each other. In speech, we say something and usually expect a
reply or a reaction from whomever we’re speaking to. This expectation is also valid
when we’re communicating by letter, email, or phone. Message passing between
goroutines is similar. In Go, we can open a channel between two or more goroutines
and then program the goroutines to send and receive messages among themselves

(see figure 7.1).

: Figure 7.1 Goroutines passing
goroutine A goroutine B messages to each other

Message passing and distributed systems

When we have distributed applications running on multiple machines, message pass-
ing is the main way they can communicate. Since the applications are running on sep-
arate machines and are not sharing any memory, they share information by sending
messages via common protocols, such as HTTP.

The advantage of using message passing is that we greatly reduce the risk of causing
race conditions with our bad programming. Since we’re not modifying the contents of
any shared memory, goroutines cannot step over each other in memory. Using mes-
sage passing, each goroutine just works with its own isolated memory.

Passing messages with channels

A Go channel lets two or more goroutines exchange messages. Conceptually, we can
think of a channel as being a direct line between our goroutines, as shown in figure
7.2. The goroutines can use the ends of the channel to send or receive messages.

To use a channel, we first create one by using the make () built-in function. We can
then pass it onward as an argument whenever we create goroutines. To send messages,
we use the <- operator. In listing 7.1, we are initializing a channel of type string. The

channel ...

Figure 7.2 A channel is a direct
goroutine A goroutine B line between goroutines.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



7.1 Passing messages 143

specified type of the channel allows us to send messages of the same type. As shown in
this example, we can only send strings over this channel. After we create this channel,
we pass it to a newly created goroutine called receiver (). We then send three string
messages over the channel.

Listing 7.1 Creating and using a channel

package main

import "fmt" Creates a new channel of type string
func main() {
msgChannel := make (chan string) Starts a new goroutine with
go receiver (msgChannel) . a reference to the channel
fmt.Println("Sending HELLO...")
msgChannel <- "HELLO"

fmt.Println("Sending THERE...") Sends three string
msgChannel <- "THERE" messages over the
fmt.Println("Sending STOP...") channel

msgChannel <- "STOP"

To consume a message from a channel, we use the same <- operator. However, we put
the channel to the right of the operator instead of to the left. This is shown in the fol-
lowing implementation of the receiver () goroutine, which reads messages from the
channel until it receives the message STOP.

Listing 7.2 Reading messages from a channel

func receiver (messages chan string) Conﬁnue§wh“etm:me$age
msg := " received is not STOP
for msg != "STOP" { Reads the next message from the channel
msg = <-messages
fmt.Println("Received:", msg) <—— Outputs the message on the console

Putting listings 7.1 and 7.2 together results in the main() goroutine pushing messages
on the common channel and the receiver goroutine consuming them. Once the
main () goroutine sends the stop message, the receiver will exit the for loop and termi-
nate. Here is the output:

$ go run messagepassing.go
Sending HELLO. ..
Sending THERE. ..
Received: HELLO
Received: THERE
Sending STOP. ..
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Notice how on the output, we’re missing the final sTor message from the receiver.
This is because the main() goroutine sends the stop message and then terminates.
Once the main goroutine terminates, the entire process exits, and we never get to see
the stop message printed on the console.

What would happen if a goroutine were to push a message on a channel without
there being another goroutine to read that message? Go’s channels are synchronous
by default, meaning that the sender goroutine will block until there is a receiver
goroutine ready to consume the message. Figure 7.3 shows a goroutine sender
blocked without a receiver.

%, Figure 7.3 Sending a message
blocked sender no receiver on a channel with no receiver

We can try this out by changing the receiver from listing 7.2 to the following. In this
receiver, we wait for 5 seconds before terminating instead of consuming any messages
from the channel.

Listing 7.3 Receiver not consuming any messages

func receiver (messages chan string) { Waits for 5 seconds instead of reading
time.Sleep (5 * time.Second) q messages from the channel

fmt.Println("Receiver slept for 5 seconds")

When we run listing 7.3 with the main () function from listing 7.1, the main() goroutine
blocks for 5 seconds. This is because there is nothing to consume the message that the
main() goroutine is trying to place on the channel:

$ go run noreceiver.go

Sending HELLO. . .

Receiver slept for 5 seconds

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send]:
main.main ()

/chapter7/listing7.3/noreceiver.go:12 +0xb9
exit status 2

Since our receiver () goroutine terminates after 5 seconds, no other goroutine is
available to consume messages from the channel. Go’s runtime realizes this and raises
the fatal error. Without this error, our program would stay blocked until we manually
terminate it. The error message mentions that we have encountered a deadlock—
we’ll explore how to deal with deadlocks in chapter 11.
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The same situation occurs if we have a receiver waiting for a message and no
sender is available. The receiver’s goroutine will be suspended until a message is avail-
able (see figure 7.4).

Figure 7.4 A receiver is
blocked until a message
no sender blocked receiver is available.

(D

In the following listing, we have a sender () goroutine that, rather than write messages
to the channel, sleeps for 5 seconds. The main() goroutine tries to consume a message
from the same channel, but it will be blocked since nothing is sending messages.

Listing 7.4 Receiver blocked because sender is not sending any messages

package main

import (
n fmt n
"time"

func main() { Creates a new channel
msgChannel := make (chan string) of type string

go sender (msgChannel)

fmt.Println("Reading message from channel...")

msg := <-msgChannel

fmt . Println ("Received:", msg) Reads a message from channel

1
func sender (messages chan string) Sleeps for 5 seconds instead

time.Sleep (5 * time.Second) of sending any message
fmt.Println("Sender slept for 5 seconds")

Running listing 7.4 produces results similar to listing 7.3. We get a receiver waiting for
messages, and when the sender () goroutine terminates, Go’s runtime outputs an
error. Here’s the console output:

$ go run nosender.go

Reading message from channel...

Sender slept for 5 seconds

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan receivel:
main.main ()

/chapter7/listing7.4/nosender.go:12 +0xbd
exit status 2
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The key idea here is that by default, Go’s channels are synchronous. A sender will block
if there isn’t a goroutine consuming its message, and a receiver will similarly block if
there isn’t a goroutine sending a message.

Buffering messages with channels

Although channels are synchronous, we can configure them so that they store a num-
ber of messages before they block (see figure 7.5). When we use a buffered channel,
the sender goroutine will not block as long as there is space available in the buffer.

Figure 7.5 Using a buffered
goroutine A goroutine B channel between goroutines

When we create a channel, we can specify its buffer capacity. Then, whenever a sender
goroutine writes a message without any receiver consuming the message, the channel
will store the message (shown in figure 7.6). This means that as long as there is space
in the buffer, our sender does not block, and we don’t have to wait for a receiver to
read the message.

sender

Figure 7.6 Messages are
stored in the buffer when no
stored messages receiver is consuming them.

no receiver

The channel will keep on storing messages as long as capacity remains in the buffer.
Once the buffer is filled up, the sender will block again, as shown in figure 7.7. This
message buffer buildup can also happen if the receiving end is slow and does not con-
sume the messages fast enough to keep up with the sender.

Once a receiver goroutine is available to consume the messages, the messages are

fed to the receiver in the same order they were sent. This happens even if the sender

@3 buffer full

blocked sender Figure 7.7 A full buffer

no receiver
blocks the sender.
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goroutine is no longer sending any new messages (shown in figure 7.8). As long as
there are messages in the buffer, a receiver goroutine will not block.

Figure 7.8 A receiver
consumes stored messages
> from the buffer even when
stored messages there is no sender.

no sender
receiver

Once the receiver goroutine consumes all the messages and the buffer is empty, the
receiver goroutine will again block. When the buffer is empty, a receiver will block if
we don’t have a sender or if the sender is producing messages at a slower rate than the
receiver can read them. This is shown in figure 7.9.

Figure 7.9 An empty buffer
with no sender will block the
receiver receiver.

no sender

Let’s now try this in practice. Listing 7.5 shows a slow message receiver that consumes
messages from the integer channel at a rate of one per second. We use time.Sleep() to
slow down the goroutine. Once the receiver () goroutine receives a -1 value, it stops
receiving messages and calls Done () on a waitgroup.

Listing 7.5 Slow receiver reading a message every second

package main

import (
n fmt n
n sy-ncll
"time"

)

func receiver (messages chan int, wGroup *sync.WaitGroup) {
msg := 0
Waits for for msg != -1 {
1 second time.Sleep (1l * time.Second)
msg = <-messages
fmt.Println("Received:", msg) Reads the next message from the channel

’

Keeps reading messages from
the channel until it receives a -1

}

weroup.Done () Calls Done() on the waitgroup
after reading all the messages
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We can now write a main() function that creates a buffered channel and feeds mes-
sages into the channel at a faster rate than our reader can consume them. In listing
7.6, we create a buffered channel with a capacity of three messages. We then use this
channel to send six messages quickly, each containing the next number in the
sequence from 1 to 6. After this, we send a final message containing the value of -1. In
the end, we wait for the receiver () goroutine to be done by waiting on the waitgroup.

Listing 7.6 main () function sending messages on a buffered channel

func main() { Creates a new channel with a
msgChannel := make (chan int, 3) buffer capacity of 3 messages

wGroup := sync.WaitGroup{}

Creates a [ | wGroup.Add (1) Starts the receiver goroutine with
waitgroup | go receiver (msgChannel, &wGroup) the buffered channel and waitgroup
WNhas?: for i := 1; i <= 6; i++ {

o .
size := len(msgChannel)
fmt.Printf ("%s Sending: %d. Buffer Size: %d\n", E:altt:lset::fal:?db(:;“:;:;Iessages
time.Now () .Format ("15:04:05"), i, size)

msgChannel <- 1 .

} Sends six integer messages from 1 to 6

msgChannel <- -1 .

wGroup . Wait () Sends a message containing —1

} Waits on the waitgroup until the receiver is finished

NOTE We can check how many messages are on the buffer by using the
len(buffer) function.

Combining listings 7.5 and 7.6, we get a fast sender that is trying to send six messages.
Since we have a much slower receiver, the main() goroutine will fill the channel buffer
with three messages and then block. The receiver will consume a message every sec-
ond, freeing a space in the buffer that the sender will quickly fill. Here is the output
showing the timestamps of each send and receive operation:

11:09:15 Sending: 1. Buffer Size:
11:09:15 Sending: 2. Buffer Size:
11:09:15 Sending: 3. Buffer Size:
11:09:15 Sending: 4. Buffer Size:
11:09:16 Received: 1
11:09:16 Sending: 5. Buffer Size: 3
11:09:17 Received: 2
11:09:17 Sending: 6. Buffer Size: 3
11:09:18 Received: 3
11:09:19 Received: 4

5

6

w N B O

11:09:20 Received:
11:09:21 Received:
11:09:22 Received: -1
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7.1.3 Assigning a direction to channels

Go’s channels are bidirectional by default. This means that a goroutine can act as both a
receiver and a sender of messages. However, we can assign a direction to a channel so
that the goroutine using the channel can only send or receive messages.

For example, when we declare a function’s parameters, we can specify the direc-
tion of the channel. Listing 7.7 declares receiver and sender functions that allow mes-
sages to go in only one direction. In the receiver, when we declare the channel as
being messages <-chan int, we are saying that the channel is a receive-only channel.
The declaration of messages chan<- int in the sender function is saying the opposite—
that the channel can only be used to send messages.

Listing 7.7 Declaring channels with a direction

package main

import (
n fmtll
"time"

)

) . Declares a receive-only channel
func receiver (messages <-chan int)

for { Receives messages from the channel
msg := <-messages
fmt.Println(time.Now () .Format ("15:04:05"), "Received:", msg)
}
}
func sender (messages chan<- int) { <—— Declares a send-only channel
for i := 1; ; i++ {
fmt.Println(time.Now () .Format ("15:04:05"), "Sending:", 1)

Sends a message on the

messages <- 1
time.Sleep (1l * time.Second)

} channel every second
}
func main() {

msgChannel := make (chan int)

go receiver (msgChannel)

go sender (msgChannel)

time.Sleep (5 * time.Second)
}

In listing 7.7, if we try to use the receiver’s channel to send messages, we would get a
compilation error. For example, if in the receiver () function we do this

messages <- 99
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we would get an error message when we compile:

$ go build directional.go

# command-line-arguments

.\directional.go:11:9: invalid operation: cannot send to receive-only channel
messages (variable of type <-chan int)

Closing channels

We’ve been using special value messages to signal that no more data is available on the
channel. For example, in listing 7.6, the receiver is waiting for a -1 value to appear on
the channel. This signals to the receiver that it can stop consuming messages. This
message contains what is known as a sentinel value.

DEFINITION In software development, a sentinel value is a predefined value
that signals to an execution, a process, or an algorithm that it should termi-
nate. In the context of multithreading and a distributed system, this is some-
times referred to as a poison pill message.

Instead of using this sentinel value message, Go allows us to close a channel. We can
do this in code by calling the close (channel) function. Once we close a channel, we
shouldn’t send any more messages to it because doing so raises errors. If we try to
receive messages from a closed channel, we will get messages containing the default
value for the channel’s data type. For example, if our channel is of integer type, read-
ing from a closed channel will result in the read operation returning a o value. This is

illustrated in figure 7.10.

Figure 7.10 Closing a
channel and continuing
receiver to consume messages

We can show this by implementing a receiver that continually consumes messages even
after we close the channel. The following listing shows a receiver () function with aloop
that reads messages from the channel and outputs them on the console every second.

Listing 7.8 Infinite channel receiver

package main

import (
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n fmt n
"time"
) .
Declares a receive-

func receiver (messages <-chan int) 444J only channel

Read for {
cacs one msg := <-messages
message fmt.Println(time.Now () .Format ("15:04:05"), "Received:", msg)
from the ) e
hannel time.Sleep (1l * time.Second) )
‘ } Waits for 1 second

}

Next, we can implement a main() function that sends a few messages on the channel,
after which it closes the channel. In the following listing, we send three messages, one
per second, and then close the channel. We have also added a sleep of 3 seconds to
show what the receiver () goroutine reads from the closed channel.

Listing 7.9 main () function sending messages and closing channel

func main() {

msgChannel := make (chan int)

go receiver (msgChannel)

for i := 1; i <= 3 ; i++ {
fmt.Println(time.Now () .Format ("15:04:05"), "Sending:", i)
msgChannel <- i
time.Sleep (1l * time.Second)

}

close (msgChannel)

time.Sleep (3 * time.Second)

Running listings 7.8 and 7.9 together, we get the receiver first outputting the messages
from 1 to 3 and then reading os for 3 seconds:

$ go run closing.go
17:19:50 Sending: 1
17:19:50 Received: 1
17:19:51 Sending: 2
17:19:51 Received: 2
17:19:52 Sending: 3
17:19:52 Received:
17:19:53 Received:
17:19:54 Received:
17:19:55 Received:

o O O Ww

Can we use this default value to let the receiver know that the channel has been
closed? Using the default value is not ideal because the default value might be a valid
value for our use case. Imagine, for example, a weather forecasting application send-
ing temperatures over a channel. In this scenario, the receiver would think the chan-
nel has been closed whenever the temperature drops to 0.
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Luckily, Go gives us a couple of ways to handle closed channels. Whenever we con-
sume from a channel, an additional flag is returned, telling us the status of the chan-
nel. This flag is set to false only when the channel has been closed. The following
listing shows how we can modify the receiver function in listing 7.8 to read this flag. By
using this flag, we can decide to stop reading from the channel.

Listing 7.10 Receiver stopping when channel indicates that it’s closed

for { set to false when the channel is closed
msg, more <-messages

fmt.Println(time.Now () .Format ("15:04:05"), "Received:", msg, more)
time.Sleep (1l * time.Second)

func receiver(messages <-chan int) { Reads message and an open channel flag,

if !more {
return When there are no more messages, it
} stops consuming from the channel.

}

As expected, when we run listing 7.10 with the main() function from listing 7.9, we
consume messages until the channel is closed. We can also see that when the channel
is closed, the open channel flag is set to false:

$ go run closingFlag.go
08:07:41 Sending: 1
08:07:41 Received: 1 true
08:07:42 Sending: 2
08:07:42 Received: 2 true
08:07:43 Sending: 3
08:07:43 Received: 3 true
08:07:44 Received: 0 false

As we shall see in the next chapter, this syntax is useful in certain situations, such as
when it’s combined with the select statement. However, we can use a cleaner syntax to
stop a receiver from reading on a closed channel. If we want to read all the messages
until we close the channel, we can use the following for loop syntax:

for msg := range messages

Here, the messages variable is our channel. In this way, we can keep on iterating until
the sender eventually closes the channel. The following listing shows how we can
change the receiver () function from listing 7.9 to use this new syntax.

Listing 7.11 Receiver iterating on messages from the channel

) } Consumes from the channel until it’s closed,
func receiver (messages <-chan int) { assigning messages to the msg variable
for msg := range messages {

fmt.Println(time.Now () .Format ("15:04:05"), "Received:", msg)
time.Sleep(l * time.Second)
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}

fmt.Println("Receiver finished.")

}

Running listing 7.11 with the same main() function from listing 7.9, we end up con-
suming all the messages sent from the main() goroutine until the main() goroutine
closes the channel. The listing outputs the following:

$ go run forchannel.go
09:52:11 Sending: 1
09:52:11 Received: 1
09:52:12 Sending: 2
09:52:12 Received: 2
09:52:13 Sending: 3
09:52:13 Received: 3
Receiver finished.

Receiving function results with channels

We can execute functions concurrently in the background and then collect their
results via channels once they finish. Typically, in normal sequential programming, we
call a function and expect it to return a result. In concurrent programming, we can
call functions in separate goroutines and later pick up their return values from an out-
put channel.

Let’s explore this with a simple example. The following listing shows a function
that finds the factors of an input number. For example, if we call findFactors (6), it will
return the values [1 2 3 6].

Listing 7.12 Function to find all factors of a number

package main

import (
n fmtll

) .
Finds all the factors
func findFactors (number int) []int { for the input number

result := make([lint, 0)
for i := 1; i <= number; i++
if number%i == {
result = append(result, 1)
}
1

return result

If we call the findractors() function twice for two different numbers, in sequential
programming, we would have two calls, one after the other. For example:

fmt.Println (findFactors (3419110721))
fmt.Println (findFactors (4033836233))
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But what if we want to call the function with the first number, and while it’s computing
those factors, we call the function a second time with the second number? If we have
multiple cores available, executing the first findFactors () call in parallel with the sec-
ond will speed up our program. Finding factors of large numbers can be a lengthy
operation, so it would be good to farm out the work on multiple processing cores.

We can, of course, start a goroutine for the first call and then make the second call:

go findFactors(3419110721)
fmt.Println(findFactors (4033836233))

However, how do we wait and collect the results from the first call easily? We could use
something like a shared variable and a waitgroup, but there is an easier way: using
channels. In the next listing, we use an anonymous function, running as a goroutine
and making the first findFactors () call.

Listing 7.13 Collecting results using channels

func main() {
resultCh := make(chan []int) <—— Creates a new channel of type integer slice
go func() {
resultCh <- findFactors(3419110721) Calls the function in an anonymous
4—‘ goroutine and places the results
onto the channel

1O
fmt.Println (findFactors (4033836233))

fmt.Println(<- resultCh)
} Collects the results from the channel

We use this anonymous goroutine to collect the results of the findFactors () function
and write them on a channel. Later, after we finish the second call in our main()
goroutine, we can read those results from the channel. If the first findFactors () call is
not yet finished, reading from the channel will block the main() goroutine until we
have the results. Here is the output showing all the factors:

$ go run collectresults.go
[1 7 131 917 4398949 30792643 576262319 4033836233]
[1 13 113 1469 2327509 30257617 263008517 3419110721]

Implementing channels

What does the inner logic of a channel look like? In its basic form, a buffered channel
is similar to a fixed-size queue data structure. The difference is that it can safely be
used from multiple concurrent goroutines. In addition, the channel needs to block
the receiver goroutine if the buffer is empty or to block the sender if the buffer is full.
In this section, we’ll use concurrency primitives, built in previous chapters, to build
the channel’s send and receive functions so that we can better understand how it
works internally.
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7.2.1 Creating a channel with semaphores
We need a number of elements to build the functionality of our channel:

A shared queue data structure that acts like a buffer to store the messages
between sender and receiver

Concurrent access protection for the shared data structure so that multiple
senders and receivers do not interfere with each other

Access control that blocks the execution of a receiver when the buffer is empty

Access control that blocks the execution of a sender when the buffer is full

We have several options for implementing our shared data structure where we’ll store
our messages. We could, for example, build a queue structure on an array and use a
Go slice or a linked list. Whatever tool we choose, it needs to give us the queue seman-
tics—that is, first in, first out.

To protect our shared data structure from concurrent access, we can use a simple
mutex. When we add or remove a message from the queue, we need to ensure that
the concurrent modifications to the queue do not interfere.

To control access so that executions are blocked when the queue is full or empty,
we can use semaphores. In this case, semaphores are a good base primitive since they
allow concurrent access to a specific number of concurrent executions. From the
receiver’s side, we can think of using a semaphore as having as many free permits as
there are messages in the shared queue. Once the queue is empty, the semaphore will
block the next request to consume a message since the number of free permits on the
semaphore will be 0. We can use the same trick on the sender’s side—we can use
another semaphore that goes down to 0 when the queue gets full. Once this happens,
the semaphore will block the next send request.

These four elements make up our channel of buffer size 10 in figure 7.11. We use two
semaphores, the capacity and buffer size semaphores, to block goroutines when the

what do we need to build a channel?

\per‘mi’rs remaining equal to number
of free spaces left in the buffer

CCIpOCH'y semaphor‘e
—_—

blocks when we're full

e mutex
______ ] profecting access to buffer
buffer T
s+oresTn——¢es§ages

buffer size semaphore permits remaining equal to

—_———— number of messages in buffer
blocks when we're empty 3 9
..i‘ ":'n

Figure 7.11 The structures and tools needed to build a channel
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capacity has been reached or when the buffer is empty, respectively. In the figure, we have
three messages in the buffer, so the buffer size semaphore shows 3. This means we have
seven spaces left until the buffer is full, and the capacity semaphore is set to this value.

We can translate this to code by creating a channel struct type with these four ele-
ments, as shown in listing 7.14. For our buffer, we’ll use the linked list implementa-
tion from the container package. A linked list is an ideal structure for implementing a
queue because we’re always adding and removing messages from the head or tail of
our linked list. In the channel struct type, we are also using Go’s generics, which make
our channel implementation easier to use with various data types.

Listing 7.14 Type struct for the custom channel implementation

package listing7_ 14

import (
"container/list"
"github.com/cutajarj/Concurrent ProgrammingWithGo/chapter5/listing5.16"
n sync"

)
Capacity semaphore to block

type Channel[M any] struct { sender when the buffer is full
capacitySema *listing5_16.Semaphore

Buffer size semaphore to block the
sizeSema *listing5 16.Semaphore receiver when the buffer is empty
Mutex protecting our
shared list data structure

buff *list.List . .
) ubter TEE.LS Linked list to be used as
a queue data structure

Next, we need a function to initialize the elements in the struct type with default
empty values. When we create a new channel, we need the buffer to be empty, the buf-

mutex sync.Mutex

fer size semaphore to have o0 permits, and the capacity semaphore to have a permit
count equal to the input capacity. This will ensure we allow senders to add messages
but block receivers because the buffer is currently empty. The NewChannel () function
in the following listing does this initialization.

Listing 7.15 Function creating a new channel

{ Creates a new
semaphore with the

number of permits

equal to the input

func NewChannel [M any] (capacity int) *Channel [M]
return &Channel [M] {
capacitySema: listing5_16.NewSemaphore (capacity),

new, empty

linked list

_ o capacity
Creates a sizeSema: listing5_16.NewSemaphore (0),

buffer: list .New() Creates a new semaphore
} with the number of
} permits equal to 0
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Implementing the Send() function in our channel

Let’s now explore how the semaphores, buffer, and mutex work together to give us
the send functionality of the channel. The Send(message) function needs to fulfill
these three requirements:

Block the goroutine if the buffer is full.
Otherwise, safely add the message to the buffer.

If any receiver goroutines are blocked, waiting for messages, resume one of
them.

We can meet all these requirements by performing the three steps outlined in fig-

ure 7.12:

The sender acquires a permit from the capacity semaphore, reducing the
permit count by 1. This will meet the first requirement; if the buffer is full, the
goroutine will block since no more permits will be available.

The sender pushes the message onto the buffer data structure. In our imple-
mentation, this data structure is the linked list queue. To protect the queue
from concurrent updates, we can use a mutex to synchronize access.

The sender goroutine releases a permit on the buffer size semaphore by calling
the Release () function on the semaphore. This meets the final requirement; if
there is a blocked goroutine waiting for messages, it will be resumed.

sending messages

e permits remaining equal to the number
N of free spaces left in the buffer

@ Acquire()
reduces capacity by 1

capacity semaphore

.

(@ pushes message § g* 7 humber of messages in the buffer
) on buffer buffer
\\ pr— 3
v« @ Release() E ]

. oddsTtosize

Figure 7.12 Sending messages on the channel

The next listing shows the implementation of the sender. The Send (message) function
contains the three steps: reduce the permits on the capacity semaphore, push the
message onto the queue, and increase the permits on the buffer size semaphore.
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Listing 7.16 The Send () function for the channel implementation
func (c *Channel [M]) Send(message M) { | Acquiresone permitfrom

c.capacitySema.Acquire () the capacity semaphore

Adds a message to the buffer queue while
protecting against race conditions by using
a mutex

c.mutex.Lock ()
.buffer.PushBack (message)
c.mutex.Unlock ()

Q

c.sizeSema.Release () .
Releases one permit from
the buffer size semaphore

If the buffer is full, our capacity semaphore will not have any permits left, so the
sender goroutine will be blocked on the first step (see figure 7.13). The sender will
also block if we use a channel with an initial capacity of 0 and a receiver is not present,
giving us the same synchronous functionality of the default channel in Go.

blocking when full

zero capacity

Acquire() 07 <.
reduces capacity by 1 3 E LS

~ ~
) S
call blocks until space ———
becomes available

Figure 7.13 Blocking the sender when the buffer is full and we have 0 capacity

Implementing the Receive() function in our channel

Let’s now look at the receiving side of our channel implementation. The Receive ()
function needs to satisfy the following requirements:

= Unblock a sender waiting for capacity space.
= If the buffer is empty, block the receiver.
= Otherwise, safely consume the next message from the buffer.

The steps needed to meet all these requirements are shown in figure 7.14:

1 The receiver releases a permit on the capacity semaphore. This will unblock a
sender that is waiting for capacity to place its message.

2 The receiver tries to acquire a permit from the buffer size semaphore. This will
have the effect of blocking the receiver goroutine if the buffer is empty of mes-
sages, meeting the second requirement.
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s Once the semaphore unblocks the receiver, the goroutine reads and removes
the next message from the buffer. Here we should use the same mutex used in
the sender function so that we protect the shared buffer from concurrent exe-
cutions interfering with each other.

receiving messages

permits remaining equal to the number
of free spaces left in the buffer

[7:’ (M Release()

adds 1o capacity

permits remaining equal to the

38 § . B Al ‘
; R = receiver
number of messages in the buffer 29 l ® puls message s

buffer from buffer

RS < 3] - ,"

buffer size semaphore
- @ Acquire()

reduces 1 from size

Figure 7.14 Receiving messages from the channel

NOTE The reason for releasing the permit on the capacity semaphore first is
that we want the implementation to also work when we have a zero-buffer
channel. This is when the sender and receiver wait until both are available
together.

Listing 7.17 shows the implementation of the Receive () function, performing the three
steps outlined in figure 7.14. It releases the capacity semaphore, acquires the buffer
semaphore, and pulls the first message from the linked list that implements the queue
buffer. The function uses the same mutex as the send() function to protect the linked
list from concurrent interference.

Listing 7.17 The Receive () function for the channel implementation

func (c *Channel [M]) Receive() M { Releases one permit from

c.capacitySema.Release () the capacity semaphore

c.sizeSema.Acquire () <+—— Acquires one permit from the buffer size semaphore

Removes one message from the
buffer while protecting against
race conditions using the mutex

c.mutex.Lock ()
v := c.buffer.Remove (c.buffer.Front()) . (M)
c.mutex.Unlock ()

return v <—— Returns the message’s value
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If our buffer is empty, the buffer size semaphore will have 0 permits available. In this
scenario, when a receiver goroutine tries to acquire the permit, the buffer size sema-
phore will block until a sender pushes a message and calls Release() on the same
semaphore. Figure 7.15 shows the receiver goroutine blocking on a buffer size sema-
phore with o permits.

blocking when empty

capacity goes to + 1 since we have a receiver
wanting fo consume an extra message

___________ N D ]] (D Release()

adds 1 to capacity

capacity semaphore @? e =
S—

Lk buffer is empty

36 '

i " .

5 ] | €eeeeen - receiver

zero size 2o buft < ,
WTEr ~we're ! @ Acquire()
R > empty / reduces capacity by 1
(o] ;
,* call blocks until more
buffer size semaphore & e it messages arrive
S———

|

Figure 7.15 A receiver blocking when the buffer is empty and we have 0 permits on the
buffer size semaphore

This blocking logic using semaphores will also work when the channel capacity is set
to 0, as shown in figure 7.16. This is the default behavior of Go’s channels. In such a
case, the receiver would increase the permits on the capacity semaphore and block on
acquiring the buffer size semaphore. Once a sender comes along, it will acquire the
permit from the capacity semaphore, push a message onto the buffer, and release the
buffer size semaphore. This will have the effect of unblocking the receiver goroutine.
The receiver will then pull the message from the buffer.

If a sender arrives before a receiver in a zero-capacity channel, the sender will be
blocked when it tries to acquire the capacity semaphore until a receiver comes along
and releases a permit on the same semaphore.
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zero capacity channel

) <) blocking when receiver is first
capacity semaphore m
® Acq\jii\e:(_) e =T (DRelease)
///’ \\>\ /’—_‘\J L’”” \\\‘\\
. initial value: EO] E] ] ® “zZ
Fe__.~ resumes Z
® £
X 7 i | QF
______________ s buffer ______57--7 =
— receiver
\ @ pushes message ® @ pulls message :"
\ o~ /
\\ , - = \J /I
. initial value: [O:] E] ] L
“he I e P -
® Release() > ® @ Acquire()

8\ buffer size semaphore

_—
T~ @ - —

Figure 7.16 A zero-capacity channel blocking the receiver until the sender pushes a
message

How are Go channels implemented?

The actual Go implementation of channels integrates with the runtime scheduler to
improve performance. Unlike our implementation, it doesn’t use a two-semaphore sys-
tem to suspend goroutines. Instead, it uses two linked lists that store references to
the suspended receiver and sender goroutines.

The implementation also has a buffer to store any pending messages. When this buf-
fer is full or the channel is synchronous, any new sender goroutine is suspended and
queued in the senders’ list. Conversely, when the buffer is empty, any new receiver
goroutine is suspended and queued in the receivers’ list.

These lists are then used when a goroutine needs to be resumed. When a message
becomes available, the first goroutine in the receivers’ list is picked and resumed.
When a new receiver becomes available, the first goroutine in the senders’ list is
resumed (if there is one). Unlike our implementation, this system ensures fairness
amongst the suspended goroutines; the first goroutine that gets suspended will also
be the first that gets resumed.

The channel’s source code can be found in Go’s GitHub project under the runt ime pack-
age located at https://github.com/golang/go/blob/master/src/runtime/chan.go.

Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.
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In listings 7.1 and 7.2, the receiver doesn’t output the last message stop. This is
because the main() goroutine terminates before the receiver () goroutine gets
the chance to print out the last message. Can you change the logic, without
using extra concurrency tools and without using the sleep function, so that the
last message is printed?

In listing 7.8, the receiver reads a 0 when the channel is closed. Can you try it
with different data types? What happens if the channel is of type string? What if
it is of type slice?

In listing 7.13, we use a child goroutine to calculate the factors of one number
and the main() goroutine to work out the factors of the other. Modify this listing
so that, using multiple goroutines, we collect the factors of 10 random numbers.
Modify listings 7.14 through 7.17 to implement a channel using condition vari-
ables instead of semaphores. The implementation also needs to support chan-
nels with a zero-sized buffer.

Summary

Message passing is another way for concurrent executions to communicate.
Message passing is similar to our everyday way of communicating by passing a
message and expecting an action or a reply.

In Go, we can use channels to pass messages between our goroutines.

Channels in Go are synchronous. By default, a sender will block if there is no
receiver, and the receiver will also block if there is no sender.

We can configure buffers on channels to store messages if we want to allow
senders to send N messages before blocking on a receiver.

With buffered channels, a sender can continue writing messages to the channel
even without a receiver if the buffer has enough capacity. Once the buffer fills
up, the sender will block.

With buffered channels, a receiver can continue reading messages from the
channel if the buffer is not empty. Once the buffer empties, the receiver will
block.

We can assign directions to channel declarations so that we can receive from or
send to a channel, but not both.

A channel can be closed by using the close () function.

The read operation on a channel returns a flag telling us whether the channel
is still open.

We can continue to consume messages from a channel by using a for range loop
until the channel is closed.

We can use channels to collect the result of a concurrent goroutine execution.
We can implement the channel functionality by using a queue, two semaphores,
and a mutex.
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Selecting channels

This chapter covers

Selecting from multiple channels
Disabling select cases

Choosing between message passing and memory
sharing

In the previous chapter, we used channels to implement message passing between
two goroutines. In this chapter, we will see how to use Go’s select statement to read
and write messages on multiple channels and to implement timeouts and non-
blocking channels. We will also examine a technique for excluding channels that
have been closed and consuming only from the remaining open channels. Finally,
we’ll discuss memory sharing versus message passing and when we should choose
one technique over the other.

Combining multiple channels

How can we have one goroutine respond to messages coming from different gorou-
tines over multiple channels? Go’s select statement lets us specify multiple channel
operations as separate cases and then execute a case depending on which channel
is ready.

163
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Reading from multiple channels

Let’s think of a simple scenario where a goroutine is expecting messages from separate
channels, but we don’t know on which channel the next message will be received. The
select statement lets us group read operations on multiple channels together, blocking
the goroutine until a message arrives on any one of the channels (see figure 8.1).

channel

select

no goroutines
available

Figure 8.1 Select
blocks until a channel

blocked goroutine
becomes available.

Once a message arrives on any of the channels, the goroutine is unblocked, and a
code handler for that channel is run, as shown in figure 8.2. We can then decide what
else to do—either continue with our execution, or go back and wait for the next mes-
sage by using the select statement again.

select

Figure 8.2 Once a
channel is available,
select unblocks.

Let’s now look at how this translates to code. In listing 8.1, we have a function that cre-
ates an anonymous goroutine that periodically sends a message on a channel. The
period is specified by the seconds input variable. As we shall see later in this chapter,
using a pattern where the function returns an output-only channel enables us to reuse
these functions as building blocks for more complex behaviors. We can do this
because Go channels are first-class objects.

Listing 8.1 Function periodically outputting messages on a channel

package main

import (
n fmt"
" time"

)

func writeEvery(msg string, seconds time.Duration) <-chan string {
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messages := make (chan string)
Creates go func() { Creates a new channel of type string
a new, for {
anonymous, time.Sleep (seconds) <—— Sleeps for the specified period
: messages <- msg
goroutine } Sends the specified message on the channel

1O

return messages <—— Returns the newly created message channel

}

DEFINITION Channels are firsi-class objects, which means that we can store them
as variables, pass or return them from functions, or even send them on a
channel.

We can demonstrate the select statement by calling the writeEvery () function (shown
in the previous listing) twice. If we specify a different message and sleep period, we’ll
end up with two channels and two goroutines sending messages at different times.
The following listing reads from these two channels in a select statement, with each
channel as a separate select case.

Listing 8.2 Reading from multiple channels using select

fune main() { Creat.:es a goroutine
messagesFromA := writeEvery("Tick", 1 * time.Second) sendu;g meshsageslexel’)'

— > messagesFromB := writeEvery("Tock", 3 * time.Second) second on channe

Createsa  gor { <—— Loops forever

gorgytme select | Outputs message from channel

sending case msgl := <-messagesFromA: A if one is available

messages fmt.Println (msgl)

every 3

case msg2 := <-messagesFromB: Outputs message from
seconds on . . . .
fmt.Println (msg2) channel B if one is available
channel B )
}

When we run listings 8.1 and 8.2 together, we get the main() goroutine looping and
blocking each time until a message arrives from either channel. When we get a mes-
sage, the main() goroutine executes the code underneath the case statement. In this
example, the code just outputs the message to the console:

$ go run selectmanychannels.go
Tick
Tick
Tock
Tick
Tick
Tick
Tock
Tick
Tick
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NOTE When using select, if multiple cases are ready, a case is chosen at ran-
dom. Your code should not rely on the order in which the cases are specified.

Origins of the select statement

The UNIX operating system contains a system call named select () that accepts a set
of file descriptors (such as files or network sockets) and blocks until one or more of
the descriptors become ready for an /0 operation. The system call is useful when you
want to monitor multiple files or sockets from a single kernel-level thread.

Go’s select statement derives its name from the Newsqueak programming lan-
guage’s select command. Newsqueak (not to be confused with the fictional language
Newspeak by George Orwell) is a language that, like Go, takes its concurrency model
from C.A.R. Hoare’s CSP formal language. Newsqueak’s select statement might have
gotten its name from the select system call that was built to provide multiplexed /0
for the Blit graphics terminal in 1983.

It is unclear whether the naming of Go’s select statement was influenced by the UNIX
system call; however, we can say that the UNIX select () system call is analogous to
Go’s select statement in that it multiplexes multiple blocking operations into a single
execution.

Using select for non-blocking channel operations

Another use case for select is when we need to use channels in a non-blocking man-
ner. Recall that when we were discussing mutexes, we saw that Go provides a non-
blocking tryLock() operation. This function call tries to acquire the lock, but if the
lock is being used, it will return immediately with a false return value. Can we adopt
this pattern for channel operations? For example, can we try to read a message from a
channel? Then, if no messages are available, instead of blocking, can we have the cur-
rent execution work on a default set of instructions (see figure 8.3)?

channel

default instructions

no goroutines
available

Figure 8.3 The default
case’s instructions are
executed if no channels
are available.

The select statement gives us the default case for exactly this scenario. The instructions
under the default case will be executed if none of the other cases is available. This lets
us try to access one or more channels, but if none is ready, we can do something else.

In the following listing, we have a select statement with a default case. In this list-
ing, we are trying to read a message from a channel, but because the message arrives
later, we get to execute the contents of the default case.
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Listing 8.3 Non-blocking reads from a channel

package main

import (
n fmtll
"time"

)

func sendMsgAfter (seconds time.Duration) <-chan string {
messages := make (chan string)
go func() {
time.Sleep (seconds)
messages <- "Hello"

1O
return messages
1
func main() { Sends channel message
messages := sendMsgAfter (3 * time.Second) after 3 seconds
for {
select { Reads a message from the
case msg := <-messages: channel if there is one
When a fmt.Println ("Message received:", msg)
message is return
available, | gefault: Wh .
terminates fmt.Println("No messages waiting") '(:nblllo E‘eszagfe Ilst
the execution time.Sleep (1 * time.Second) avallable, the defau
) case is executed.
1
1

In the previous listing, since we have the select statement in a loop, the default case
will be executed over and over again until we receive a message. When this happens,
we print the message and return on the main() function, terminating the program.
Here’s the output:

$ go run nonblocking.go
No messages waiting
No messages waiting
No messages waiting
Message received: Hello

8.1.3 Performing concurrent computations on the default case

A useful scenario is to use the default select case for concurrent computations and
then use a channel to signal when we need to stop. To illustrate this concept, suppose
we have a sample application that will discover a forgotten password by brute force. To
keep things simple, let’s say we have a password-protected file that we remember has a
password of six characters or less, using only the lowercase letters a to z and spaces.
The number of possible strings from "a" to "zzzzzz", including spaces, is 27%-1
(387,420,488). The function in the following listing gives us a way to convert the
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integers 1 to 387,420,488 into a string. For example, calling toBase27(1) gives us "a",
calling it with 2 gives us "b", 28 gives us "aa", and so on.

Listing 8.4 Enumerating all possible combinations of a string

package main

import (
n fmt n
" time"
)
Sets the password that
const ( we need to guess
passwordToGuess = "go far"
alphabet = " abcdefghijklmnopgrst " .
) P gt parstuvxyz Defines all possible characters
that the password is made of

func toBase27(n int) string
result := ""
for n > 0 {
result = string(alphabet [n%27]) + result
n /= 27

Algorithm converts a decimal
integer into a string of base 27
using the alphabet constant

}

return result

If we had to use a brute force approach in a sequential program, we would just create
a loop enumerating all strings from "a" to "zzzzzz", and every time, we would check
to see whether it matched with the variable passwordToGuess. In a real-life scenario, we
wouldn’t have the value of the password; instead, we would try to gain access to our
resource (such as a file) using each string enumeration as the password.

To find our password faster, we can divide the range of our guesses among several
goroutines. For example, goroutine A would try guesses from string enumerations 1
to 10 million, goroutine B would try guesses from 10 million to 20 million, and so on
(see figure 8.4). In this way, we can have many goroutines, each working on a separate
part of our problem space.

To avoid unnecessary computations, we want to stop the execution of each gorou-
tine when any goroutine makes a correct guess. To achieve this, we can use a channel
to notify all other goroutines when one execution discovers the password, as shown in
figure 8.4. Once a goroutine finds the matching password, it closes a common chan-
nel. This has the effect of interrupting all participating goroutines and stopping the
processing.

NOTE We can use the close() operation on a channel to act like a signal
being broadcast to all consumers.

How can we implement the logic to stop processing in all goroutines after a common
channel is closed? One solution is to perform the necessary computation in the select
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{1, 10M)
("a", "rvakj")

interval notation

e + inclusive

[10M, 20M)
t U'rvakj”, "ajgbvt”)

£ exclusive :

1.2.3.4.5.6.7

Fonsow 15 3 e
i C'ajgbvt”, "bbldgc™) 12N n

\ v
“ password-protected

~~~~~~~ r resource
---------------- > [

[380M, 387M) &5

‘zma b, “zzzzzz") & e i ‘
: o once password is found, close channel

to notify other goroutines to stop

guess ranges IS

Figure 8.4 Dividing the work among executions and closing the channel to stop them

statement’s default case and then have another case waiting on the common channel.
In our example, we can call our toBase27 () function and try to guess passwords in the
default case, each time guessing just one password. We can have the logic to stop gen-
erating and trying passwords in a separate select case, which will be triggered when
the common channel is closed.

Listing 8.5 shows a function that accepts this common channel, called stop. In the
function, we generate all password guesses from the given range, represented by the
from and upto integer variables. Each time we generate the next password guess, we try
to match it against the passwordToGuess constant. This simulates the program trying to
access a resource that is password protected. Once a password matches, the function
closes the channel, resulting in all the goroutines receiving a close message on their
own select case and stopping their processing because of the return statement.

Listing 8.5 Brute force password discovery goroutine

Loops over all password
combinations using from and
upto as starting and end points

func guessPassword (from int, upto int, stop chan int, result chan string) (

for guessN := from; guessN < upto; guessN += 1 {
select {
Upon receiving a message on the stop channel,
case <-stop: outputs a message and stops processing
fmt.Printf ("Stopped at %d [%d, ¢d) \n", guessN, from, upto)
Sends return
matching Checks whether the password
password on default: matches (in a real-life system,
the result if toBase27(guessN) == passwordToGuess we would try to access the
channel result <- toBase27 (guessN) protected resource)
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1 t .
ieziir(ls °p) Closes the channel so that other goroutines
stop checking the password

}
}

fmt.Printf ("Not found between [%d, %$d)\n", from, upto)

}

We can now create several goroutines executing the previous listing. Each goroutine
will try to find the correct password within a certain range. In the following listing, the
main () function creates the necessary channels and starts all the goroutines with their
input ranges in steps of 10 million.

Listing 8.6 main () function creating several goroutines with various password ranges

Creates a common channel used in the goroutines
func main() { that signals when a password has been found
finished := make(chan int . .
( ) Creates a channel that will contain the
passwordFound := make (chan string) discovered password after it’s found
for i := 1; i <= 387 420 488; i += 10 000 000 {
go guessPassword (i, i+ 10_000_000, finished, passwordFound)
1

fmt.Println("password found:", <-passwordFound)

close (passwordFound) C . ithii
time.Sleep (5 * time.Second) reates a goroutine with input ranges

: [1, 10M), [10M, 20M), . . . [380M, 390M)

Simulates the program using the
password to access the resource

8.1.4

After starting up all the goroutines, the main() function waits for an output message
on the passwordfFound channel. Once a goroutine discovers the correct password, it will
send the password on its result channel to the main() function. When we run all the
listings together, we get the following output:

Not found between [1,10000001)

Stopped at 277339743 [270000001,280000001)
Stopped at 267741962 [260000001,270000001)
Stopped at 147629035 [140000001,150000001)

password found: go far

Stopped at 378056611 [370000001,380000001
Stopped at 217938567 [210000001,220000001
Stopped at 357806660 [350000001,360000001
Stopped at 287976025 [280000001,290000001

Timing out on channels
Another useful scenario is blocking for only a specified amount of time, waiting for an
operation on a channel. Just like in the previous two examples, we want to check to
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see whether a message has arrived on a channel, but we want to wait for a few seconds
to see if a message arrives, instead of unblocking immediately and doing something
else. This is useful in many situations when channel operations are time sensitive.
Consider, for example, a financial trading application, where if we don’t receive a
stock price update within a time window, we need to raise alerts.

We can implement this behavior by using a separate goroutine that sends a mes-
sage on an extra channel after a specified timeout. We can then use this extra channel
in our select statement, together with the other channels. This will give us the effect
of blocking on the select statement until any of the channels becomes available or the
timeout occurs (see figure 8.5).

blocked goroutine unti timer expires

timer sends message on ;
9 or another channel becomes available

™ channel after interval

Figure 8.5 Using a timer to send a message on a channel to implement blocking
with a timeout

Thankfully, the time.Timer type in Go provides us with this functionality, and we don’t
have to implement our own timer goroutine. We can create one of these timers by
calling time.After (duration). This will return a channel on which a message is sent
after the duration time elapses. The following listing shows an example of how we can
use this with a select statement to implement channel blocking with a timeout.

Listing 8.7 Blocking with a timeout

package main

import (
"fmt"
n OS"
"strconv" Sends the message
"time" “Hello” on the
) returned channel
after the specified
func sendMsgAfter (seconds time.Duration) <-chan string { number of seconds
messages := make (chan string)
go func()

time.Sleep (seconds)
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messages <- "Hello"
1O
return messages Reads the timeout value from
} the program argument
func main() { Starts a goroutine that sends
. a message on the returned
t, _ := strconv.Atoi(os.Args[1]) hannel after 3 nd
messages := sendMsgAfter (3 * time.Second) channel aiter 3 seconds
timeoutDuration := time.Duration(t) * time.Second
fmt.Printf ("Waiting for message for %d seconds...\n", t)
select {
case msg := <-messages:
I J , Reads a message from the
fmt.Println("Message received:", msg) . .
. ) . messages channel if there is one
case tNow := <-time.After (timeoutDuration) :
fmt.Println("Timed out. Waited until:", tNow.Format ("15:04:05"))

}

Creates a channel and timer, receiving a
message after the specified duration

Listing 8.7 accepts a timeout value as a program argument. We use this timeout to wait
for a message to arrive on the messages channel, which arrives after 3 seconds. Here’s
the output of this program when we specify a timeout of less than 3 seconds:

$ go run selecttimer.go 2
Waiting for message for 2 seconds...
Timed out. Waited until: 16:31:50

When we specify a timeout greater than 3 seconds, the message arrives, as expected:

$ go run selecttimer.go 4
Waiting for message for 4 seconds...
Message received: Hello

When we use the time.After (duration) call, the returned channel will receive a mes-
sage containing the time when the message was sent. In listing 8.7, we are simply out-
putting it.

Writing to channels with select

We can also use the select statement when we need to write messages to channels, not
just when we are reading messages from channels. Select statements can combine
read or write blocking channel operations together, selecting the case that unblocks
first. As in the previous scenarios, we can use select to implement non-blocking chan-
nel sending or sending on a channel with a timeout. Let’s demonstrate a scenario that
combines writing and reading from channels in a single select statement.

Imagine we have to come up with 100 random prime numbers. In real life, we
could pick a random number from a bag with a large set of numbers and then keep
that number only if it is prime (see figure 8.6).
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Figure 8.6 Filtering primes from random numbers

In programming, we can have a primes filter that, given a stream of random numbers,
picks out any prime number it finds and outputs it on another stream. In listing 8.8, the
primesonly () function does exactly this: it accepts a channel with input numbers and fil-
ters for prime numbers. The primes are output on the returned channel.

To prove that a number, C, is non-prime, we just need to find a prime number in
the range from 2 to the square root of C that is a factor of C. A factoris a number that
divides another number, leaving no remainder. If no such factor exists, then C is
prime. To keep our primesonly () function implementation simple, we’ll check every
integer in this range instead of checking every prime.

Listing 8.8 Goroutine filtering for prime numbers

package main

import (
n fmt n
n ma th"
"math/rand" Accepts numbers in the
) inputs channel and returns
a channel containing only
func primesOnly (inputs <-chan int) <-chan int { prime numbers
results := make(chan int)
go func() { <1—‘ Creates an anonymous goroutine that
for c := range inputs { will filter for prime numbers only
Checks to isPrime := ¢ !=1
ensure ¢ is for ? :=°%; i <= int (math.Sqgrt(floaté4(c))); i++ {
not 1, since 1 if csl == Checks to see if ¢
is not a prime isPrime = false has a factor in the
break range from 2 to the
1 square root of ¢
}
if isPrime {
results <- ¢ If c is prime, outputs c
} on the results channel

}
1O

return results
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Notice that in listing 8.8, our goroutine outputs a subset of the numbers it receives on
the input channel. Often, the goroutine receives a non-prime number that is thrown
away, meaning no number is output. How can we feed in a stream of random numbers
while reading the primes returned on another channel in one goroutine? The answer
is to use a select statement to both feed in the random numbers and read the primes.
This is shown in the following listing, where the main() goroutine uses two select cases:
one feeds the random numbers and another reads the primes.

Listing 8.9 Feeding random numbers and collecting 100 primes

func main() {
numbersChannel := make (chan int) Repeats until we Feeds a random
primes := primesOnly (numbersChannel) | collect 100 prime number between
for i := 0; i < 100; { numbers 1 and 1 billion
select { Pntqtheinput
case numbersChannel <- rand.Intn(1000000000) + 1: isPrimeChannel
case p := <-primes:

fmt .Println("Found prime:", p) Reads an output prime number
i++

In listing 8.9, we continue executing until we collect 100 prime numbers. After run-
ning this, we get the following output:

$ go run selectsender.go
Found prime: 646203301
Found prime: 288845803
Found prime: 265690541
Found prime: 263958077
Found prime: 280061603
Found prime: 214167823

Disabling select cases with nil channels

In Go, we can assign nil values to channels. This has the effect of blocking the chan-
nel from sending or receiving anything, as demonstrated in the following listing. The
main() goroutine tries to send a string on a nil channel, and the operation blocks,
stopping any further statements from executing.

Listing 8.10 Blocking on a nil channel

package main
import "fmt"

func main() {
var ch chan string = nil <—— Creates a nil channel
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ch <- "message" . o e
) ae . Blocks execution as it tries to send
fmt.Println("This is never printed") .
message on the nil channel

When we run listing 8.10, the println() command never gets executed because the
execution blocks on the message sending. Go has deadlock detection, so when Go
notices that the program is stuck with no hope of recovering, it gives us the following
message:

$ go run blockingnils.go
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send (nil chan)]:

main.main ()
/ConcurrentProgrammingWithGo/chapter8/listing8.10/blockingnils.go:7 +0x28

exit status 2

The same logic applies to select statements. Trying to send to or receive from a nil
channel on a select statement has the same effect of blocking the case using that
channel (see figure 8.7).

select case
blocks forever

nil channel

Figure 8.7 Blocking
blocked goroutine on nil channels

Using select with just one nil channel is not that useful, but we can use the pattern of
assigning nil to a channel to disable a case in a select statement. Consider a scenario
where we are consuming messages from two separate goroutines on two separate
channels, and the goroutines close their channels at different times.

For example, we might be developing accounting software that receives sales and
expense amounts from various sources. At the close of business, we want to output the
total profit or loss for that day. We can model this by having a goroutine outputting
sales details on one channel and another goroutine doing the same on another chan-
nel for expenses. We can then collate the two sources in another goroutine, and once
both channels are closed, output the end-of-day balance to the user (see figure 8.8).

Listing 8.11 simulates our expense and sales application. The generateamounts ()
function will create n random transaction amounts and send them on an output chan-
nel. We can then call this function twice, once for sales and again for expenses, and
our main goroutine can combine both channels.
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select
main goroutine adds sales

B and subtracts expenses
senders take turns . s

e sending amounts

blocked waiting

expenses w.. forits turn

Figure 8.8 An accounting application reading sales and expenses from two sources

There is a small sleep inside the loop so that we can interleave both the sales and
expense goroutines.

Listing 8.11 A generateAmounts () function generating sales and expenses

package main

import (
n fmt"
"math/rand"
" time n

)

func generateAmounts (n int) <-chan int {

amounts := make (chan int) <+—— Creates an output channel
go func() {

Closes defer close (amounts)
the output for i := 0; i < n; i++ { Writes n random amounts in the
channel when amounts <- rand.Intn(100) + 1 range of [1, 100] to the output
we’re done time.Sleep (100 * time.Millisecond) channel every 100 ms

}
1O
return amounts <+ Returns the output channel

}

If we were to use a normal select statement to consume from both the sales and
expense goroutines, with one of the goroutines closing its channel earlier than the
other, we would end up always executing on the closed channel case. Every time we
consume from a closed channel, it will return the default data type without blocking.
This also applies to select cases. In our simple accounting application, if we used a
select statement to consume from both sources, we would end up needlessly looping
on the closed channel select case, receiving 0 every time (see figure 8.9).

WARNING When we use a select case on a closed channel, that case will always
execute.

One solution to this problem is to have both the sales and expense goroutines output
onto the same channel and then close the channel only when both goroutines are
done. However, this might not always be an option, since it requires us to change the
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select

main goroutine receives
blocked waiting Os on closed channel

. forits turn

expenses finished

Figure 8.9 Using a select case with a closed channel will result in that select case
always executing.

goroutine function’s signature so we can pass the same output channel to both
sources. Sometimes, such as when using third-party libraries, changing the function’s
signature is not possible.

Another solution would be to change the channel into a nil channel whenever it is
closed. Reading from a channel always returns two values: the message and a flag telling
us if the channel is still open. We can read the flag, and if the flag indicates that the
channel has been closed, we can set the channel reference to nil (see figure 8.10).

select

main goroutine receives
sales amounts only

expenses finished

Figure 8.10 Assigning a nil channel when the channel is closed to disable the select case

Assigning a nil value to the channel variable after the receiver detects that the chan-
nel has been closed has the effect of disabling that case statement. This allows the
receiving goroutine to read from the remaining open channels.

Listing 8.12 shows how we can use this nil channel pattern for our accounting
application. In the main() goroutine, we initialize the sales and expense sources, and
then we use a select statement to consume from both. If either of the channels
returns a flag indicating that the channel has been closed, we set the channel to nil to
disable the select case. We continue selecting from the channels for as long as there is
one non-nil channel.

Listing 8.12 A main() goroutine using the nil select pattern

func main() { Generates 50 amounts on the sales channel
sales := generateAmounts (50)
expenses := generateAmounts (40) <—— Generates 40 amounts on the expenses channel
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endOfDayAmount := 0
for sales != nil || expenses != nil { Consumes the next amount
select { and channel open flag from

Continues to loop
while there is a
non-nil channel

case sale, moreData := <-sales: the sales channel

if moreData ({

fut .Println("Sale of:", sale) Adds the sales amount to
endofDayAmount += sale the total end-of-day balance

} else {

sales = nil If the channel has been closed, marks the

} channel as nil, disabling this select case
case expense, moreData := <-expenses:
if moreData { Subtracts the expense
Consumes the next fmt.Println ("Expense of:", expense) amount from the total
amount and channel endOfDayAmount -= expense end-of-day balance
open flag from the } e1se {
expenses channel expenses = nil

) If the channel has been
) closed, marks the channel as
nil, disabling this select case

}

fmt.Println("End of day profit and loss:", endOfDayAmount)

In listing 8.12, once both channels are closed and set to nil, we exit the select loop
and output the end-of-day balance. Running listings 8.11 and 8.12 together, we get the
sales and expense amounts interleaved until we have consumed all the expenses and
the channel has been closed. At this point, the select statement drains the sales chan-
nel and then exits the loop, printing the total balance:

$ go run selectwithnil.go
Expense of: 82

Sale of: 88

Sale of: 48

Expense of: 60

Sale of: 82

Sale of: 34

Sale of: 44

Sale of: 92

Sale of: 3

End of day profit and loss: 387

NOTE This pattern of merging channel data into one stream is referred to as
a fan-in pattern. Using the select statement to merge different sources only
works when we have a fixed number of sources. In the next chapter, we will
see a fan-in pattern that merges a dynamic number of sources.

8.2 Choosing between message passing and memory sharing
We can decide whether to use memory sharing or message passing for our concurrent
applications depending on the type of solution we are trying to implement. In this sec-
tion, we will examine the factors and implications that we should keep in mind when
deciding which of the two approaches to use.
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Balancing code simplicity

Producing simple, readable, and easy-to-maintain software code is ever more import-
ant with today’s complex business requirements and large development teams. Con-
current programming using message passing tends to produce code containing well-
defined modules, each module running its own concurrent execution that passes mes-
sages to other executions. This makes code simpler and easier to understand. In addi-
tion, having clear input and output channels to the concurrent executions means that
our program data flow is easier to grasp and, if needed, modify.

In contrast, memory sharing means that we need to use a more primitive way of
managing concurrency. Just like reading a low-level language, code that uses concur-
rency primitives (such as mutexes and semaphores) tends to be harder to follow. The
code is usually more verbose and is littered with protected critical sections. Unlike
message passing, it’s harder to determine how data flows through the application (see
figure 8.11).

this code [ wrote last 7
year can handle 100k oh wow!
transactions a second | Jhow does it work?| m

A\

Figure 8.11 Achieving the right balance between code simplicity and performance

822

Designing tightly versus loosely coupled systems

The terms tightly and loosely coupled software refer to how dependent different mod-
ules are on each other. Tightly coupled software means that when we change one
component, it will have a ripple effect on many other parts of the software, which usu-
ally require changes as well. In loosely coupled software, components tend to have
clear boundaries and few dependencies on other modules. In loosely coupled soft-
ware, introducing a change in one component requires few or no changes in others
(see figure 8.12). Loosely coupling is usually a software design goal and a desirable
code property. It means that our software is easier to test and more maintainable,
requiring less work whenever we introduce a new feature.

Concurrent programming using memory sharing typically produces more tightly
coupled software. The inter-thread communication uses a common block of memory,
and the boundaries of each execution are not clearly defined. Any execution can read
and write to the same location. Writing loosely coupled software while using memory
sharing is more difficult than when using message passing because changing the way
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i Figure 8.12 The difference between
tight versus loose code coupling tight and loose code coupling

we update the shared memory from one execution will have a significant effect on the
rest of the application.

In contrast, with message passing, executions can have clearly defined input and
output contracts, which means we know exactly how a change in one execution will
affect another. For example, we can easily change the inside logic of a goroutine if the
input and output contracts through our channels are maintained. This allows us to
build loosely coupled systems more easily, and refactoring the logic in one module
does not have a large ripple effect on the rest of the application.

NOTE This is not to say that all code that uses message passing is loosely cou-
pled. Nor is all software that uses memory sharing tightly coupled. It is just
easier to come up with a loosely coupled design using message passing
because we can define simple boundaries for each concurrent execution with
clear input and output channels.

Optimizing memory consumption

With message passing, each goroutine has its own isolated state stored in memory.
When we pass messages from one goroutine to another, each organizes the data in its
memory to compute its task. Often, there is some replication of the same data across
multiple goroutines.

For example, consider the letter-frequency application we implemented in chapter
3. In our implementation, we used a Go slice shared among our goroutines. The pro-
gram downloaded web pages using concurrent goroutines and used this shared slice
to store the number of times that each letter in the English alphabet appeared in the
downloaded document (see the left side of figure 8.13). We could change the pro-
gram to use message passing by having each goroutine build a local instance of a slice
with the frequencies encountered while downloading its web page. After counting the
letter frequencies, each goroutine would send a message on an output channel with
the slice containing the results. In our main() function, we could then collect the
results and merge them (see the right side of figure 8.13).

Listing 8.13 shows how we could implement a goroutine that downloads a web doc-
ument and counts the occurrences of each letter in the alphabet. It has its own local
slice data structure instead of a shared one.
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Figure 8.13 Message passing can result in more memory consumption.

Once it’s done, it sends the results to its output channel.

Listing 8.13 Letterfrequency function using message passing (imports omitted)

package main
import (...)
const alllLetters = "abcdefghijklmnopgrstuvwxyz"

func countLetters (url string) <-chan [lint

result := make(chan []int) <+—— Creates output channel of type int slice
go func()
defer close(result)
frequency := make([]lint, 26) <—— Creates a local frequency slice
resp, _ := http.Get (url)
defer resp.Body.Close()
if resp.StatusCode != 200 {
panic("Server returning error code: " + resp.Status)
}
body, _ := io.ReadAll (resp.Body)
for , b := range body {
¢ := strings.ToLower (string (b))
cIndex := strings.Index(alllLetters, c)

if cIndex >= 0 {

f Ind =1
} requency [eIndex] + Updates each character count
in the local frequency slice

}

fmt.Println("Completed:", url)

1t <- £ . .
resu = requency Once it’s finished, the frequency
slice is sent over the channel.

1O

return result

We can now add a main() function that starts a goroutine for each web page and waits
for messages from each output channel. Once we start receiving messages containing
the slices, we can merge them into a final slice. The following listing shows how we can
do this, summing each slice into the totalFrequencies slice.
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Listing 8.14 Main function for the message-passing letter-frequency program

func main() { Creates a slice to contain all output channels
results := make([]<-chan [lint, 0)
totalFrequencies := make([]int, 26) Creates a slice to store the frequency
for i := 1000; i <= 1030; i++ { 4_‘ for each letter in the English alphabet
Iterates url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcéd.txt", 1)
over each results = append(results, countLetters (url))
output } Creates a goroutine
channel for _, c¢ := range results { for each web page
——>  frequencyResult := <-c and stores the output
for i := 0; i < 26; i++ { channel in the results
totalFrequencies[i] += frequencyResult [i] slice
}
}
for i, c := range allletters { Adds the frequency counts to the
fmt.Printf ("%c-%d ", c, totalFrequencies[i]) total frequencies for each letter
}
}
Receives a message from each output channel
containing the frequencies for one web page

In converting our program to use message passing, we have avoided using mutexes to
control access to shared memory since each goroutine is now only working on its own
data. However, in doing so, we have increased the memory use since we have allocated
a slice for each web page. For this simple application, the memory increase is minimal
because we’re only using a small slice of size 26. For applications that pass structures
containing larger amounts of data, we might be better off using memory sharing to
reduce memory consumption.

824 Communicating efficiently

Message passing will degrade the performance of our application if we are spending
too much time passing messages around. Since we pass copies of messages from one
goroutine to another, we suffer the performance penalty of spending time copying
the data in the message. This extra performance cost is noticeable if the messages are
large or numerous.

One scenario is when the message size is too large. Consider, for example, an image
or video processing application applying various filters on the images concurrently.
Copying huge blocks of memory containing images or videos just to pass them on chan-
nels might greatly reduce our performance. If the amount of data shared is large and
we have performance constraints, we might be better off using memory sharing.

The other scenario is when our executions are very chatty—when concurrent exe-
cutions need to send many messages to each other. For example, we can imagine a
weather forecasting application that uses concurrent programming to speed up its
weather calculations. Figure 8.14 shows how we could split the weather forecasting
area into a grid and distribute the computational work of forecasting the weather for
each grid square to a separate goroutine.
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weather cdlculations for each
grid square can be done
by a separate goroutine

Figure 8.14 Using concurrent executions to speed up weather forecasting

To calculate the weather forecast in each grid square, a goroutine might need infor-
mation from calculations in all the other grids. Each goroutine might need to send
and receive partial calculation results from all the other goroutines, and this process
might have to be repeated multiple times until the forecasting calculations converge.
Our made-up algorithm, running in each goroutine, might look like this:

Calculate partial results for the goroutine’s grid square.

Send partial results to all other goroutines, each working on its own grid
square.

Receive partial results from every other goroutine, and include them in the
next calculation.

Repeat from 1 until the calculation is fully complete.

Using message passing for such a scenario would mean that we would be sending a
huge number of messages on every iteration. Every goroutine would have to send its
partial results to all other goroutines and then receive the other grid results from
every goroutine. In this scenario, our application would end up spending a lot of time
and memory to copy and pass the values around.

In such scenarios, we are likely better off using memory sharing. For example, we
could allocate a shared two-dimensional array space and let the goroutines read each
other’s grid results, using the appropriate synchronization tools, such as readers—
writer locks.

Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.
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1 In listing 8.15, we have two goroutines. The generateTemp () function simulates
reading and sending the temperature on a channel every 200 ms. The output-
Temp () function simply outputs a message found on a channel every 2 seconds.
Can you write a main() function, using a select statement, that reads messages
coming from the generateTemp () goroutine and sends only the latest tempera-
ture to the outputTemp() channel? Since the generateTemp() function outputs
values faster than the outputTemp () function, you’ll need to discard some values
so that only the most up-to-date temperature is displayed.

Listing 8.15 Latest temperature exercise

package main

import (
n fmtll
"math/rand"
n time"

)

func generateTemp () chan int {
output := make (chan int)
go func() {
temp := 50 //fahrenheit
for {
output <- temp
temp += rand.Intn(3) - 1
time.Sleep (200 * time.Millisecond)

}
0

return output

}

func outputTemp (input chan int) {
go func() ({
for {
fmt.Println ("Current temp:", <-input)
time.Sleep(2 * time.Second)

10O

2 In listing 8.16, we have a goroutine in the generateNumbers () function that out-
puts random numbers. Can you write a main() function using a select state-
ment that continuously consumes from the output channel, printing the output
on the console until 5 seconds have elapsed from the start of the program?
After 5 seconds, the function should stop consuming from the output channel,
and the program should terminate.
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Listing 8.16 Stop-reading-after-5-seconds exercise

package main

import (
"math/rand"
"time"

)

func generateNumbers () chan int
output := make (chan int)
go func() {
for {
output <- rand.Intn(10)
time.Sleep (200 * time.Millisecond)

}
1O

return output

2 Consider listing 8.17 containing the player () function. This function creates a
goroutine simulating a player in a game moving along a two-dimensional plane.
The goroutine returns the movements at random times by writing Up, DOWN, LEFT,
or RIGHT on an output channel. Create a main() function that creates four player
goroutines and outputs on the console all movements from the four players. The
main () function should terminate only when there is one player left in the game.
Here is an example of what the output should look like:

Player 1: DOWN

Player 0: LEFT

Player 3: DOWN

Player 2 left the game. Remaining players: 3
Player 1: UP

Player 0: LEFT
Player 3 left the game. Remaining players: 2
Player 1: RIGHT

Player 1: RIGHT
Player 0 left the game. Remaining players: 1
Game finished

Listing 8.17 Simulating game players

package main

import (
n fmt n
"math/rand"
"time"
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func player () chan string {

}

output := make (chan string)
count := rand.Intn(100)
move := []String{"UP", "DOWN", "LEFT", "RIGHT"}

go func() {

defer close (output)

for i := 0; i < count; i++ {
output <- move[rand.Intn(4)]
d := time.Duration (rand.Intn(200))

time.Sleep(d * time.Millisecond)

}

1O

return output

Summary

When multiple channel operations are combined using the select statement,
the operation that is unblocked first gets executed.

We can have non-blocking behavior on a blocking channel by using the default
case on the select statement.

Combining a send or receive channel operation with a Timer channel on a
select statement results in blocking on a channel up to the specified timeout.
The select statement can be used not just for receiving messages but also for
sending.

Trying to send to or receive from a nil channel results in blocking the execution.
Select cases can be disabled when we use nil channels.

Message passing produces simpler code that is easier to understand.

Tightly coupled code results in applications in which it is difficult to add new
features.

Code written in a loosely coupled way is easier to maintain.

Loosely coupled software with message passing tends to be simpler and more
readable than using memory sharing.

Concurrent applications using message passing might consume more memory
because each execution has its own isolated state instead of a shared one.
Concurrent applications requiring the exchange of large chunks of data might
be better off using memory sharing because copying this data for message pass-
ing may greatly degrade performance.

Memory sharing is more suited for applications that would exchange a huge
number of messages if they were to use message passing.
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This chapter covers

Introducing communicating sequential
processes

Reusing common channel patterns

Taking advantage of channels being
first-class objects

Working with channels requires a different way of programming than when using
memory sharing. The idea is to have a set of goroutines, each with its own internal
state, exchanging information with other goroutines by passing messages on Go’s
channels. In this way, each goroutine’s state is isolated from direct interference by
other executions, reducing the risk of race conditions.

Go’s own mantra is not to communicate by shared memory but to instead share
memory by communicating. Since memory sharing is more prone to race condi-
tions and requires complex synchronization techniques, we should avoid it when
possible and instead use message passing.

In this chapter, we will start by discussing communicating sequential processes
(CSP) and then move on to look at the common patterns used when using message
passing with channels. We’ll finish this chapter by demonstrating the value of treating

187

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



188

9.1

CHAPTER 9  Programming with channels

channels as first-class objects, meaning that we can pass channels as function arguments
and receive them as function return types.

Communicating sequential processes

In previous chapters, we discussed a model of concurrency using goroutines, shared
memory, and primitives, such as mutexes, condition variables, and semaphores. This
is the classic way to model concurrency. The main criticism of this model is that for
many applications, it is too low-level.

The SRC model

Using shared memory with concurrent primitives, such as mutexes, is sometimes
referred to as the SRC model. The name comes from a paper by Andrew D. Birrell titled
“An Introduction to Programming with Threads” (Systems Research Center, 1989).
The paper is a popular introduction to concurrent programming, using threads with
shared memory, and synchronizing with concurrency primitives.

Programming with a low-level model of concurrency means that as programmers, we
need to work harder to manage the complexity and reduce bugs in our software. We
don’t know when a thread of execution will be scheduled by the operating system, and
this creates a non-deterministic environment—instructions are interleaved without us
knowing beforehand the order of execution. This non-determinism, combined with
memory sharing, creates the potential for race conditions. To avoid these, we must
keep track of which execution is accessing the memory at the same time as other exe-
cutions, and we need to restrict this access using synchronization primitives such as
mutexes or semaphores.

Programming with such low-level tools for concurrency, when combined with mod-
ern software development teams and ever-increasing business complexity, leads to
buggy, complex, and high-maintenance code. Software containing race conditions is
difficult to debug because race conditions are tricky to reproduce and test. In some
industries and applications, such as health and infrastructure software, code reliability
is of critical importance (see figure 9.1). For these applications, it is hard to prove that
concurrent code written in this manner is correct due to its non-deterministic nature.

Tower, we seem to
have a race condition on our

fuelindicator. It's showing
-2147483648 gdllons!

Figure 9.1 Proving that software
is correct is important for critical
applications.
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Avoiding interference with immutability

One way to greatly reduce the risk of race conditions is to not allow our programming
to modify the same memory from multiple concurrent executions. We can restrict this
by making use of immutable concepts when we are sharing memory.

DEFINITION Immutable literally means unchangeable. In computer program-
ming, we use immutability when we initialize structures without providing any
way to modify them. When the programming requires changes to these struc-
tures, we create a new copy of the structure containing the required changes,
leaving the old copy as it is.

If our threads of execution only share memory containing data that is never updated,
we can rest assured that there are no data race conditions. After all, most race condi-
tions happen because multiple executions write to the same memory locations at the
same time. If an execution needs to modify shared data, such as a variable, it can
instead create a separate, local copy with the updates needed.

Creating a copy when we need to update shared data leaves us with a problem:
How do we share the new, updated data that is now in a separate location in memory?
We need a model for managing and sharing this new, modified data. This is where
message passing and CSP come in handy.

Concurrent programming with CSP

A different, higher-level model of concurrency was proposed by C.A.R Hoare in his
1978 article “Communicating Sequential Processes” (https://www.cs.cmu.edu/~crary/
819-f09/Hoare78.pdf). CSP, short for communicating sequential processes, is a formal lan-
guage used to describe concurrent systems. Instead of using memory sharing, it is
based on message passing via channels. Ideas and concepts from CSP have been
adopted for concurrency models in programming languages and frameworks such as
Erlang, Occam, Go, Scala’s Akka framework, Clojure’s core.async, and many others.
In CSP, processes communicate with each other by exchanging copies of values.
Communication is done through named unbuffered channels. A CSP process is not to
be confused with an OS process (the ones we discussed in chapter 2); rather, a CSP pro-
cess is a sequential execution, which has its own isolated state, as shown in figure 9.2.

i_solcn‘ed state
— — l
— e

¥

incoming message

outgoing message Figure 9.2 A sequential process

execution communicating with others

channels
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The key difference when using the CSP model is that executions are not sharing mem-
ory. Instead, they pass copies of data to each other. Like when using immutability, if
each execution is not modifying shared data, there is no risk of interference, and thus
we avoid most race conditions. If each execution has its own isolated state, we can
eliminate data race conditions without needing to use complex synchronization logic
involving mutexes, semaphores, or condition variables.

Go implements this model with the use of goroutines and channels. Just like in the
CSP model, Go’s channels are synchronized and unbuffered by default. One key dif-
ference between the CSP model and Go’s implementation is that in Go, channels are
first-class objects, meaning we can pass them around in functions or even in other
channels. This gives us more programming flexibility. Instead of creating a static
topology of connected sequential processes, we can instead create and remove chan-
nels at runtime, depending on our logic needs.

CSP in other languages

Many other languages implement some aspects of the CSP model. For example, in
Erlang, processes communicate with each other by sending messages. However, in
Erlang, there is no notion of a channel, and the messages sent are not synchronous.

In Java and Scala, the Akka framework uses an Actor model. This is a message-passing
framework in which units of execution are called actors. Actors have their own isolated
memory space and pass messages to each other. Unlike in CSP, there is no notion of
channels, and message passing is not synchronous.

Reusing common patterns with channels

When we use message passing with channels in Go, there are two main guidelines to
follow:

Try to only pass copies of data on channels. This implies that you shouldn’t pass
direct pointers on channels in most cases. Passing pointers can result in multi-
ple goroutines sharing memory, which can create race conditions. If you have
to pass pointer references, use data structures in an immutable fashion—create
them once, and don’t update them. Alternatively, pass a reference via a chan-
nel, and then never use it again from the sender.

As much as possible, try not to mix message passing patterns with memory sharing.
Using memory sharing together with message passing might create confusion
as to the approach adopted in the solution.

Let’s now look at some examples of common concurrency patterns, best practices,
and reusable components to understand how we can apply some of the CSP ideas to
our applications.
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Quitting channels

The first pattern we will examine is having a common channel that instructs gorou-
tines to stop processing messages. In the previous chapter, we saw how we can use Go’s
close (channel) call to notify a goroutine that no more messages are coming. The
goroutine can then terminate its execution. But what should we do if our goroutine is
consuming from more than one channel? Should we terminate execution when we
receive the first close () call or when all the channels are closed?

One solution is to use a quit channel together with the select statement. Figure
9.3 shows an example of a goroutine that generates numbers until it is instructed to
stop on another quit channel. The goroutine on the right receives 10 of these num-
bers and then calls close (channel) on the quit channel, instructing the number gener-
ation to stop.

quit channel -.....
select }
stop generating when .-~ close quit
quit channel is closed ~ { | channel

>, D 5 d0o o 3"V am
@ ge;';é;q‘l'e receive 10 @

numbers numbers

main
goroutine

printNumbers()
goroutine

Figure 9.3 Using the quit channel to stop a goroutine’s execution

Let’s start by implementing the goroutine that receives and prints the numbers. List-
ing 9.1 shows a function accepting both an input numbers channel and a quit channel.
The function simply takes 10 items from the numbers channel and then closes the quit
channel. The data type we use for the quit channel does not really matter, since no
data is ever sent on it except the close signal.

Listing 9.1 Prints 10 numbers and then closes the quit channel

package main
import "fmt"
func printNumbers (numbers <-chan int, quit chan int) {
go func() {
for i := 0; i < 10; i++ { Consumes 10 items from

fmt.Println (<-numbers) the numbers channel
1

close (quit) <—— Closes the quit channel
1O
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Next, let’s look at generating a stream of numbers on a channel to be consumed by
our previous function. In our number stream, we can write the triangular number
sequence shown in figure 9.4.

g Bd Cagal By g ez

+2 +

+5 +6 +7 +8 49
P93 A S A N3 10 e Sx 15, 21, 28, 36, U5

Figure 9.4 Generating a triangular number sequence

In listing 9.2, we have the main() goroutine creating the numbers and quit channels
and calling the printNumbers () function. We can then continue generating the num-
bers and sending them on the numbers channel until the select statement tells us that
the quit channel has unblocked. Once the quit channel has unblocked, we can termi-
nate the main () goroutine.

Listing 9.2 Generating numbers until the quit channel is closed

func main() {
numbers := make (chan int) Creates the numbers
quit := make(chan int) and quit channels
printNumbers (numbers, quit)
next := 0 Calls the printNumbers()
for i := 1; ; i++ { function, passing the channels
Generates pext += 1
the next select { Sends the number on the numbers channel
triangular case numbers <- next:
number case <-quit: When the quit channel is

fmt.Println("Quitting number generation")
return

unblocked, outputs a message
and terminates the execution

NOTE We are passing copies of the numbers on the channel. We are not shar-
ing any memory because the goroutine has its own isolated memory space.

None of the variables used in the goroutines are being shared. For example, in listing
9.2, the next variable stays local on the main() function’s stack. Running listings 9.1
and 9.2 together, we get the following result:

$ go run closingchannel.go
1
3
6
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10
15
21
28
36
45
55
Quitting number generation

Pipelining with channels and goroutines

Let’s now look at a pattern of connecting goroutines to form an execution pipeline.
We can demonstrate this with an application that processes the text contents of web
pages. In chapters 3 and 4, we used a concurrent memory-sharing application that
downloaded text documents from the internet and counted the frequencies of char-
acters. In the following section, we will develop a similar application that uses message
passing via channels instead of memory sharing.

The first step in our application is to generate URLs of web pages that we can
download later. We can have a goroutine generate several URLs and send them on a
channel to be consumed (see figure 9.5). For starters, we can simply print out the
URLSs on the console from our main () goroutine. Once we’'re done, the goroutine gen-
erating the URLs will close the output channel to notify the main() goroutine that
there aren’t any more web pages to process.

| URLs console
close channel
“oi O
S |
R
. v
.-quit channel
generateUrls() e
QA L Figure 9.5 Generating URLs
“u and printing them out

Listing 9.3 shows an implementation of the generateUrls() function, which creates a
goroutine that generates URL strings on an output channel. The output channel is
returned by the function. The function also accepts a quit channel, which it listens to
in case it needs to stop generating URLs earlier. We’ll adopt a common pattern where
we pass the input channel as a function argument and return the output channel (the
generateUrls () function doesn’t have any input channels). This allows us to easily plug
these goroutines together in the form of a pipeline. In our implementation, just as in
chapter 3, we’re using documents obtained from https://rfc-editor.org. This provides
us with static online text documents that have predictable web addresses.
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Listing 9.3 Generating URLs from a goroutine

package main

Accepts the quit channel

import "fmt"
P and returns the output

func generateUrls(quit <-chan int) <-chan string { channel
urls := make(chan string)
go func() { Creates the output channel
Once defer close (urls)
complete, for i := 100; i <= 130; i++ {
closes the url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcsd.txt", i)
output select {
channel case urls <- url:

Creates
the quit
channel

Writes 50 URLs to

case <-quit: the output channel

return
}

}
10O
return urls <—— Returns the output channel

Next, let’s complete our simple application by writing the main() function, shown in
listing 9.4. In the main() function, we create the quit channel and then call
generateUrls (), which returns the goroutine’s output channel (called results in this
example). We then listen to both the output and the quit channel. We continue writ-
ing messages from the output channel to the console until the quit channel is closed,
at which point we terminate the application by returning on the main() function.

Listing 9.4 main () function for printing output

func méllin 0 A . Calls the function to start the
quit := make(chan int) goroutine returning URLs on
defer close(quit) the results channel
results := generateUrls(quit)
for result := range results Reads all the messages

fmt.Printl 1t)

) mt.Println(resu from the results channels

} Prints the results

Running listings 8.7 and 8.8 together, we get the following output:

$ go run generateurls.go

https://rfc-editor.org/rfc/rfcl00.txt
https://rfc-editor.org/rfc/rfclOl.txt
https://rfc-editor.org/rfc/rfcl02.txt
https://rfc-editor.org/rfc/rfcl03.txt
https://rfc-editor.org/rfc/rfclO4.txt

Next, let’s write the logic to download the contents of these pages. For this task, we just
need a goroutine thataccepts a stream of URLs and outputs the text contents into another
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output stream. This goroutine can be plugged into the output of the generateUrls ()
goroutine and the input of the main () goroutine, as shown in figure 9.6.

web page [

® ey content
e g % oo
® e O &
generateUrls() downloadages() - quit channel oin( )

Figure 9.6 Adding a goroutine that downloads web pages to our pipeline

Listing 9.5 shows an implementation of the downloadpages () function. It accepts both
the quit and urls channels and returns an output channel containing the downloaded
pages. The function creates a goroutine that uses the select statement to download
each page until the urls channel or the quit channel is closed. The goroutine checks
to see whether the input channel is still open by reading the moreData Boolean flag that
is returned when it reads the next message. When this returns false, meaning the
channel has been closed, we stop iterating on the select statement.

Listing 9.5 Goroutine to download pages (imports omitted for brevity)

func downloadPages (quit <-chan int, urls <-chan string) <-chan string

pages := make (chan string)
Closes go func() { Creates the output channel, which

the output defer close (pages) will contain downloaded web pages
“ﬁniraﬂ moreData, url := true, ""
finished | [ for moreData { Updates variables with a new message
select { and flag to show whether there is
case url, moreData = <-urls: more data
Continues if moreData {
selecting if resp, _ := http.Get (url) ml:-en a new
there is more if resp.StatusCode != 200 { i message
. data I(lm thel panic("Server’s error: " + resp.Status) :ow‘:li’ads the
input channe
P ) . 11 page and sends
body, _ := 1?.ReadA (resp.Body) the text on the
pages <- string (body) pageschannd
resp.Body.Close ()

case <-quit:

When a message arrives on the quit
return
}

channel, terminates the goroutine
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10
return pages <—— Returns the output channel

WARNING In listing 9.5, we're passing a copy of the web document on the
channel. We can do this since the web pages are only a few KB in size. Using
message passing for large objects, such as images or video, in this fashion
might have a detrimental effect on performance. Using a memory-sharing
architecture might be more suitable for applications sharing large amounts of
data and requiring high performance.

We can now connect this new goroutine to our pipeline easily since it accepts the same
channel datatype as the output of the generateUrls () function. It also returns the same
output channel datatype as the one that our main () goroutine can use. In the following
listing, we change the main () function to also call the downloadPages () function.

Listing 9.6 Modified main () function to call downloadPages ()

func main() {
quit := make(chan int) Adds the new goroutine
defer close(quit) that downloads pages to
results := downloadPages (quit, generateUrls (quit)) our existing pipeline
for result := range results

fmt.Println (result)

}

When we run the preceding main () function, we get the text from the web pages, and
they are printed on the console. Printing out our text pages is not very useful, so
instead we can add another goroutine on our pipeline to extract words from the
downloaded text.

Following this pattern of accepting the input channel as a function input parame-
ter and returning the output channel makes building pipelines easy. We just need to
create a new goroutine that extracts the words and then connect it to our pipeline, as
shown in figure 9.7.

Listing 9.7 shows the implementation of the extractWords () function. The same
pattern as for downloadPages () is used. The function accepts an input channel contain-
ing texts, and it returns an output channel containing all the words found in the
received texts. It extracts the words from the document by using regular expres-
sions (regex).

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



9.2 Reusing common patterns with channels 197

@)
s 9
52 ol
@ Lg
generateUrls() downloadPages() extractWords() main()

quit channel-, =
p;

Figure 9.7 Adding a goroutine to extract words from pages

Just like in listing 9.6, we continue reading from the input channel until we get a close
on the input or on the quit channel. We do this by using the select statement and
reading the moreData flag on the input channel.

Listing 9.7 Extracting words from text pages (imports omitted for brevity)

func extractWords (quit <-chan int, pages <-chan string) <-chan string

words := make (chan string)
go func() { Creates the output channel, which
defer close (words) will contain extracted words
Creates wordRegex := regexp.MustCompile( [a-zA-Z]+")
a regular moreData, pg := true, "" ) )
expression for moreData { Updates variables with a new
to extract select { message and flag to show
the words case pg, moreData = <-pages: whether there is more data
if moreData {
for , word := range wordRegex.FindAllString(pg, -1)
words <- strings.ToLower (word)
1 When a new text page
} When a message arrives on the is received, extracts all
case <-quit: quit channel, terminates goroutine words with the regex
return and sends them on the
} output channel

}
1O
return words <—— Returns the output channel

Again, we can modify our main () function to include this new goroutine in our pipe-
line, as shown in listing 9.8. Each function in the pipeline is a goroutine that takes the
quit channel and an input channel and returns an output channel that results are

sent to. Using the quit channel will later allow us to control the flow of different parts
of the pipeline.
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Listing 9.8 Adding extractWords () to the pipeline

func main() {
quit := make(chan int)
defer close(quit)
results := extractWords(quit, downloadPages (quit, generateUrls (quit)))
for result := range results {
fmt.Println(result)
}

Running the previous listings with the new extractWords () in our pipeline, we get a list
of words contained in the texts:

$ go run extractwords.go
network

working

group

b
karp

request
for
comments

NOTE This pipeline pattern gives us the ability to easily plug executions
together. Each execution is represented by a function that starts a goroutine
accepting input channels as arguments and returning the output channels as
return values.

When running listing 9.8, the web pages are downloaded sequentially, one after the
other, making execution quite slow. Ideally, we’ll want to speed this up and do the
downloads concurrently. This is where the next pattern (fan-in and fan-out) comes in
handy.

Fanning in and out

In our example application, if we want to speed things up, we can perform the down-
loads concurrently by load-balancing the URLSs to multiple goroutines. We can create
a fixed number of goroutines, each reading from the same URL input channel. Each
one of the goroutines will receive a separate URL from the generateUrls() goroutine,
and they can perform the downloads concurrently. The downloaded text pages can
then be written on each goroutine’s own output channel.

DEFINITION In Go, a fan-out concurrency pattern is when multiple goroutines
read from the same channel. In this way, we can distribute the work among a
set of goroutines.

Figure 9.8 shows how we can fan out the URLSs to multiple downloadpPage () goroutines,
each doing a different download. In this example, the concurrent goroutines are
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Figure 9.8 Load-balancing requests by using a fan-out pattern with the connection to extractWords ()
missing

load-balancing the URLs sent from the generateUrls() goroutine; when a download-
Page () goroutine is free, it will read the next URL from the shared input channel. This
is similar to having multiple baristas serving customers from a single queue at your
local coffee shop.

NOTE Since concurrent processing is non-deterministic, some messages will
be processed quicker than others, resulting in messages being processed in an
unpredictable order. The fan-out pattern makes sense only if we don’t care
about the order of the incoming messages.

In our code, we can implement this simple fan-out pattern by creating a set of down-
loadPages () goroutines and setting the same channel as an input channel parameter.
This is shown in the following listing.

Listing 9.9 Fanning out to multiple downloadPages () goroutines

const downloaders = 20

func main() {

quit := makewl,lan int) Creates a slice to store output
deier dose(qu;tzj Ls (quit) channels from the download
urls := generateUrls (qui oroutines

pages := make ([]<-chan string, downloaders) &

for i := 0; 1 < downloaders; i++ { Creates 20 goroutines to download web
| pages[i] = downloadPages(quit, urls) pages and stores the output channels
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The fan-out pattern in our application has created a problem: the outputs of our
download goroutines are in separate channels. How can we connect them to the sin-
gle input channel of our next stage: the extractWords () goroutine?

One solution is to change the downloadpages () goroutines and make them all out-
put on the same channel. For this, we would have to pass the same output channel to
each downloader. This would break our pattern of having easily pluggable units where
each one accepts input channels as arguments and returns the output channels as
return values.

To keep to this pattern, we need a mechanism that merges the output messages from
the different channels into a single output channel. We can then plug the single output
channel into the extractWords () goroutine. This is what is called the fan-in pattern.

DEFINITION In Go, a fan-in concurrency pattern occurs when we merge the
content from multiple channels into one.

Since goroutines are very lightweight, we can implement this fan-in pattern as a single
unit by creating a set of goroutines, one per output channel, and having each gorou-
tine feed a common channel, as shown in figure 9.9. Each goroutine listens to mes-
sages from the output channel, and when a message arrives, it simply forwards it to the
common channel.

when dll goroutines are done, wakes up
® and closes the output channel

’ (single channel)
downloadPages() wait group
- - quit channel-,
g

Figure 9.9 Merging channels by using a fan-in

Having multiple goroutines all feeding into a single common channel creates a prob-
lem. When we have a one-to-one input-to-output channel goroutine, the channel-
closing strategy is simple: close the output after the input channel has been closed.
When we have a many-to-one fan-in scenario, we must make a decision about when to
close the common channel. If we continue with the same approach of closing the
channel when a goroutine notices that the channel it’s consuming from has been
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closed, we might end up closing the channel too soon. Another goroutine might still
be outputting messages.

The solution is to only close the common channel when all the goroutines have
noticed that the channels from which they are consuming have been closed. As shown
in figure 9.9, we can use a waitgroup for this. Each goroutine in the fan-in group
marks the waitgroup as done after it has sent its last message. We have a separate
goroutine that calls wait () on this waitgroup, which will have the effect of suspending
its execution until all the fan-in goroutines are done. Once this goroutine resumes, it
will close the output channel. This technique is shown in the following listing.

Listing 9.10 Implementing a fan-in function

package listing9 10

import (
n sy-ncll
)
func FanIn[K any] (quit <-chan int, allChannels ...<-chan K) chan K {
wg := sync.WaitGroup{}
wg.Add (len(allChannels)) Creates a waitgroup, setting the size to be
Creates output := make (chan K) equal to the number of input channels
the output or _, c := range allChannels { .
chan[:lel go func (channel <-chan K) { Starts.a gotm:tme t;or
defer wg.Done () every input channel
Once the for i := range channel ({
goroutine select { Forwards each received message
terminates case output <- i: to the shared output channel
marks the case <-quit:
waitgroup return If quit channel is closed,
as done } terminates the goroutine
}
} (e) <——— Passes one input channel to the goroutine
}
go func () . { Waits for all the goroutines to finish
wg.-Wait () and then closes the output channel
close (output)
1O

return output <—— Returns the output channel

We can now connect our fan-in pattern to our application and include it in the pipe-
line. Listing 9.11 modifies our main() function to include the fanIn() function from
listing 9.10. The fanin() function accepts the list of channels containing the web
pages and returns a common aggregated channel, which we then feed into our
extractWords () function.
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Listing 9.11 Adding the fanIn () function to the pipeline

const downloaders = 20

func main() {

quit := make (chan int)

defer close(quit)

urls := generateUrls(quit)

pages := make([]<-chan string, downloaders) Joins all the pages

for i := 0; i < downloaders; i++ { channels into one channel
pages [i] = downloadPages (quit, urls) using the fan-in pattern

}

results := extractWords(quit, listing9 10.FanIn(quit, pages...))

for result := range results {

fmt.Println (result)

}

When we run our new implementation, it runs a lot faster because the downloads are
being performed concurrently. As a side effect of doing the downloads together, the
order of the extracted words is different every time we run the program.

Flushing results on close

We haven’t really done anything interesting with our URL download application,
apart from extracting the words. What if we use the downloaded web pages for some-
thing useful? How about trying to find the 10 longest words in these text documents?

This task is easy if we continue to follow our pipeline-building pattern. We just
need to add a new goroutine that accepts an input channel and returns an output
one. In figure 9.10, this new goroutine, called longestWords (), is inserted just after our
extractWords () goroutine.

when input channel is closed,
flush top 10 longest words

® ®
> =9
_=word =longest words
@
g e_ '- D D
longestWords() main()

quit channel -,
p

Figure 9.10 Adding the longestWords () goroutine to find the 10 longest words in our texts
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This new longestlords () goroutine is slightly different from the other goroutines we
have developed in our pipeline. It accumulates a set of unique words in its memory.
Once it has read all the words from the web pages and receives the close message, it
will review this set and output the 10 longest ones. Our main() goroutine will then
print it on the console.

The implementation of longestWords () is shown in listing 9.12. In this function, we
use a map to store the set of unique words. Since this map is isolated from our concur-
rent execution and only our longestWords () goroutine is accessing it, we do not need
to worry about data race conditions. We also store the words in a separate slice to
make sorting easier.

Listing 9.12 Goroutine to output longest words (imports omitted for brevity)

func longestWords (quit <-chan int, words <-chan string) <-chan string {

longWords := make (chan string)

go func() { Creates a map to
defer close (longWords) store unique words
uniqueWordsMap := make (map [string]bool)

uniqueWords := make([]string, 0)
moreData, word := true, "" Creates slices to store the list of

for moreData { unique words for easy sorting later
select {
case word, moreData = <-words:
if moreData && !uniqueWordsMap [word]

If the channel is not un%queWordsMap[word] = Frue
closed and the word uniqueWords = append(uniqueWords, word)
is a new one, adds } )
the new word to the | ©35€ <-quit: Once the input
map and list return channel is closed,
} sorts the unique
} words list by
sort.Slice (uniqueWords, func(a, b int) bool word length
return len(uniqueWords[a]l) > len(uniqueWords [b])
I3
longWords <- strings.Join(uniqueWords([:10], ", ")
1O

return longWords ?nce the input channel is closed, sends a string
} with the 10 longest words on the output channel

In listing 9.12, the goroutine stores all the unique words on a map and a list. Once the
input channel closes, meaning there are no more messages, the goroutine sorts the
list of unique words by length. Then, on the output channel, it sends the first 10 items
on the list, which are the 10 longest words. In this way, we flush the results after we
have collected all the data.

We can now connect this new component to our pipeline in the main() function.
In the following listing, the longestiiords () goroutine consumes from the output chan-
nel of extractWords ().
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Listing 9.13 Adding longestWords () to our pipeline

func main() {

quit := make(chan int)

defer close(quit)

urls := generateUrls(quit)

pages := make([]<-chan string, downloaders) Connects the

for i := 0; i < downloaders; i++ { longestWords()
pages[i] = downloadPages (quit, urls) goroutine to the

} pipeline just after

results := longestWords (quit, extractWords()

extractWords (quit, listing8 14.FanIn(quit, pages...)))

fmt.Println("Longest Words:", <-results) . .
Prints the single message

containing the longest words

When we run the listings together, the pipeline will find the longest words on the
downloaded documents and output them on the console. Here’s the output:

$ go run longestwords.go

Longest Words: interrelationships, misunderstandings, telecommunication,
administratively, implementability, characteristics, insufficiencies,
implementations, synchronization, representatives

Broadcasting to multiple goroutines

What if we want to find out more stats from our download pages? For this scenario,
let’s say that in addition to finding the longest words, we want to find which words
occur most frequently.

For this scenario, we’ll feed the output of extractWords() to two goroutines: the
existing longestWords () and an additional one called frequentiords (). The pattern of
the new function will be the same as that of longestWords (). It will store the frequency
of each unique word, and when the input channel closes, it will output the top 10
most often-occurring words.

In the previous section, we used the fan-out pattern when we needed to feed the
output of one computation to multiple concurrent goroutines. We load-balanced the
messages, with each goroutine receiving a distinct subset of the output data. That pat-
tern will not work here, since we want to send a copy of each output message to both
the longestiords () and frequentWords () goroutines.

Instead of fan-out, we can use a broadcast pattern—one that replicates messages to
a set of output channels. Figure 9.11 shows how we can use a separate goroutine that
broadcasts to multiple channels. In our pipeline, we can connect the outputs of the
broadcast to the inputs of both the frequentWords () and longestWords () goroutines.

To implement this broadcast utility, we just need to create a list of output channels
and then use a goroutine that writes every received message to each channel. In listing
9.14, the broadcast function accepts the input channel and an integer, n, specifying
the number of outputs that are needed. The function then returns these n output
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Figure 9.11 Connecting a concurrent frequentWords () goroutine to our pipeline

quit channel -
¥

channels in a slice. In this implementation, we’re using generics so that the broadcast
can be used with any channel data type.

Listing 9.14 Broadcasting to multiple output channels
package listing9 14

func Broadcast [K any] (quit <-chan int, input <-chan K, n int) []Jchan K

outputs := CreateAll [K] (n)
go func() { Creates n output chann.els of type K.(see
defer CloseAll (outputs. ..) the next listing for the implementation)

var msg K

Once complete, ~moreData := true
closes all output ~ for moreDataf Reads the next message
channels (see the select { QJ from the input channel
next listing for the case msg, moreData = <-input:
implementation) if moreData {

for _, output := range outputs {

If the input channel

output <- msg hasn’t been closed,

1 writes the message to
1 each output channel
case <-quit:
return

}
}
1O

return outputs <—— Returns the set of output channels
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NOTE In the broadcast implementation in listing 9.14, we read the next mes-
sage only after the current message has been sent to all the channels. A slow
consumer from this broadcast implementation would slow all consumers to
the same rate.

The previous listing makes use of two functions, Createall () and Closeall (), that cre-
ate and close a set of channels, respectively. The following listing shows their imple-
mentation.

Listing 9.15 The CreateAll () and CloseAll () functions

func CreateAll[K any] (n int) [lchan K { <—— Creates n channels of type K

channels := make([]lchan K, n)
for i, _ := range channels (
channels[i] = make (chan K)

}

return channels

}

func CloseAll [K any] (channels ...chan K) { <+—— Closes all the channels
for _, output := range channels {
close (output)
}

We can now write our frequentWords () function, which will identify the top 10 most
frequently occurring words in our downloaded pages. The implementation in the fol-
lowing listing is similar to the longestWords () function. This time, we’re using a map,
called mostFrequentiords, to count each word’s occurrence. After the input channel is
closed, we sort the word list by the occurrence count in the map.

Listing 9.16 Finding the most frequent words (imports omitted for brevity)

func frequentWords (quit <-chan int, words <-chan string) <-chan string {

mostFrequentWords := make (chan string)
go func() { Creates a map to store the frequency
defer close (mostFrequentWords) QJ occurrence of each unique word
fregMap := make (map[string]int)
fregqList := make([]lstring, 0)
moreData, word := true, "" q—‘ Creates a slice to store a list of unique words
for moreData ({
select {
C case word, moreData = <-words: If the message contains
onsumes the . .
next message if m?reData { a new word, a.dds it to
on the input if fregMap[word] == 0 { the slice of unique words
channel freqList = append(freqgList, word)

}

f M d =1
reqMap [word] + Increments the
count of the word

case <-quit:
return
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Writes the 1
10 most }
ﬁequent sort.Slice(freqgList, func(a, b int) bool { .
words onto return fregMap[fregList[al]l > fregMap [freqList [b]] Once all input
the output 3] messages are
channel mostFrequentWords <- strings.Join(freqList[:10], ", ") consymed,sons
IX0) the list of words
return mostFrequentWords by the occurrence
count

Now we can wire in the frequentiWords () unit with the broadcast utility we developed
previously. In the following listing, we call the Broadcast() function to create two
output channels and make it consume from extractwords (). Then we use the two out-
put channels from the broadcast as inputs for the longestWords () and frequentWords ()
goroutines.

Listing 9.17 Wiring in the broadcast pattern to find the most frequent and longest words

const downloaders = 20
func main() {
quit := make (chan int)

defer close(quit) .
4 Creates a goroutine

urls := generateUrls(quit .
crge:rt::ttllr:: pages :=gmake( [1 <—cha(3 st)ring, downloaders) that will broadcast
for i := 0; i < downloaders; i++ { the contents of the Creates the
most ! - download ! ' 1 words channel to tine ¢
pages [1i] ownloadPages (quit, urls) two output channels goroutine to
find the longest
words := extractWords(quit, listing9 10.FanIn(quit, pages...)) words from the
from the wordsMulti := listing9 14.Broadcast(quit, words, 2) input channel
longestResults := longestWords (quit, wordsMulti[0])
L> frequentResults := frequentWords (quit, wordsMulti[1l])
fmt.Println("Longest Words:", <-longestResults)

fmt.Println("Most frequent Words:", <-frequentResults) Reads the result from
the longestWords()
goroutine and prints it

}

Reads the result from the mostFrequentWords()
goroutine and prints it

Since both the longestWords () and frequentWords () goroutines output only one mes-
sage containing the results, our main() function can just consume one message from
each and print it on the console. The following snippet contains the output when we
run the full pipeline. Not surprisingly, theis the most frequent word:

$ go run wordstats.go

Longest Words: interrelationships, telecommunication, misunderstandings,
implementability, administratively, transformations, reconfiguration,
representatives, experimentation, interpretations

Most frequent Words: the, to, a, of, is, and, in, be, for, rfc

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



208

9.2.6

©)

B

; e—‘" .
extractWords()

CHAPTER 9  Programming with channels

Closing channels after a condition

So far, we haven’t really used the quit channels that we have wired into every gorou-
tine in our application. These quit channels can be used to stop parts of the pipeline
on certain conditions.

In our application, we are reading a fixed number of web pages and then process-
ing them, but what if we wanted to process only the first 10,000 words that we down-
load? The solution is to add another execution that stops a section of our pipeline
after it has consumed a specified number of messages. If we insert this new goroutine,
called Take (n), just after the extractWords() goroutine, we can instruct it to close the
quit channel after receiving a specified number of messages (see figure 9.12). The
Take (n) goroutine will only terminate parts of the pipeline by calling close () on the
quit channel. We can do this by wiring the left part of the pipeline, before the take (n)
goroutine, with a separate quit channel.

@ once countdown hits O, close
N

’ quit and output channels

| S mEoE 2 9

separate

separate quit channel

quit channel
v

Figure 9.12 Adding the Take (n) goroutine to our pipeline

To implement Take(n), we need a goroutine that simply forwards the messages
received from the input to the output channel while keeping a countdown, with every
message forwarded reducing the countdown by 1. Once the countdown is o, the
goroutine closes the quit and output channels. Listing 9.18 shows an implementation
of Take (n), where the countdown is represented by the variable n. The goroutine con-
tinues forwarding messages as long as there is more data, the countdown is greater
than o, and the quit channel hasn’t been closed. It will close the quit channel only if
the countdown hits 0.
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Listing 9.18 Implementing the Take (n) function

package listing9 18

func Take[K any] (quit chan int, n int, input <-chan K) <-chan K
output := make (chan K)
go func() {
defer close (output)

moreData := true Continues forwarding messages as

var msg K long as there is more data and

for n > 0 && moreData { countdown n is greater than 0
select {

case msg, moreData = <-input: <—— Reads the next message from the input
if moreData {
output <- msg <—— Forwards the message to the output

n--
} Reduces the countdown variable n by 1
case <-quit:
return
}
}
if n == 0 { Closes the quit channel if
close (quit) the countdown reaches 0

}
1O

return output

}

We can now add this new component to our pipeline and make it stop the processing
when it reaches a specific word count. The following listing shows how we can modify
our main() function to include the Take (n) goroutine, configured to stop processing
when it reaches the count of 10,000 words.

Listing 9.19 Wiring Take (n) into our pipeline

const downloaders = 20

func main() { Creates a separate quit channel to
make (chan int) be used before the Take(n) function

quitWords :=
quit := make (chan int)
defer close(quit)
urls := generateUrls (quitWords)
pages := make([]<-chan string, downloaders) Creates the Take(n)
for i := 0; i < downloaders; i++ { goroutine with a 10,000
pages [i] = downloadPages (quitWords, urls) countdown, feeding from
} the extractWords() output
words := listing9 18.Take (quitWords, 10000,
extractWords (quitWords, listing9 10.FanIn(quitWords, pages...)))
wordsMulti := listing9 14 .Broadcast (quit, words, 2)
longestResults := longestWords (quit, wordsMulti[0]) Uses a separate quit
frequentResults := frequentWords (quit, wordsMulti[1]) channel for the rest
fmt.Println("Longest Words:", <-longestResults) of the pipeline
fmt.Println ("Most frequent Words:", <-frequentResults)
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Running listing 9.19 results in the word stats being processed only on the first 10,000
words downloaded. Since the downloads are done in parallel, the order of the down-
loaded pages cannot be predicted and might be different every time the application is
run. Thus, the first 10,000 words encountered will vary, depending on which pages get
downloaded first. Here’s the output of one such run:

$ go run wordstatsearlyquit.go

Longest Words: implementations, characteristics, recommendations,
considerations, implementation, effiectiveness, simultaneously,
specifications, irrecoverable, informational

Most frequent Words: the, to, of, is, a, and, be, for, in, not

Adopting channels as first-class objects

In his CSP language paper, C.A.R. Hoare uses an example of generating prime num-
bers up to 10,000 with a list of communicating sequential processes. The algorithm is
based on the sieve of Eratosthenes, which is a simple method for checking whether a
number is prime. The approach in the CSP paper uses a static linear pipeline where
each process in the pipeline filters the multiple of a prime number and then passes it
on to the next process. Because the pipeline is static (it doesn’t grow with the problem
size), it will generate prime numbers only up to a fixed number.

The improvement available in Go over the CSP language that was defined in the
original paper is that channels are first-class objects. This means that a channel can be
stored as a variable and passed around to other functions. In Go, a channel can also
be passed on another channel. This allows us to improve on the original solution by
using a dynamic linear pipeline, one that grows with the problem’s size and that allows
us to generate up to n prime numbers, instead of up to a fixed number.

Origins of the prime numbers pipeline algorithm

Although the solution of using a pipeline to generate prime numbers was mentioned
in the CSP paper, the original idea has been attributed to the mathematician and pro-
grammer Douglas Mcllroy.

Figure 9.13 shows how we can generate prime numbers using a concurrent pipeline. A
number, ¢, is prime if ¢ is not a multiple of all the prime numbers less than c. For
example, to check whether 7 is a prime number, we need to ensure that 7 is not divisi-
ble by 2, 3, or 5. Since 7 is not divisible by any of these, 7 is a prime number. However,
the number 9 is divisible by 3, so 9 is not a prime number.

Checking to see whether a number is prime

To check whether the number c is prime, we only need to check that ¢ is not divisible
by all primes less than the square root of c. However, for this section, we’re simplifying
the requirements to keep the listings simpler and shorter.
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if number is a multiple of a prime, discard;  if number is not a multiple of a prime and there

) ) otherwise, pass to the right (via channel) is no right, create a new prime multiple fitter
goroutine filtering

non-multiples of 2

seque;ﬁial numbers
starting from 2

... discarded l‘\._ discarded

“... discarded
multiples of 2 multiples of 3 multiples of 5

Figure 9.13 Checking to see whether a number is a prime by using a pipeline

For our prime-checking pipeline, we can have a goroutine generate candidate sequen-
tial numbers starting from 2. The output of this goroutine will feed into a pipeline
that consists of a chain of goroutines, each filtering out the multiples of a prime num-
ber. A goroutine in this chain is assigned a prime number, p, and it will discard num-
bers that are multiples of p. If a number is not discarded, it is passed on to the right
side of the chain. If it survives all the way to the end, that means we have a new prime
number, and a new goroutine is created with its p equal to the new prime. This process
is shown in figure 9.14.

new prime multiple
pipeline grows to the right with each new prime number filter for prime number 7

<

;’:ﬂg“y/

PdO%0

discarded discarded discarded discarded
multiples of 2 multiples of 3 multiples of 5 multiples of 7

Figure 9.14 When a new prime is found, we start a new goroutine that filters multiples of that new prime.

In our pipeline, when a number passes through all the existing goroutines and is not
discarded, that means we have found a new prime number. The last goroutine in the
pipeline will then initialize a new goroutine at the tail of the pipeline and connect to
it. This new goroutine will become the new tail of the pipeline, and it will filter out the
multiples of the newly found prime. In this way, the pipeline grows dynamically with
the number of primes.
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Having this pipeline grow dynamically with the number of primes shows the
advantage of treating channels as first-class objects, compared to the original channel
in the CSP paper by C.A.R. Hoare. Go gives us the ability to treat channels like normal
variables.

Listing 9.20 implements this prime-filtering goroutine. Upon creation, the gorou-
tine receives its first message on the channel containing the prime number, p, that will
be used for the multiple filtering. Then it listens for new numbers on its input chan-
nel, and it checks to see whether any number received is a multiple of p. If it is, the
goroutine simply discards it; otherwise, it passes the number on to its right channel. If
the goroutine happens to be at the tail of the pipeline, it creates a new right channel
and passes the channel to a newly created goroutine.

Listing 9.20 The primeMultipleFilter () goroutine

package main
import "fmt"

func primeMultipleFilter (numbers <-chan int, quit chan<- int)

Reads var right chan int
the next p := <-numbers Receives the first message containing the prime
number fmt . Println(p) number p on the input channel and prints it
from the for n := range numbers {
input if n%p != 0 {
channel if right == nil {
Discard right . maike .(Chan. int) ) . If the current goroutine has no
scar csl go primeMultipleFilter (right, quit) || yight, it starts a new goroutine
et by } and connects to it with a channel.
number that is right <- n
a multiple of p } Passes the filtered number
to the right channel

}

if right == nil {

1 it . .
close(quit) Closes the quit channel if there are no more numbers

b oelse { , to filter and the goroutine has no right channel
close (right)

} Otherwise, closes right channel

All we need now is to connect our prime multiple filters to a sequential number gen-
erator. We can use the main() goroutine for this task. In listing 9.21, our main() func-
tion starts our first prime multiple filter goroutine with an input channel and then
feeds it sequential numbers from 2 to 100,000. After that, it closes the input channel
and waits for the quit channel to close. In this way, we ensure that the last prime num-
ber is printed before we terminate the main() goroutine.

Listing 9.21 The main () function feeding sequential numbers to the prime filters

func main() { Creates an input channel that will
numbers := make (chan int) feed the prime multiple filters
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Starts quit := make (chan int) <—— Creates a common quit channel
the first go primeMultipleFilter (numbers, quit)
goroutine in for i := 2; i < 100000; i++ { Feeds sequential numbers, starting from
the pipeline, numbers <- 1 2 up to 100,000, onto the input channel
passing the }
numbers and close (numbers) Closes the input channel, signaling
quit channels <-quit that there will be no more numbers
}

Waits for the quit channel to close

Running listings 9.20 and 9.21 together gives us all the prime numbers less than
100,000:

$ go run primesieve.go
2
3
5
7
11
13
99989
99991
9.3 Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.

Write a generator goroutine similar to listing 9.2 that, instead of generating
URL strings, generates an infinite stream of square numbers (1, 4, 9, 16,25 ...)
on an output channel. Here is the signature:

func GenerateSquares(quit <-chan int) <-chan int

In listing 9.18, we developed a take (n) goroutine. Extend the functionality of
this goroutine to implement TakeUntil (£), where £ is a function returning a
Boolean. The goroutine needs to continue consuming and forwarding the mes-
sages on its input channel while the return value of £ is true. Using generics
ensures that we can reuse the Takeuntil (f) function and plug it into many other
pipelines. Here’s the function signature:

func TakeUntil [K any] (f func(K) bool,quit chan int, input <-chan K) <-chan K

Write a goroutine that prints to the console the contents of any message it
receives on a channel and then forwards the message to the output channel.
Again, use generics so that the function can be reused in many situations:

func Print [T any] (quit <-chan int, input <-chan T) <-chan T
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Write a goroutine that drains the contents of its input channel without doing
anything with them. The goroutine simply reads a message and throws it away:

func Drain[T any] (quit <-chan int, input <-chan T)

Connect the components developed in exercises 1 to 4 together in a main()
function using the following pseudocode:

Create quit channel
Drain (quitChannel,
Print (quitChannel,
TakeUntil ({ s <= 1000000 }, quitChannel,
GenerateSquares (quitChannel))))
Wait on quit channel

Summary
Communicating sequential processes (CSP) is a formal language concurrency
model that uses message passing through synchronized channels.
Executions in CSP have their own isolated state and do not share memory with
other executions.
Go borrows core ideas from CSP, with the addition that it treats channels as
first-class objects, which means we can pass channels around in function calls
and even on other channels.
A quit channel pattern can be used to notify goroutines to stop their execution.
Having a common pattern where a goroutine accepts input channels and
returns outputs allows us to easily connect various stages of a pipeline.
A fan-in pattern merges multiple input channels into one. This merged chan-
nel is closed only after all input channels are closed.
A fan-out pattern is where multiple goroutines read from the same channel. In
this case, messages on the channel are load-balanced among the goroutines.
The fan-out pattern makes sense only when the order of the messages is not
important.
With the broadcast pattern, the contents of an input channel are replicated to
multiple channels.
In Go, having channels behave as first-class objects means that we can modify
the structure of our message-passing concurrent program dynamically while the
program is executing.
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Part 3

More concurrency

In this part of the book, we’ll look at more advanced concurrency topics: con-
currency patterns, deadlocking, atomic variables, and futexes.

We’ll start by reviewing some common patterns used to break down problems
into multiple parts that can be executed in parallel, and we’ll see how some pat-
terns are better suited for different types of problems. We’ll also explore pat-
terns such as loop-level parallelism, fork/join, worker pools, and pipelining, and
we’ll discuss the properties of each.

Deadlocks can be a bad side effect of a concurrent system. Deadlocks happen
when we have two or more threads of execution blocking each other in a circu-
lar fashion. We’ll examine some examples of deadlocks, with both memory shar-
ing and message passing, and discuss various options for avoiding and
preventing deadlocks in our programs.

In this book, we’ve looked at the implementations of various concurrency
tools. Here we’ll look at the most primitive of our concurrent tools: the mutex.
We’ll explore how the mutex uses an atomic operation internally, together with
an operating system call, to achieve the best results in terms of performance.
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Concurrency patterns

This chapter covers

10.1

Decomposing programs by task
Decomposing programs by data
Recognizing common concurrency patterns

When we have a job to do and many helping hands, we need to decide how to divide
the work so that it’s completed efficiently. A significant task in developing a concur-
rent solution is identifying mostly independent computations—tasks that do not
affect each other if they are executed at the same time. This process of breaking
down our programming into separate concurrent tasks is known as decomposition.

In this chapter, we shall see techniques and ideas for performing this decompo-
sition. Later, we’ll discuss common implementation patterns used in various con-
current scenarios.

Decomposing programs

How can we convert a program or an algorithm so that it can run more efficiently
using concurrent programming? Decomposition is the process of subdividing a pro-
gram into many tasks and recognizing which of these tasks can be executed concur-
rently. Let’s pick a real-life example to see how decomposition works.

217
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Imagine we are in a car, driving along with a group of friends. Suddenly, we hear
weird noises coming from the front of the car. We stop to check and find that we have
a flat tire. Not wanting to be late, we decide to replace the wheel with the spare
instead of waiting for a tow truck. Here are the steps we need to perform:

Apply the handbrake.
Unload the spare wheel.
Loosen the wheel nuts.
Jack the car off the ground.
Remove the flat tire.

Place the spare tire.
Tighten the nuts.

Lower the car.

Stow the bad tire.

Since we are not alone, we can assign some steps to other people so that we can com-
plete the job more quickly. For example, we can have someone unload the spare tire
while someone else is loosening the wheel nuts. To decide which steps can be done in
parallel with others, we can perform a dependency analysis on the job by drawing a
task dependency graph as shown in figure 10.1.

how to change a flat tire

Jack car remove flat tire stow bad tire
A
loosen wheel nuts .@ A @ Y\
apply handbrake ) B ;

place spare tire

. unload spare tire ¢@K\>
__________________________ %\I

task B depends on A

tighten nuts lower car

Figure 10.1 Task dependency graph for changing a flat tire

By looking at the task dependency graph, we can make informed decisions about how
best to allocate the tasks so we complete the job more efficiently. In this example, we
could assign one person to unload the spare tire from the trunk while someone else is
loosening the wheel nuts. We could also have another person stowing the bad tire
after we remove it while another is placing the spare tire.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



10.1.1

10.1 Decomposing programs 219

Building a task dependency graph is a good start. However, how do we come up
with the list of steps that are needed? What if we can come up with a different list of
steps that could be performed more efficiently when executed in parallel? To help us
break down our programming task and think about the various concurrent tasks, we
can consider our programs from two different sides: task and data decomposition.
We’ll use these two decomposition techniques together and try to apply common con-
currency patterns to our problem.

Task decomposition

Task decomposition occurs when we think about the various actions in our program that
can be performed in parallel. In task decomposition, we ask the question, “What are
the different parallel actions we can perform to accomplish the job more quickly?” As
an analogy, think about two pilots dividing up the work of landing an airplane and
performing various tasks in parallel (see figure 10.2). In our analogy, the pilots have
access to the same input data through the aircraft’s instruments, but each is perform-
ing different tasks to get the aircraft on the ground safely and efficiently.

I'l talk to
the tower

Figure 10.2 Pilots
performing separate
tasks while landing
a plane

In the previous chapter, we saw various ways we could distribute different tasks to dif-
ferent executions, such as when we built a program to find the longest words in a
group of web documents. In task decomposition, we need to break down the problem
into several tasks, such as

Downloading the web pages
Extracting the words

Finding the longest words

After obtaining this breakdown of tasks, we can start by outlining the dependencies of
each. In our program to find the longest words, each task has a dependency on the pre-
vious one. For example, we cannot extract the words before we download the web pages.
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10.1.2 Data decomposition

We can also break down our program by thinking about how data flows through it. We
can, for example, divide the input data and feed it to multiple parallel executions (see
figure 10.3). This is known as data decomposition, where we ask the question, “How can
we organize the data in our program so that we can execute more work in parallel?”

heh...
this will be a long day

Figure 10.3 Datacan be
input data l divided between multiple
executions.

DEFINITION Data decomposition can be done at various points in our process.
Input data decomposition occurs when we divide the program’s input data and
process it through multiple concurrent executions.

In input data decomposition, we divide the program input and feed it to our various
executions. For example, in chapter 3, we wrote a concurrent program that down-
loaded various web documents and counted the letter frequencies. We opted for an
input data decomposition design where each input URL was given to a separate
goroutine. The goroutine downloaded the document from the input URL and
counted the letters on a shared data structure.

DEFINITION In oulput data decomposition, we use the program’s output data to
distribute the work amongst our executions.

In contrast, our matrix multiplication in chapter 6 was based on output data decom-
position. In that example, we had separate goroutines, each responsible for working
out the results for one output matrix row (see figure 10.4). For a 3 X 3 matrix, we had
goroutine 0 work out the result for row 0, goroutine 1 work out the result for row 1,
and so on, for the entire matrix.

NOTE Task and data decomposition are principles that should be applied
together when designing a concurrent program. Most concurrent applica-
tions apply a mixture of task and data decomposition to achieve an efficient
solution.
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separate goroutines each working on a row

cl0 col  col2 i
row O x col 0,1,2

row O -5 O 3
w320 |x[-4-3-2|1
w2\ -4 -5 0 1 -2 1 1

input matrix a input matrix b output matrix

row 1 xcol 0,1,2

N W N
1 o3 IIDE 1 pffe

h row 2 xcol 0,1,2

Figure 10.4 Output data decomposition using one output row for each execution

10.1.3 Thinking about granularity

How big should our subtasks or data chunks be when we distribute parts of a problem
to various concurrent executions? This is what we call task granularity. At one end of
the granularity spectrum, we have fine-grained tasks, in which the problem is broken
down into a large number of small tasks. At the other end, when a problem is split into
a few large tasks, we say we have coarse-grained tasks.

To understand task granularity, we can think of a team of developers working
together to deliver an online web shop. We can break down the project delivery into
smaller tasks and distribute them amongst the developers. If we make our tasks too
coarse, the tasks are few and large. With so few tasks, we might not have enough tasks
for everyone. Even if we do have tasks for every developer, if they are too coarse, we
might have some developers busy working on their large tasks, with others idling after
finishing their smaller tasks quickly. This happens because the amount of work in
each task will vary.

If, on the other hand, we break down our project into tasks that are too fine-
grained, we will be able to distribute the work to more developers (if they’re avail-
able). In addition, it’s less likely that we’ll have an imbalance where some developers
will be idle without work while others are busy working on a large task. However, in
breaking down the tasks too finely, we create a situation where developers waste a lot
of time in meetings talking about who’s doing what and when. A lot of effort will
be spent coordinating and synchronizing the various tasks, and the overall efficiency
will drop.

Somewhere between these two extremes lies an optimal point that will give us the
maximum speedup—a task granularity that will enable us to deliver the project in the
shortest time. The location of this sweet spot (see figure 10.5) will depend on many
factors, such as how many developers we have and how many meetings they will have
to attend (time spent on communication). The biggest factor will be the nature of our
project, which will dictate how much we can parallelize the tasks since parts of the
project will have dependencies on other tasks.
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Figure 10.5 Task granularity when we build an online shop

10.2

10.2.1

The same principles apply to choosing the right type of task granularity for our algo-
rithms and programs. Task granularity has big effects on the parallel execution perfor-
mance of our software. Determining the best granularity depends on many factors but
is dictated mainly by the problem you’re trying to solve. Splitting a problem into many
small tasks (fine grained) means that when our program is executing, it will have
more parallelism (if extra processors are present) and a bigger speedup. However,
increased synchronization and communication due to our tasks being too fine
grained will constrain scalability. As we increase the parallelism, we will have a negligi-
ble or even a negative effect on speedup.

If we choose coarse granularity, we’ll reduce the need for a lot of communication
and synchronization between executions. However, having a few large tasks may result
in a smaller speedup, and can lead to load imbalances between our executions. Just as
in our online shop example, we need to find the right balance that works for our sce-
nario. This can be done by modeling, experimentation, and testing.

TIP Concurrent solutions that require very little communication and syn-
chronization (due to the nature of the problem being solved) generally allow
us to have finer-grained solutions and achieve bigger speedups.

Concurrency implementation patterns

Once we have decomposed our problem using a mixture of task and data decomposi-
tion, we can apply common concurrent patterns for our implementation. Each of
these patterns is suitable for specific scenarios, although we can sometimes combine
more than one pattern in a single solution.

Loop-level parallelism

When we have a collection of data that we need to perform a task on, we can use con-
currency to perform multiple tasks on different parts of the collection at the same
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time. A serial program might have a loop to perform the task on each item of the col-
lection, one after the other. The loop-level parallelism pattern transforms each itera-
tion task into a concurrent task so it can be performed in parallel.

Suppose we have to come up with a program to compute the hash code for a list of
files in a specific directory. In sequential programming, we would come up with a file
hashing function (shown in the following listing). Then we’d have our program col-
lect a list of files from the directory and iterate over them. On each iteration, we
would call our hash function and print the results.

Listing 10.1 SHA256 file hashing function (error handling omitted for brevity)

package listinglO_1

import (
"crypto/sha256"
"iO"
n OS"

)

func FHash(filepath string) [Ibyte
file, _ := os.Open(filepath) <—— Opens file
defer file.Close()

sha := sha256.New() | Calculates the hash code using
io.Copy(sha, file) the crypto sha256 library

return sha.Sum(nil) <——— Returns the hash result

Instead of processing each file in the directory one after the other sequentially, we
could use loop-level parallelism and feed each file to a separate goroutine. Listing
10.2 reads all the files from a specified directory and then iterates over every file in a
loop. For each iteration, it starts a new goroutine to compute the hash code for the
file in that iteration. This listing uses a waitgroup to pause the main() goroutine until
all the tasks are complete.

Listing 10.2 Using loop-level parallelism to compute file hash codes

package main

import (
n fmtll
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapter10/1istingl0.1"
n Osll
"path/filepath"
n syncll

)

func main() {
dir := os.Args[1]
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files, := o0s.ReadDir (dir) .
- . Gets a list of files from
wg := sync.WaitGroup{} the specified director
for , file := range files { P Y
if 1file.IsDir() {
wg.Add (1) . Computes and outputs
go func(filename string) the hash code for the
fPath := filepath.Join(dir, filename) fﬂeuﬂngthepreﬂouﬂy
hash := listingl0_1.FHash(fPath) deve|oped function
fmt.Printf ("%s - ¢x\n", filename, hash)
wg .Done ()

} (file.Name () )

}
} Waits for all the tasks, which are

wg.Wait () computing the hashes, to be complete

Running the previous listing on a specific directory results in a list of hash codes for
the files in the directory:

$ go run dirfilehash.go ~/Pictures/

surf.jpg - e3b0c44298fclcl49afbf4c8996£fb92427ae41e46490934ca495991b7852b855
wave.jpg - 89e723fldbd4clelcedb74e9603a4f84df617bal24ffa90b99a8d7d3£90bd535
sand.jpg - ddlbl43226f5847dbfbcdc257fe3acd4252e45484732f17bdd110d99%ale451dc

In this example, we can easily use the loop-level parallelism pattern because there is
no dependence between the tasks. The result of computing the hash code for one file
does not affect the hash code computation for the next file. If we had enough proces-
sors, we could execute each iteration on a separate processor. But what if the compu-
tation of an iteration depends on a step being computed in a previous iteration?

DEFINITION  Loop-carried dependence is when a step in one iteration depends on
another step in a different iteration in the same loop.

Let’s extend our program to compute a single hash code for an entire directory to
illustrate an example of loop-carried dependence. Computing a hash code for the
contents of the entire directory will tell us if any file is added, removed, or modified.
To keep things simple, we’re only going to consider the files in one directory and
assume that there are no subdirectories. To achieve this, we can iterate over every file
and compute its hash code. In the same iteration, we can combine each hash result
into a single hash value. At the end, we’ll have a single hash value representing the
entire directory.

In listing 10.3, we do this with a sequential main () function. The sequential pro-
gram shows that each iteration has a dependency on the previous iteration. Step i in
the loop requires step i-1 to be complete. The order in which we add the hash codes
to our sha256 function matters. If we change this order, we’ll produce different results.
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Listing 10.3 Computing the hash code of an entire directory (imports omitted)

func main() { Gets a list of files from
dir := os.Args[1] the specified directory
files, _ := os.ReadDir(dir)

sha := sha256.New ()
for , file := range files { Creat?sa new, emRty hash
if Ifile.IsDir() { container for the directory

Concatenates the fpath := filepath.Join(dir, file.Name())
computed hash hashOnFile := listingl0_1.FHash(fpath)
code to the . . - Computes the hash code for
. sha.Write (hashOnFile) . .
directory one } each file in the directory
}
fmt.Printf ("$s - %$x\n", dir, sha.Sum(nil)) <—— Outputs the final hash code
}

In the preceding listing, we have a loop-carried dependence; we must add the previ-
ous iteration hash code to the global directory hash before we add the current one.
This creates a problem for our concurrent program. We cannot just use the same trick
as we did before because now we have to wait for the previous iteration to finish
before starting the next one. Instead, we can take advantage of the fact that parts of
the instructions inside each iteration are independent and execute those concur-
rently. We can then use synchronization techniques to compute the carried depen-
dence steps in the correct order.

In our directory hashing application, we can compute the file hash code in parallel
because it is independent. In each iteration, we need to wait for the previous iteration
to finish and only then add the file hash code to the global directory hash. Figure 10.6

.

beach. jpg r‘eGdY

B 3F

sunrise. jpg PeGdY

compute file hash 706c73206U6f6e617465203220636...

® O

compute partial dir hash and send ready msg

compute file hash 16e6365722072657365617263682e...

NN

wait for ready

compute partial dir hash and send ready msg

compute file hash 7e2bdc770e81a18F03U55eee5267b...

NN
N

©OO0 00O

wait for ready

compute partial dir hash and send ready msg

2z
(D wait for ready

~[Pictures/ (j

Figure 10.6 The file hash computation in each iteration can be done in parallel.

@ output final dir hash 52f5fe3b80af607cH43343f8500ad5...

main goroutine
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shows how this can be done. The lengthy part of each iteration—reading the file and
computing the file hash code—is completely independent of any other iteration in the
same loop. This means that we can execute this part in a goroutine without waiting.

Once the goroutine finishes computing the file hash, it must wait for the previous
iteration to finish. In our implementation, we use channels to implement this wait.
Each goroutine waits to receive a signal from the previous iteration. Once it has com-
puted the partial directory hash code, it then signals that it is complete by sending a
channel message to the next iteration. This is shown in the following listing.

Listing 10.4 Loop-carried dependency in directory hashing (imports omitted)

func main() {

dir := os.Args([1l]
files, _ := os.ReadDir(dir)
sha := sha256.New()

var prev, next chan int Creates the next channel

for _, file := range files { used by the goroutine to
if Ifile.IsDir() { signal that it’s ready
next = make (chan int) If the goroutine
go func(filename string, prev, next chan int) { | is not in the first
fpath := filepath.Join(dir, filename) iteration, waits
Computes the hashOnFile := listingl0O_1.FHash (fpath) Emtilt.heprevious
hash code on if prev != nil { ‘ |t.erat|on sends a
the file <-prev signal
) |

sha.Write (hashOnFile) <—— Computes the directory partial hash

Signals to the next next <- 0

iteration that it’s done | | (file.Name (), prev, next) | Assigns the next channel to be previous; the next
prev = next goroutine will wait on a signal from the current
} iteration
1
<-next

Waits for the last iteration to be

fmt.Printf ("8x\n", sha.Sum(nil)) complete before outputting the result

NOTE Go’s os.ReadDir () function returns entries in the directory order. This
is a key requirement for our listing to work properly. If the order was unde-
fined, the hash result might be different each time we ran the program with-
out the directory changing.

The main() goroutine waits for the final iteration to be complete by expecting a ready
message on the next channel. It then prints out the result of the directory hash code.
In the previous listing, the ready message is just a 0 sent on the channel. Here is the
output from listing 10.4:

$ go run dirhashsequential.go ~/Pictures/
7200bdf2b90fc5e65dadb2402640986d37c9a40c38fd532dc0f5a21e2al60f6d
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10.2.2 The fork/join pattern

The fork/join pattern is useful in situations where we need to create a number of exe-
cutions to perform tasks in parallel, and then we collect and merge the results from
these executions. In this pattern, the program spawns one execution per task and then
waits until all of these tasks are complete before proceeding. Let’s use the fork/join pat-
tern in a program to search for source files that have deeply nested code blocks.

Deeply nested code is hard to read. The following code has a nested depth level of
3 because it opens three nested blocks of code before closing them:

if x > 0 {
if y > 0 {
if z > 0 {
//do something
}

} else {
//do something else
1

We want to write a program that recursively scans through a directory and finds the
source file that has the deepest nested block. Listing 10.5 shows a function that, when
given a filename, reads the file and returns the nested code depth for that source file.
It does this by increasing a counter every time it finds an open curly bracket and
reducing it when it finds a closed one. The function keeps track of the highest value
found and returns it with the filename.

Listing 10.5 Finding the deepest nested code block (imports and error handling omitted)

package main
import (...)
type CodeDepth struct {file string; level int}

func deepestNestedBlock (filename string) CodeDepth { | Reads the full file into

code, _ := os.ReadFile (filename) a memory buffer
max := 0
level := 0 .
When the character is an R d
for o ¢ i= ra{ng? code { opening curly bracket, t::omra)s(imum
if c == /{7 .
Iterates over increments level by 1
N level += 1 value of level
i;:gcst':flif] max = int (math.Max (float64 (max), floaté4 (level))) variable
the file } else if ¢ == "}’ {
1 1 -=1
} eve When the curly brackets are
} closed, decrements level by 1
return CodeDepth{filename, max}
} Returns the result with the filename
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We now need logic to run this function on all the source files found recursively in a
directory. In a sequential program, we would simply call this function on all the files,
one after the other, and keep track of the code depth with the maximum value. Figure
10.7 shows how we can employ the fork/join pattern to solve this problem concurrently.
In the fork part, the main() goroutine spawns a number of goroutines that execute the
deepestNestedBlock () function, and it then outputs the result on a common channel.

goroutine finds deepest nested block in
file and outputs it on a common channel

D—_ £y longestwords.go, 6

Jjoin goroutine
@ aggregating results

> e
O
i N

longestwords.go, 6

o after close, sends value

@ of deepest nested block
to the main goroutine

main goroutine waits on

L J

fork join

Figure 10.7 Using the fork/join pattern to scan source files

The join part of the pattern is when we consume the common output channel and
wait for all the goroutines to be complete. In this example, we implement this part
with a separate join goroutine that collects the results and keeps track of the deepest
nested block. When it’s complete, this goroutine sends the result to the main() gorou-
tine to output on the console.

In our implementation, the main() goroutine waits on a waitgroup until all the
forked goroutines are complete. When the waitgroup is done (meaning the forked
goroutines are finished), it closes the common output channel. When the join gorou-
tine notices that the common channel has been closed, it sends the result, containing
the filename with the deepest nested block, on another channel to main(). The main ()
goroutine simply waits for this result and prints it on the console.

Listing 10.6 implements the fork section of this pattern. It verifies that the given
path is not a directory, adds one to the waitgroup, and starts a goroutine executing the
deepestNestedBlock () function on the filename. In this listing, we don’t handle direc-
tories, as we call this function from filepath.wWalk() later in our main() function. The
return value of deepestNestedBlock () is sent on the common result channel. Once the
function completes, it calls Done () on the waitgroup.
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Listing 10.6 Forking in the fork/join pattern

func forkIfNeeded (path string, info os.Filelnfo, Verifies that the path is
wg *sync.WaitGroup, results chan CodeDepth) { a file and that it’s a Go
Adds 1 to the | . : ; ; ; " " file by checki
. if linfo.IsDir() && strings.HasSuffix(path, ".go") source file by checking
waitgroup wg.Add (1) its extension

go func() {

Spawns a new results <- deepestNestedBlock (path) Calls the function and writes

goroutine wg.Done () Marks the work done the return value on the
Ho on the waitgroup common results channel

For the joining part of the fork/join pattern, we need a goroutine that collects the
results from the common output channel, shown in listing 10.7. The joinResults ()
goroutine consumes from this common channel and records the maximum value of
the deepest nested block from the received results. Once the common channel closes,
it writes the result to the main channel, finalResult.

Listing 10.7 Joining results onto a final result channel

func joinResults (partialResults chan CodeDepth) chan CodeDepth {

finalResult := make (chan CodeDepth)
max := CodeDepth{"", 0} Creates a channel that will
go func() { contain the final result
Receives for pr := range partialResults ({
results from if pr.level > max.level { | Racords the value of the
the channel max = pr deepest nested block
until it’s 1
closed 1
finalR 1t <- . .
1O tnasResust < max After the channel is closed, writes
return finalResult result on the the output channel
1

In listing 10.8, our main() function wires everything together. We start by creating the
common channel and the waitgroup. Then we walk recursively through all the files in
the directory specified in the arguments, and we fork a goroutine for each source file
encountered. In the end, we join everything by starting the goroutine to collect the
results, and we wait on the waitgroup for the forked goroutines to be complete, clos-
ing the common channel and then finally reading the result from the finalrResult
channel.

Listing 10.8 main () function forking and then outputting the result

func main() { Reads root directory from arguments
dir := os.Args[1]
partialResults := make (chan CodeDepth) Creates common channel used
wg := sync.WaitGroup({} by all forked goroutines
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filepath.Walk (dir, Walks the
. func (path string, info os.FilelInfo, err error) error { root directory, and
Waits for all the forkIfNeeded (path, info, &wg, partialResults) for every file, calls

forked goroutines
to complete their })
work

10.2.3

return nil the fork function,
creating goroutines

the channel that will contain the

finalResult := joinResults (partialResults) Calls the join function and gets
final result

wg.Wait ()

close (partialResults) Q_‘ Closes the common channel,
signaling the join goroutine that
t the work is complete Receives the final
result and outputs

it on the console

result := <-finalResul
fmt.Printf ("%s has the deepest nested code block of %d\n",
result.file, result.level)

NOTE Unlike the previous directory hashing scenario, this example does not
rely on the order of the partial results to compute the complete result. Not
having this requirement allows us to easily adopt the fork/join pattern, where
we can aggregate the results in the join part.

When we put all the listings together, we can use it to scan our top source directory to
find out which file has the deepest code block. Here’s the output:

$ go run deepestnestedfile.go ~/projects/ConcurrentProgrammingWithGo/
~/projects/ConcurrentProgrammingWithGo/chapter9/listing9.12_ 13/longestwords.g
o has the deepest nested code block of 6

Using worker pools

In some cases, we don’t know how much work we are going to get. It can be difficult to
decompose our algorithms and make them work concurrently if the workload will
vary depending on the demand. For example, we might have an HTTP server that
handles a varying number of requests per second depending on how many users are
accessing a website.

In real life, the solution is to have a number of workers and a queue of work. Imag-
ine a bank branch with several tellers serving a single queue of customers. In concur-
rent programming, the worker pool pattern copies this real-life queue and workers
model in programming.

Different names for the same pattern

The worker pool pattern and slight variations of it are known under many different
names, such as the thread pool pattern, replicated workers, master/worker, or worker-
crew model.

In the worker pool pattern, we have a fixed number of goroutines created and ready
to accept work. In this pattern, the goroutines are either idle, waiting for a task, or
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they’re busy executing one. The work gets passed to the worker pool through a com-
mon work queue. When all the workers are busy, the work queue increases in size. If
the work queue fills to its full capacity, we can stop accepting more work. In some
worker pool implementations, the worker pool can also be increased in size by
increasing the number of goroutines, up to a limit, to handle the extra load.

To see this concurrency pattern in action, let’s implement a very simple HTTP web
server that serves static files as web resources. The worker pool pattern in our HTTP
server can be seen in figure 10.8. In our design, several goroutines take part in the
worker pool, waiting for work to arrive in the work queue. We implement the work
queue with a Go channel. When all the worker goroutines are reading from the same
channel, this has the effect ofload-balancing the items on the channel to all the workers.

@ idle worker wakes up and

@ HTTP request &> handles client's request

browser T

channel acting as
the work queue

@ connection sent over

@ client opens connection channel to worker pool

to main goroutine

Figure 10.8 Using a worker pool in an HTTP server

In our HTTP web server, we have our main() goroutine accepting socket connections
from clients. Once a connection is open, the main() goroutine passes it to any idle
worker by putting the connection on the channel. The idle worker handles the HTTP
requests and replies with the appropriate response. Once the response is sent, the
worker goroutine goes back to wait for the next connection by waiting on the channel.
Listing 10.9 shows the minimal HTTP protocol handling. In the listing, we read
the request from the connection (using regex), load the requested file from the
resources directory, and return the contents of the file as a response with the appro-
priate headers. If the file does not exist or the request is invalid, the function responds
with a suitable HTTP error. This is the logic that every goroutine in the worker pool
will execute upon receiving a connection from the main() goroutine on the channel.
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Listing 10.9 A simple HTTP response handler
package listinglO_9
import (
n fmt"
n net n
n os n
"regexp"
)
var r, _ = regexp.Compile("GET (.+) HTTP/1.1\r\n")
func handleHttpRequest (conn net.Conn) { Creates buffer to store HTTP request
Reads buff := make([lbyte, 1024) <F————J
from the size, _ := conn.Read(buff) If the request is a valid one, reads the
connection if r.Match(buff[:size]) { request file from the resources directory
into the file, err := os.ReadFile(
buffer fmt.Sprintf ("../resources/%$s", r.FindSubmatch (buff[:size]) [1]))
— ¢ if err == nil ({
If the conn.Write ([]byte (fmt.Sprintf (
file exists "HTTP/1.1 200 OK\r\nContent-Length: $d\r\n\r\n",len(file))))

responds to

conn.Write(file)

H 1 . .
'thttll‘f CI-III'I"E'I"‘I": b e ::nr{l Write ([1byte ( If the file does not exist, responds with an error
wi e :
header and "HTTP/1.1 404 Not Found\r\n\r\n<html>Not Found</html>"))
file contents ) elie i If the HTTP request is not valid, responds with an error

conn.Write([]lbyte ("HTTP/1.1 500 Internal Server Error\r\n\r\n"))

}

conn.Close () <—— Closes the connection after handling the request

The following listing initializes all the goroutines in the worker pool. The function sim-
ply starts n goroutines, each reading from the input channel containing the client con-
nections. When a new connection is received on the channel, the handleHttpRequest ()
function is called to handle the client’s request.

Listing 10.10 Starting up the worker pool

func StartHttpWorkers(n int, incomingConnections <-chan net.Conn) {

for i := 0; 1 < n; i++ . .
{ Starts n goroutines Consumes connections from
go func() { .
, ) ) the work queue channel until
for ¢ := range incomingConnections { .
the channel is closed
handleHttpRequest (c)
) Handles the HTTP request

from the received connection

Next, we need the main() goroutine to listen for new connections on a port and pass
on any newly established connection on the work queue channel. In listing 10.11, the
main() function creates the work queue channel, starts up the worker pool, and then
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binds a TCP listen connection on port 8080. In an infinite loop, when a new connec-
tion is established, the Accept () function unblocks and returns the connection. This
connection is then passed on the channel to be used by one of the goroutines in the
worker pool.

Listing 10.11 main () function passing work to the worker pool (error handling omitted)

package main

import (
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapterl0/listingl0.9"
||net|l

Creates a work

func main() { queue channel
incomingConnections := make (chan net.Conn)

listingl0_9.StartHttpWorkers (3, incomingConnections) Starts the worker

, pool with three
server, _ := net.Listen("tcp", "localhost:8080")

Passes the | gefer server.Close() goroutines
connection | for {
on the work conn, = server.Accept () Binds the TCP listening
queue channel incomingConnections <- conn connection to port 8080
1 Blocks until there is a new
1 connection from a client

We can test the previous listings either by pointing a browser to http://localhost:8080/
index.html or by using the following curl command:

$ go run httpserver.go &

$ curl localhost:8080/index.html
<!DOCTYPE html>
<html>
<head>
<title>Learn Concurrent Programming with Go</title>
</head>
<body><hl>Learn Concurrent Programming with Go</hl><img src="cover.png"></body>

NOTE The worker pool pattern is especially useful when creating new threads
of execution is expensive. Instead of creating threads on the fly when we have
new work, this pattern creates the worker pool before processing begins, and
the workers are reused. This way, less time is wasted when we need new work
to be done. In Go, creating goroutines is a very fast process, so this pattern
doesn’t bring much benefit in terms of performance.

Even though worker pools do not offer much performance benefit in Go, they can still
be used to limit the amount of concurrency so that programs and servers don’t run out
of resources. In our HTTP server, we can opt to stop handling client connections when

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



234 CHAPTER 10  Concurrency patterns

the entire worker pool is busy, as shown in figure 10.9. We can use the channel in a non-
blocking manner so that the main() goroutine returns a “server busy” error to the
client.

" server returns response
indicating that it's too busy

Figure 10.9 Server detects that it’s too busy and returns an error message

Listing 10.12 implements this non-blocking behavior on the work queue channel. In
this listing, we use a select statement that triggers the default case when there are no
free worker pool goroutines. The logic in the default case returns a “busy” error mes-
sage to the client.

Listing 10.12 Using select’s default case to limit the load on the server

package main

import (
"fmt"
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapterl10/1istingl0.9"
"net"

)

func main() {
incomingConnections := make (chan net.Conn)
listingl0_9.StartHttpWorkers (3, incomingConnections)
server, _ := net.Listen("tcp", "localhost:8080"
defer server.Close()
for {

conn, _ := server.Accept ()
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select { . .
case incomingConnections <- conn: When no goroutines ar: consuming from
default: the work queue, the default case triggers.

fmt.Println("Server is busy")

Reﬂwns“bqsf’ conn.Write ([lbyte ("HTTP/1.1 429 Too Many Requests\r\n\r\n" +
message to client " <html>Busy</html>\n")

10.2.4

conn.Close ()
} Closes client connection

We can trigger this “busy” error message when we open many simultaneous connec-
tions. Our worker pool is very small, with only three goroutines, so it’s quite easy to get
the entire pool busy. Using the following command, we can see that the server returns
this error message. In this command, the xargs with -P100 option executes curl
requests in parallel, with 100 processes:

$ seqg 1 2000 | xargs -Iname -P100 curl -s
"http://localhost:8080/index.html" | grep Busy

</html><html>Busy</html>

</html><html>Busy</html>

</html><html>Busy</html>

Pipelining

What if the only way to decompose our problem is to have a set of tasks where each
task completely depends on the previous one being complete? For example, consider
a scenario in which we are running a cupcake factory. Baking cupcakes in our factory
involves the following steps:

Prepare the baking tray.

Pour the cupcake mixture.
Bake the mixture in the oven.
Add toppings.

Pack the cupcakes in a box for delivery.

If we wanted to speed things up, simply hiring staff and asking them to pick up any
task that needs doing would not be a very effective strategy in terms of efficiency,
because each step, apart from the first one, depends on the previous one. When we
have this heavy task dependency, applying a pipeline pattern will allow us to do more
work in the same amount of time.

The pipeline pattern is used in many manufacturing industries. One common
example is a modern car assembly line. The frame of a car moves along the line, and
at each stage, a different robot performs a different action (such as attaching a part)
on the car being built.

We can use the same principle in our example. We can have people working in
parallel on different cupcakes batches. Each person is working on a different one of
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the previously outlined steps, and the output of one step feeds into the input of the
next (see figure 10.10). In this way, we can utilize the full workforce and increase the
number of cupcakes we can produce in a given time.

Figure 10.10
The cupcake
factory using a
pipeline pattern

There are technical problems where we can only decompose tasks in this manner. For
example, consider a sound processing application in which multiple filters, such as
noise reduction, high cut, bandpass, etc., need to be applied to a sound stream on top
of each other. There are similar examples that apply to video and image processing. In
the previous chapter, we built an application using a pipeline pattern that downloaded
documents from web pages, extracted words, and then counted word frequencies.

Let’s stay with our cupcake example and try to implement a program that simu-
lates this. We can then use this program to examine the various properties of a typical
pipeline. In the following listing, the steps that we outlined in figure 10.10 are in sepa-
rate functions. In each function, we are simulating work by sleeping for 2 seconds,
except for the Bake () function, where we sleep for 5 seconds.

Listing 10.13 Steps for making cupcakes

package listinglO_13

import (
"fmt"
"time"
)
const (
ovenTime =5
everyThingElseTime = 2
)
Every step, except the bake
func PrepareTray (trayNumber int) string { step, sleeps for 2 seconds to
fmt.Println("Preparing empty tray", trayNumber) simulate work.

time.Sleep (everyThingElseTime * time.Second)

return fmt.Sprintf ("tray number $d", trayNumber) QW Each function returns

a description of what
was done.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



10.2  Concurrency implementation patterns 237

func Mixture (tray string) string {
fmt.Println("Pouring cupcake Mixture in", tray)
time.Sleep (everyThingElseTime * time.Second)
return fmt.Sprintf ("cupcake in $%s", tray)

}

func Bake (mixture string) string {
fmt.Println("Baking", mixture) QJ The oven step sleeps for
time.Sleep (ovenTime * time.Second) 5 seconds instead of 2.
return fmt.Sprintf ("baked $%s", mixture)

}

func AddToppings (bakedCupCake string) string {
fmt.Println("Adding topping to", bakedCupCake)
time.Sleep (everyThingElseTime * time.Second)
return fmt.Sprintf ("topping on $%s", bakedCupCake)

}

func Box(finishedCupCake string) string {
fmt.Println("Boxing", finishedCupCake)
time.Sleep (everyThingElseTime * time.Second)
return fmt.Sprintf ("$s boxed", finishedCupCake)

To compare the speedup of parallel vs. sequential execution, let’s first execute all the
steps, one after the other, by using the sequential program outlined in the following
listing. Here we are simulating one person producing 10 boxes of cupcakes by per-
forming one step after the other.

Listing 10.14 main () function producing 10 boxes of cupcakes sequentially

package main
import (

n fmt n
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapterl0/listingl0.13"

func main() { Executes 10 times
for i := 0; 1 < 10; i++ {

result := listingl0_13.Box(
listingl0 13.AddToppings ( Performs one step
listingl0_13.Bake ( after the other
listingl0_ 13 .Mixture ( sequentially

listingl0_13.PrepareTray(i)))))
fmt.Println("Accepting", result)

When performing one step after the other, sequentially, finishing a box of cupcakes
takes us about 13 seconds. In our program, finishing 10 boxes takes around 130 sec-
onds, as shown in the output when we execute the previous two listings together:
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$ time go run cupcakeoneman.go

Preparing empty tray 0

Pouring cupcake Mixture in tray number 0

Baking cupcake in tray number 0

Adding topping to baked cupcake in tray number 0

Boxing topping on baked cupcake in tray number 0
Accepting topping on baked cupcake in tray number 0 boxed
Preparing empty tray 1

Boxing topping on baked cupcake in tray number 9
Accepting topping on baked cupcake in tray number 9 boxed

real 2m10.979s
user 0m0.127s
sys 0m0.152s

Let’s now convert our program to run with multiple executions in a pipeline fashion.
The steps in a simple pipeline all follow the same pattern: accept input from an input
channel of type X, process X, and produce the result Y on an output channel of type Y.
Figure 10.11 shows how we can build a reusable component that creates a goroutine
reading from an input channel consuming type X, calls a function that maps X to Y,

and outputs Y on an output channel.
I DY .

;" > ©— X C> F Py ®
input channel : output channe

goroutine cdlling function that maps X Y

Figure 10.11 Pipeline step accepts X, calls a function to map to Y, and outputs Y

In listing 10.15, we implement this. In the signature, we accept both input and output
channels and a mapping function £. The addonpipe () function creates an output chan-
nel and starts up a goroutine that calls the mapping function in an infinite loop. In
the implementation, we use the usual quit channel pattern where we stop if the quit
channel (the parameter named q in the listing) is closed. We make use of Go’s gener-
ics so that the types from the channels and the mapping function match.

Listing 10.15 A reusable pipeline node

package main
import (

n fmt n
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapterl10/1istingl0.13"
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func AddOnPipe[X, Y any] (g <-chan int, f func(X) Y, in <-chan X) chan Y {

output := make (chan Y)
s N go func() { Creates an output channel of type Y
g::ﬁén: (4£> defer close (output)
for { When the quit channel is
select { closed, exits the loop and
Calls select case <-q: terminates the goroutine Receives a message on
in an infinite return .the inPut channel if one
loop case input := <-in: is available
output <- £ (input)
} Calls the function f and outputs
} the function’s return value on
1O the output channel

return output

We can now add all the steps of our cupcake factory on a common pipeline, using the
function in listing 10.15. In the following listing, we have a main () function that wraps
each step using the addonpipe () function. It then starts a goroutine that feeds 10 mes-
sages into the prepareTray () step. This has the effect of running our pipeline 10 times.

Listing 10.16 Wiring and starting our cupcake pipeline

func main() { Creates the first input channel to be
make (chan int) used to connect to the first step

input :=
Creates quit := make (chan int)
. tput := AddOnPi listingl0_ 1.Box, it, . -
channel Addg P‘?[ (’ i 1'gt'_ io ] Bpi gs. feeding the output of each step
nELpetquit, Li8tingsb_-.Baxe, to the input of the next one

AddOnPipe (quit, listinglO_1.Mixture,
AddOnPipe (quit, listinglO_1.PrepareTray, input)))))

go func() { Creates a goroutine that sends

for T i 1 N 105 i+ | 10 integers onto the pipeline
) tnput <- 1 to produce 10 cupcake boxes

1O

for 1 := Of 1< 107 dow | , Reads 10 cupcake boxes as output
fmt.Println(<-output, "received") from the last pipeline step

}

At the end of our main() function, we wait for 10 messages to arrive and print out the
message on the console. Here’s the output when we run the previous listing:

$ time go run cupcakefactory.go
Preparing empty tray 0

Preparing empty tray 1

Pouring cupcake Mixture in tray number 0
Pouring cupcake Mixture in tray number 1
Preparing empty tray 2

Baking cupcake in tray number 0

Baking cupcake in tray number 1
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Pouring cupcake Mixture in tray number 2
Preparing empty tray 3
Adding topping to baked cupcake in tray number 0

Boxing topping on baked cupcake in tray number 8
topping on baked cupcake in tray number 8 boxed received
Adding topping to baked cupcake in tray number 9
Boxing topping on baked cupcake in tray number 9
topping on baked cupcake in tray number 9 boxed received

real 0m58.780s
user Om0.106s
sys 0m0.289s

Using the pipelining version of our algorithm resulted in a faster execution of around
58 seconds instead of 130. Can we improve it even further by speeding up the time it
takes to complete some of the steps? Let’s experiment with the timings, and along the
way, we’ll discover some properties of the pipeline pattern.

Pipelining properties

What would happen if we sped up all our manual steps (excluding the baking time)?
In our program, we can reduce the constant everyThingElseTime (from listing 10.1) to
a smaller value. In this way, all the steps, excluding the baking time, will run faster.
Here’s the output when we set everyThingElseTime = 1:

$ time go run cupcakefactory.go
Preparing empty tray 0

topping on baked cupcake in tray number 9 boxed received

real 0m55.579s
user Om0.117s
sys 0m0.242s

What is going on here? We have doubled the speed of almost every step, but the total
time to produce 10 boxes has stayed almost the same. To understand what is going on,
have a look at figure 10.12.

NOTE In a pipeline, the throughput rate is dictated by the slowest step. The
latency of the system is the sum of the time it takes to perform every step along
the way.

If our pipeline were real, four people would be working twice as fast but making
hardly any difference in terms of throughput. This is because the bottleneck in our
pipeline is the baking time. Our slowest step is limited by the fact that we have a slow
oven, and it is slowing everything down. To increase the number of cupcakes created
per unit of time, we should focus on speeding up our slowest step.
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Figure 10.12 Increasing the speed of non-baking parts does not increase the throughput significantly.

TIP To increase the throughput of a system, it’s always best to focus on the
bottleneck of that system. This is the part that is having the greatest effect on
slowing down our performance.

Speeding up most of the steps has made a difference in how much time it takes to pro-
duce a single box of cupcakes from start to finish. In the first run, it took us 13 sec-
onds to produce one box. When we set everyThingElseTime = 1, this went down to 9
seconds. We can think of this as the system latency. For some applications (such as
backend batch processing), it’s more important to have high throughput, while for
other applications (such as real-time systems), it’s better to improve latency.

TIP To reduce the latency of a pipeline system, we need to improve the
speed of most steps in the pipeline.

Let’s experiment further with our pipeline by improving the baking step and making
it faster. In real life, we could get a more powerful oven or perhaps have multiple
ovens that can work in parallel. In our program, we can simply set the variable oven-
Time = 2 instead of 5 and set everyThingElseTime back to 2. When we run the program
again, we get the following output:

$ time go run cupcakefactory.go
Preparing empty tray 0

topping on baked cupcake in tray number 9 boxed received
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real 0m30.197s
user 0m0.094s
sys 0m0.135s

We have greatly improved the time it takes to produce 10 boxes of cupcakes. The rea-
son for this speedup is clear in figure 10.13. We can see that we’re now more efficient
with time. Every goroutine is constantly busy without any idle time. This means we
have improved throughput—the number of cupcakes produced per unit of time.

bake €D
fopping & . DO NOmO0NDmE,
w0 AN EEN e

36 !40 '44 '48 56 bO

seconds

28 seconds quicker

| I ]
20 28 32 36 4o 44 '48 52 56 60

Figure 10.13 Speeding up our slowest step has bigger effects on throughput.

It’s worth noting that although we have increased throughput, the time it takes to pro-
duce a box of cupcakes (the system latency) has not been greatly affected. It now takes
10 seconds to produce a box from start to finish instead of 13 seconds.

10.3 Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.

1 Implement the same directory hashing that we did in listing 10.4, but instead of
using channels to synchronize between iterations, try using waitgroups.

2 Change listing 10.2 so that the work queue channel between the main() gorou-
tine and the worker pool has a buffer of 10 messages. Doing so will give you a
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capacity buffer so that when all the goroutines are busy, some of the requests
are queued before they can be picked up.

The following listing downloads 30 web pages and counts the total number of
lines on all the documents sequentially. Convert this program to use concurrent
programming, using a concurrency pattern explained in this chapter.

Listing 10.17 Line count for web pages

package main

import (
n fmt n
n ioll
"net/http"
"strings"
)
func main() {
const pagesToDownload = 30
totalLines := 0
for i := 1000; i < 1000 + pagesToDownload; i++ {
url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcgd.txt", 1i)
fmt.Println ("Downloading", url)
resp, _ := http.Get (url)
if resp.StatusCode != 200 {
panic("Server’s error: " + resp.Status)
}
bodyBytes, _ := io.ReadAll (resp.Body)
totalLines += strings.Count (string(bodyBytes), "\a")
resp.Body.Close ()
1
fmt.Println("Total lines:", totalLines)
}
Summary

Decomposition is the process of breaking a program into different parts and
figuring out which parts can be executed concurrently.

Building dependency graphs helps us understand which tasks can be per-
formed in parallel with others.

Task decomposition is about breaking down a problem into the different
actions needed to complete the entire job.

Data decomposition is partitioning data in a way so that tasks on the data can be
performed concurrently.

Choosing fine granularity when breaking down programs means more parallel-
ism at the cost of limiting scalability due to time spent on synchronization and
communication.

Choosing coarse granularity means less parallelism, but it reduces the amount
of synchronization and communication required.
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Loop-level parallelism can be used to perform a list of tasks concurrently if
there is no dependency on the tasks.

In loop-level parallelism, splitting the problem into parallel and synchronized
parts allows for a dependency on a previous task iteration.

Fork/join is a concurrency pattern that can be used when we have a problem
with an initial parallel part and a final step that merges the various results.

A worker pool is useful when the concurrency needs to scale on demand.
Pre-creating executions in a worker pool is faster than creating them on the fly
for most languages.

In Go, the performance of pre-creating a worker pool versus creating gorou-
tines on the fly is minimal due to the lightweight nature of goroutines.

Worker pools can be used to limit concurrency so as not to overload servers
when there is an unexpected increase in demand.

Pipelines are useful to increase throughput when each task depends on the pre-
vious one to be complete.

Increasing the speed of the slowest node in a pipeline results in an increase in
the throughput performance of the entire pipeline.

Increasing the speed of any node in a pipeline results in a reduction in the
pipeline’s latency.
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This chapter covers

= |dentifying deadlocks
= Avoiding deadlocks
= Deadlocking with channels

11.1

A deadlock, in a concurrent program, occurs when executions block indefinitely,
waiting for each other to release resources. Deadlocks are an undesirable side
effect of certain concurrent programs where concurrent executions are trying to
acquire exclusive access to multiple resources at the same time. In this chapter, we
will analyze the conditions under which deadlocks might occur and offer strategies
to prevent them. We’ll also discuss certain deadlocking conditions that can occur
when using Go channels.

Deadlocks can be quite tricky to identify and debug. As with race conditions, we
can have a program that runs without hitches for a long time, and then suddenly
the execution halts, for no obvious reason. Understanding the reasons why dead-
locks happen allows us to make programming decisions to avoid them.

Identifying deadlocks

What is the simplest concurrent program we can write that creates all the condi-
tions for a deadlock to occur? We can create a simple program with just two gorou-
tines competing for two exclusive resources, as shown in figure 11.1. The two

245
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@ acquires lock @ acquires lock

resources protected release ) m
by a mutex bothlocks

\_/ Figure 11.1 Two

goroutines competing for
@ acquires lock two exclusive resources

@ acquires lock

goroutines, called red () and blue (), each try to hold two mutex locks at the same time.
Since the locks are exclusive, the only time one goroutine can acquire both locks is
when the other goroutine is not holding any of them.

Listing 11.1 shows a simple implementation of the red() and blue() goroutines.
The two functions accept our two mutexes, and when we run the functions as separate
goroutines, they will try to acquire both locks at the same time before releasing them.
This process repeats in an infinite loop. In the listing, there are multiple messages to
indicate when we are acquiring, holding, and releasing the locks.

Listing 11.1 red() and blue () goroutines (imports omitted for brevity)

func red(lockl, lock2 *sync.Mutex) {

for {
fmt.Println("Red: Acquiring lockl")
IOCkl'I_'OCk() o Acquires and
fmt.Println("Red: Acquiring lock2") holds both locks
lock2.Lock ()
fmt.Println("Red: Both locks Acquired")
lockl.Unlock () ; lock2.Unlock () <——— Releases both locks
fmt.Println("Red: Locks Released")
1
1
func blue(lockl, lock2 *sync.Mutex) {
for {
fmt.Println("Blue: Acquiring lock2")
lock2.Lock () Acqui
; o cquires and
fmt.Println("Blue: Acquiring lockl") holds both locks
lockl.Lock ()
fmt.Println("Blue: Both locks Acquired")
lockl.Unlock () ; lock2.Unlock () <—— Releases both locks

fmt.Println("Blue: Locks Released")

We can now create our two mutexes and start up the red() and blue() goroutines in
the main() function, as shown in listing 11.2. After starting up the goroutines, the
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main() function sleeps for 20 seconds, during which we expect the red() and blue()
goroutines to continuously output the console messages. After 20 seconds, the main ()
goroutine terminates, and the program exits.

Listing 11.2 main () function starting up red () and blue () goroutines

func main() {
lockA := sync.Mutex{}

lockB := sync.Mutex{} Starts red() goroutine
go red(&lockA, &lockB)

go blue(&lockA, &lockB) <—— Starts blue() goroutine

time.Sleep (20 * time.Second)
fmt.Println("Done") Allows the red() and blue()

goroutines to run for 20 seconds

The following is an example of output from running listings 11.1 and 11.2:

$ go run simpledeadlock.go

Blue: Locks Released
Blue: Acquiring lock2
Red: Acquiring lockl
Red: Acquiring lock2
Blue: Acquiring lockl

After a while, the program stops outputting messages, and it appears to be stuck prior
to the end of the 20-second sleep period. At this point, our red() and blue()
goroutines are stuck in a deadlock, unable to proceed. After about 20 seconds have
elapsed, the main() goroutine finishes and the program quits. To understand what is
going on and how the deadlock has occurred, we’ll look at a resource allocation
graph in the following section.

NOTE Due to the non-deterministic nature of concurrent executions, run-
ning listings 11.1 and 11.2 will not always result in a deadlock. We can further
increase the chances of a deadlock by adding Sleep() calls in our red() and
blue () goroutines between the first and second mutex.Lock () calls.

Picturing deadlocks with resource allocation graphs

A resource allocation graph (RAG) shows the resources utilized by various executions. They
are used in operating systems for various functions, including deadlock detection.
Drawing these graphs can help us picture deadlocks in our concurrent programs.
Figure 11.2 shows the simple deadlock situation that occurs in listings 11.1 and 11.2.
In a resource allocation graph, the nodes represent the executions or resources.
For example, in figure 11.2, the nodes are our two goroutines, interacting with the
two exclusive locks. In the figure, we use rectangular nodes for resources and circular
ones for goroutines. The edges show us which resources are being requested or held
by the executions. An edge pointing from an execution to a resource (the dashed
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Figure 11.2 Resource allocation graph of the red () and blue () goroutines

lines in figure 11.2) means that the execution is requesting the use of that resource.
An edge pointing from a resource to an execution (the solid lines) tells us that the
resource is being used by that execution.

Figure 11.2 shows how the deadlock happens in our simple program. After the
blue () goroutine acquires lock 2, it needs to request lock 1. The red() goroutine is
holding lock 1, and it needs to request lock 2. Each goroutine is holding one lock, and
then it goes ahead to request the other. Since the other lock is held by another gorou-
tine, the second lock is never acquired. This creates the deadlock situation where the
two goroutines will each be forever waiting for the other goroutine to release its lock.

NOTE Figure 11.2 contains a graph cycle: starting from any node, we can
trace a path along the edges that leads us back to our starting node. When-
ever a resource allocation graph contains such a cycle, it means that a dead-
lock has occurred.

Deadlocks don’t just happen in software. Sometimes, real-life scenarios create the con-
ditions for a deadlock to occur. Consider, for example, a rail-crossing layout, as shown
in figure 11.3. In this simple layout, a long train might need to use more than one rail-
crossing at a time.

Rail crossings, by their nature, are exclusive resources—only one train can use them
atany point in time. Thus, a train approaching a crossing needs to request and reserve
access to it so that no other train can use it. If another train is already using a crossing,
any other train needing the same crossing must wait until the crossing is free again.

A train that is long enough to span multiple crossings might need to use more
than one crossing at the same time. This is akin to our executions holding more than
one exclusive resource (such as a mutex) at the same time. Figure 11.3 shows that
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rail crossing is an exclusive resource
(only one train can use it a time)

o)’

Figure 11.3 A rail-crossing layout that might cause a deadlock

each train approaching from a different direction will require the use of two crossings
at the same time. For example, train 1 moving from left to right requires crossings A
and B, train 2 moving from top to bottom requires crossings B and C, and so on.

Acquiring the use of multiple crossings is not an atomic operation; train 1 will first
acquire and use crossing A and then, later, crossing B. This might create a situation
where each train has a hold on its first crossing, but it’s waiting for the train ahead to
free the second crossing. Since the train tracks are set up in a way that creates a circu-
lar resource (a crossing) dependency, a deadlock situation might arise. A sample
deadlock is shown in figure 11.4.

Just as goroutines can get stuck waiting forever for a resource to be freed, a train
operator might not even know that the system is stuck in a deadlock. From that person’s
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Figure 11.4 Deadlock occurring in a rail system
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point of view, they are waiting for the train in front to move along so that they can free
the crossing. Again, we can identify that the system is in a deadlock by using a resource

allocation graph, as shown in figure 11.5.

deadlocking four trains s

resource y acquired by x

o

Figure 11.5 Resource allocation graph for a rail deadlock

The resource allocation graph clearly shows us that there is a cycle, signifying that we
have a deadlock. Each train has acquired the use of a crossing but is waiting on the
next train to release the next crossing. This is an example of a deadlock with four sep-
arate executions (the trains), though a deadlock can happen with any number greater
than one. We can easily come up with a train layout that would involve any number of
trains simply by adding more crossings and trains in a circular fashion.

In a 1971 paper titled “System Deadlocks,” Coffman et al. illustrate four conditions
that must all be present for deadlocks to occur:

Mutual exclusion—Every resource in the system is either being used by one exe-
cution or is free.

Wait for condition—Executions holding one or more resources can request more
resources.

No preemption—Resources being held by an execution cannot be taken away.
Only the execution holding the resources can release them.

Circular wait—There is a circular chain of two or more executions in which
each is blocked while waiting for a resource to be released from the next execu-
tion in the chain.

In real life, we can see plenty of other examples of deadlocks. Examples include rela-
tionship conflicts, negotiations, and road traffic. In fact, road engineers spend a great
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deal of time and effort designing systems to minimize the risks of traffic deadlocks.
Let’s now look at a more complex example of deadlocking in software.

Deadlocking in a ledger

Imagine we work at a bank and are tasked with implementing software that reads led-
ger transactions to move funds from one account to another. A transaction subtracts
the balance from a source account and adds it to a target account. For example, Sam
paying Paul $10 means that we need to

Read Sam’s account balance
Subtract $10 from Sam’s account
Read Paul’s account balance
Add $10 to Paul’s balance

Since we want to be able to handle large volumes of transactions, we will be using mul-
tiple goroutines and shared memory to process transactions concurrently. To avoid
race conditions, we can use mutexes on both the source and target accounts. This
ensures that the goroutines are not interrupted while the money is being subtracted
from one account and added to another. Figure 11.6 shows the logic of a goroutine han-
dling a ledger transaction. The procedure is to acquire first the mutex on the source
account and then the mutex on the target account, and only then to move the money.

concurrent ledger

%2 sm % Amy PI M
\ /

money transfer PN
id 1
|
1
1
1

request lock on '

®
account locked @

®-- resource y acquired by x

x requesting resource y

@ both accounts unlocked

Figure 11.6 Using mutexes to lock source and target accounts when handling ledger transactions

Separate mutex locks, one for each account, are used so that when we are processing
transactions, we only lock the accounts that are needed. Listing 11.3 shows a BankAccount
type structure containing this mutex, an identifier, and a balance. The listing also
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contains a NewBankAccount () function, which instantiates a new bank account with a
default balance of $100 and a new mutex.

Listing 11.3 Bank account type structure

package listingll 3 4

import (
n fmt n
n sync"

)

type BankAccount struct {
id string
balance int
mutex sync.Mutex

} Creates a new instance of
a bank account with $100
func NewBankAccount (id string) *BankAccount { and a new mutex
return &BankAccount {
id: id,
balance: 100,
mutex: sync.Mutex{},

Listing 11.4 shows how we can implement a Transfer () function with the logic out-
lined in figure 11.6. The function transfers money, in the amount parameter, from the
source (src) to a target (to) bank account. For logging purposes, the function also
accepts an exId parameter. This parameter represents the execution that is calling this
function. A goroutine calling this function passes a unique ID so we can log it on
the console.

Listing 11.4 Money transfer function

func (src *BankAccount) Transfer (to *BankAccount, amount int, exId int)
fmt.Printf ("%d Locking %s’s account\n", exId, src.id)
src.mutex.Lock () <—— Locks mutex on the source account
fmt.Printf ("%d Locking %s’s account\n", exId, to.id)

to.mutex.Lock ()
Locks mutex on the target account

src.balance -= amount
to.balance += amount Subtracts money from the source
to.mutex.Unlock () and adds it to the target account

src.mutex.Unlock ()
fmt.Printf ("%d Unlocked %s and %s\n", exId, src.id, to.id)

}

Unlocks both target and source accounts

We can now have a few goroutines executing randomly generated transfers, simulat-
ing a scenario where we are receiving a high volume of transactions. Listing 11.5
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creates four bank accounts and then starts four goroutines, each executing 1,000
transfers. Each goroutine generates a transfer by randomly selecting a source and tar-
get bank account. If the source and target accounts happen to be the same, another
target account is picked. Each transfer has a value of $10.

Listing 11.5 Goroutines executing randomly generated transfers

package main

import (
"fmt"
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapterll/listingll.3 4"
"math/rand"
"time"
)
func main() {
accounts := []listingll 3 4.BankAccount {
*1istingll 3 4 .NewBankAccount ("Sam"),
*1listingll 3_4.NewBankAccount ("Paul"),
*listingll 3_4.NewBankAccount ("Amy"),
*1listingll_3_4.NewBankAccount ("Mia"),
}

Selects a source and
a target account for

for i := 0; 1 < 4i i++ Executes 1,000 randomly
go func(eld int) generated transfers
for j := 1; j < 1000; J++
from, to := rand.Intn( total rand.Intn(total)

for from == to {
to = rand.Intn(total)

total := len(accounts) Creates a goroutine with a unique execution ID

Performs

the transfer
accounts [from] .Transfer (&accounts[to], 10, eId) the transfer

1
fmt.Println(eId, "COMPLETE") 4_‘ Once all the 1,000 transfers are complete,

}(d) outputs the complete message

}

time.Sleep (60 * time.Second) Waits 60 seconds before

terminating the program

Running listing 11.5, we expect to see 1,000 transfers for each of our four goroutines
printed on the console and then the message coMpLETE outputted. Unfortunately, our
program gets itself into a deadlock, and the final message is not printed:

R

w w o N .

go run ledgermutex.go
Locking Paul’s account
Locking Mia’s account
Unlocked Paul and Mia

Locking Amy’s account
Locking Sam’s account
Locking Mia’s account
Locking Paul’s account
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Unlocked Mia and Paul
Locking Paul’s account
Locking Sam’s account
Locking Amy'’s account
Locking Paul’s account
Unlocked Amy and Mia
Locking Mia’s account
Locking Paul’s account

PR R NMOWWW

NOTE Every time we run listing 11.5, we get slightly different output, not
always resulting in a deadlock. This is due to the non-deterministic nature of
concurrent executions.

From our output, we can observe that some goroutines are holding locks on some
accounts and trying to acquire locks on others. The deadlock in our example happens
between goroutines 0, 2, and 3. We can create a resource allocation graph to better
understand the deadlock (see figure 11.7).
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.
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o0

goroutine 3 /

\
\
|
1
]
1

©

resource y acquired by x

Figure 11.7 Deadlocking while processing ledger transactions

Our resource allocation graph in figure 11.7 shows that the deadlock is caused by
goroutines 0, 2, and 3 since it contains a cycle with these goroutines as nodes. It also
shows that a deadlock can affect other goroutines by blocking access to their
resources. In this example, goroutine 1 is blocked while trying to acquire a lock on
Paul’s account.
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Dealing with deadlocks

What should we do so that our programming does not suffer from deadlocks? We have
three main approaches: detection, using mechanisms that avoid deadlocks, and writ-
ing our concurrent programming in a manner to prevent deadlock scenarios. In the
following sections, we’ll explore these three options.

It’s also worth noting that there is one other approach when dealing with dead-
locks: do nothing. Some textbooks refer to this as the ostrich method, with reference to
ostriches sticking their heads in the sand when in danger (although this is a popular
misconception). Doing nothing to prevent deadlocks only makes sense if we know for
certain that in our system, deadlocks are rare, and when they do occur, the conse-
quences are not costly.

Detecting deadlocks

The first approach we can adopt is detecting deadlocks so that we can do something
about them. For example, after detecting that a deadlock has occurred, we can have an
alert that calls someone who can restart the process. Even better, we can have logic in
our code that is notified whenever there is a deadlock and performs a retry operation.

Go has some deadlock detection built in. Go’s runtime checks to see which gorou-
tine it should execute next, and if it finds that all of them are blocked while waiting
for a resource (such as a mutex), it will throw a fatal error. Unfortunately, this means
that it will only catch a deadlock if all the goroutines are blocked.

Consider listing 11.6, in which the main goroutine is waiting on a waitgroup for
the two child goroutines to finish their work. Both goroutines are repeatedly locking
mutexes A and B at the same time to increase the risk of a deadlock occurring.

Listing 11.6 Triggering Go’s deadlock detection

package main

import (
n fmt n
n sy-ncll

func lockBoth(lockl, lock2 *sync.Mutex, wg *sync.WaitGroup) ({
for i := 0; i < 10000; i++ {

lockl.Lock(); lock2.Lock() Locks and unlocks
lockl.Unlock () ; lock2.Unlock () both mutexes
}
wg.Done () <—— Marks the waitgroup as done
1
func main() {
lockA, lockB := sync.Mutex{}, sync.Mutex{}
wg := sync.WaitGroup{}
wg.Add (2)
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go lockBoth(&locka, &lockB, &wg) Starts two goroutines, locking
go lockBoth(&lockB, &lockh, &wg) both mutexes at the same time
wg.Wait ()

fmt .Println ("Done") | Waits for the goroutine to terminate
}

When running the previous listing, if a deadlock occurs, all the goroutines will be
blocked, including the main goroutine. The two goroutines will be blocked in a dead-
lock waiting for each other, and the main () goroutine will be stuck waiting on the wait-
group to be done. Here is a summary of the error message given by Go:

$ go run deadlockdetection.go
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [semacquire]:

/usr/local/go/src/sync/waitgroup.go:139 +0x80
main.main ()
/deadlockdetection.go:22 +0x13c

goroutine 18 [semacquire] :

sync. (*Mutex) .Lock (...)
/usr/local/go/src/sync/mutex.go: 90

main.lockBoth (0x1400011c008, 0x1400011c010, 0x07?)
/deadlockdetection.go:10 +0x104

goroutine 19 [semacquire] :

sync. (*Mutex) .Lock (...)
/usr/local/go/src/sync/mutex.go: 90

main.lockBoth(0x1400011c010, 0x1400011c008, 0x07?)
deadlockdetection.go:10 +0x104

exit status 2

In addition to telling us that we have a deadlock, Go outputs the details of what the
goroutines were doing when our program got stuck. In this example, we can see that
goroutines labeled 18 and 19 were both trying to lock a mutex while our main()
goroutine (labeled goroutine 1) was waiting on the waitgroup.

We can easily write a program that works around this deadlock detection mecha-
nism. Consider the next listing, in which we have modified the main () function to cre-
ate another goroutine to wait for the waitgroup. The main() goroutine then sleeps for
30 seconds, simulating doing some other work.

Listing 11.7 Going around Go’s deadlock detection

func main() {
lockA, lockB := sync.Mutex{}, sync.Mutex{}
wg := sync.WaitGroup{}
wg.Add (2)
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go lockBoth (&locka, &lockB, &wg)
go lockBoth (&lockB, &lockA, &wg)

£ . .
ge uncv(q) . i 0 Creates a goroutine that waits on
wg-raLt . , the waitgroup before outputting
L4> fmt.Println("Done waiting on waitgroup") a message
1O
time.Sleep (30 * time.Second)

fmt . Println ("Done") Outputs a message, and then
the program terminates
} prog

Since we now have the main() goroutine not really blocked but waiting on the sleep ()
function, Go’s runtime will not detect the deadlock. When a deadlock occurs, the
message "Done waiting on waitgroup" is not returned; instead, 30 seconds later, the
main() goroutine outputs the "Done" message, and the program terminates without
any deadlock errors:

$ go run deadlocknodetection.go
Done

A more complete way to detect a deadlock is to programmatically build a resource allo-
cation graph representing all the goroutines and resources as nodes connected by
edges, as you saw in figures 11.2, 11.5, and 11.7. We can then have an algorithm that
detects cycles in the graph. If the graph contains a cycle, the system is in a deadlock state.

To detect a cycle in a graph, we can modify a depth-first search algorithm to look
for cycles. If we keep track of the nodes visited while performing the traversal and we
come across a node that was already visited, we know we have a cycle.

This is the approach adopted by some other frameworks, runtimes, and systems
such as databases. The following is an error example returned by MySQL., a popular
open source database. In this case, the deadlock happens when we have two concur-
rent sessions running transactions and trying to acquire the same locks at the same
time. MySQL keeps track of all its sessions and allocated resources, and when it
detects any deadlock, it returns the following error to the clients:

ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

If our runtime or system gives us deadlock detection, we can perform various actions
whenever it detects a deadlock. One option is to terminate the executions stuck in the
deadlock. This is similar to the approach Go’s runtime takes, with the difference that
Go terminates the entire process with all the goroutines.

Another option is to return an error to the executions that are requesting the
resources whenever the request leads to a deadlock. The execution can then decide to
perform some action in response to the error, such as releasing the resources and
retrying after some time passes. This is the approach commonly adopted when using
many databases. Typically, when a database returns a deadlock error, the database cli-
ent can roll back the transaction and retry.
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Why doesn’t Go’s runtime provide full deadlock detection?

Having a mechanism to detect a deadlock by checking for any cycles in a resource allo-
cation graph is a relatively expensive operation in terms of performance. Go’s runtime
would have to maintain a resource allocation graph, and each time there was a
resource request or release, Go would have to run the cycle-check algorithm on the
graph. In an application where we have large numbers of goroutines requesting and
releasing resources, this deadlock detection check would slow things down. It would
also be unnecessary in many cases when the goroutines were not using multiple exclu-
sive resources at the same time.

Implementing full deadlock detection in database transactions doesn’t typically affect
performance. This is because the detection algorithm is fast relative to the slow data-
base operations.

11.2.2 Avoiding deadlocks

We can try to avoid deadlocks by scheduling executions in a manner that doesn’t give
rise to deadlocks. In figure 11.8, we again use the example of the train deadlock, but
this time, we show the timelines of each train when they get stuck in the deadlock
situation.

request A - Y request B~ B

] 1 moving to A using A, moving fo ]ﬂ

request B .v request C ——"\:'y

2 Emoving to B klsing B. moving o S

request C

3 ﬂ moving to C ﬁsing €, moving to D )

Y request D

request D =, request A 7"y,

U rmoving to D !using D, moving +<ﬂ

Figure 11.8 Train timelines leading to a deadlock

The system that is allocating resources (train crossings, in this example) can have
smarter logic to assign resources so as to avoid deadlocks. In our train example, we
know in advance the journey of each train and each train’s length. So, when train 1
requests crossing A, we already know that crossing B might soon be requested. When
train 2 comes along and requests crossing B, instead of assigning it and allowing the
train to proceed, we can instruct the train to stop and wait.
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The same can happen between trains 3 and 4. When train 4 comes along and asks
for crossing D, we already know that it might later request crossing A, which is cur-
rently being used by train 1. So, again, we instruct train 4 to stop and wait. However,
train 3 can proceed with no interruption, since both crossings C and D are free. No
train is currently using a crossing that might request either of them in the future.

This train scheduling example is shown in figure 11.9. Trains 1 and 3 pass through
the crossings uninterrupted while trains 2 and 4 stop and wait. Once the crossings are
free again, trains 2 and 4 can continue on their journey.

....... . -~ release By
request A~ request B, release A 3 v

] z moving fo A~ Y using A, moving fo Bl using A and Bl using B ;

request B v z, request %, release B v release C "™y,
z
2 LR R de .S(fhe_dylf(_i_(?? E’Ee.d.) ........ > Zusing B. moving to Cl using Band C ‘ using C j
requestC 7, requestD 7, release C7y release DY

3 ‘ moving to C Iusing C, moving to D k using € and ITL using D ‘

request D "y 222 request A”y,  release D v release A,
u P d_e_s_c P_w:d_ule_d _(fto_p Peld_) __________ > [ using D, moving to @T using D and A ‘ using A ]

Figure 11.9 Avoiding deadlocks in the rail-crossing scenario

The banker’s algorithm, developed by Edsger Dijkstra, is one such algorithm that can be
used to check if a resource is safe to allocate and avoid deadlock. The algorithm can
be used only if the following information is known:

The maximum number of each resource that each execution can request

What resources each execution is currently holding

The available number of each resource

DEFINITION Using this information, we can decide if the system is in a safe or
unsafe state. Our system state is only safe if there is a way to schedule our exe-
cutions in which they all reach completion (thus avoiding deadlocks), even if
they request their maximum number of resources. Otherwise, the system state
is said to be unsafe.
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The algorithm works by deciding whether to grant a request for resources. It will grant
arequest for resources only if the system will still be in a safe state after the resource is
assigned. If it leads to an unsafe state, the execution requesting the resources is sus-
pended until it is safe to grant its request.

As an example, consider a resource that can be used by multiple executions in a
limited fashion, such as a database connection pool with a fixed number of sessions.
Figure 11.10 shows both a safe and an unsafe scenario. In scenario A, if execution a
requests and is granted another database session resource, the system ends up in the
unsafe state, shown in scenario B. This is because there is no way to grant any execu-
tion its maximum number of resources. In scenario B, we only have two resources left
but executions a, b, and ¢ can request a further five, three, and five resources. There is
now an unavoidable risk of ending up in a deadlock.

# being held # being held
execufion--.. max # it can request execution ../ max ¥ it can request

(A)

safe scenario

(B)

unsafe scenario

# presources free: 3 # pesources free: 2

Figure 11.10 Examples of safe and unsafe state scenarios

Scenario A is said to still be in a safe state because there is scheduling that we can
apply that will lead all of the executions to complete. In scenario A, we are still at a
point where we can avoid a deadlock with careful resource allocation. Applying the
banker’s algorithm in scenario A of figure 11.10, we could suspend the executions a
and ¢ when they request more resources because granting the requests would lead to
unsafe states. The algorithm would only allow requests from b because granting these
would leave the system in a safe state. Once b frees enough resources, we can then
grant them to cand later to a (see figure 11.11).

# being held
execution -,/ max ¥ it can request
! e d held  max

a 2 8 a 2 8
(A)

b 5

¢ 6

# presources free: 3 # presources free: O # pesources free: 0 # pesources free: 0

Figure 11.11 Sequence of safe resource allocations
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The banker’s algorithm can also work with multiple resources, such as locking the dif-
ferent bank accounts from our ledger application, described in section 11.1.2. How-
ever, for our application, we do not need to implement the full banker’s algorithm
because we know in advance the full set of resources each goroutine will need. Since
we’re only locking two specific bank accounts, the source and target accounts, our sys-
tem can suspend the execution of a goroutine if either of its two accounts are cur-
rently being used by another goroutine.

To implement this, we can create an arbitrator whose job it is to suspend the exe-
cution of goroutines if they are requesting accounts that are currently in use. Once
the accounts become available, the arbitrator can then resume the goroutines. The
arbitrator can be implemented by using a condition variable to block the execution of
a goroutine until all accounts become available. This logic is shown in figure 11.12.

S0 account in-use flag e
A Paul $10
my 7 “ Sam D E] @ lock Pad Amy
z
@ C > Paul @ mark as
_ b ) Amy in use
condition wai
Mia 1 d\ @ unlock

account in-use flag

Paul
O |8 Dok
@ mark as
free
wct(es up to g broadcast
mark accounts é\ @
unlock

Figure 11.12 Using a condition variable to suspend goroutines when accounts are unavailable

When a goroutine requests resources that are in use from an arbitrator, the goroutine
is made to wait on a condition variable. When another goroutine frees resources, it
broadcasts so that any suspended goroutine can check to see if the required resource
has become available. In this way, we avoid deadlocking, since the resources are
locked only if they are all available.

In listing 11.8, we define the structure that will be used in the arbitrator. We also
include a function to initialize the fields in the structure. The accountsInUse map is
there to mark any accounts that are currently being used for money transfers, while
the condition variable is used to suspend executions when accounts are in use.

Listing 11.8 Building an arbitrator

type Arbitrator struct { Stores accounts with their availability

accountsInUse map [string]bool status, either free or in use
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d * .Cond .y .
) cond Teyne.ton Condition variable to be used to suspend
goroutines if accounts are not available

func NewArbitrator() *Arbitrator(
return &Arbitrator(
accountsInUse: map [string]bool{},
cond: sync.NewCond (&sync.Mutex{}),

Next, we need to implement a function that allows us to block the accounts if they are
free or to suspend the execution of the goroutine if they’re not. This is shown in list-
ing 11.9, which contains the LockaAccounts() function. The function acquires the
mutex lock associated with the condition variable and checks to see if all the accounts
are free by using the accountsInUse map. If any of the accounts are in use, the gorou-
tine calls wait () on the condition variable. This suspends the execution of the gorou-
tine and unlocks the mutex. Once the execution is resumed, the goroutine reacquires
the mutex, and this check is repeated until all the accounts are free. At this point, the
map is updated to indicate that the resources are in use, and the mutex is unlocked.

In this way, the goroutine never gets to execute the transfer logic until it has acquired
all the accounts it needs.

Listing 11.9 Suspending executions to avoid deadlocks

func (a *Arbitrator) LockAccounts(ids... string)

a.cond.L.Lock () Loops until all
for allAvailable := false; !allAvailable; { accounts are free

Locks mutex &llAvailable = true
on condition for _, id := range ids {
variable if a.accountsInUse[id] {

If an account is in use, suspends

allavailable = false the execution of the goroutine

a.cond.Wait ()

for _, id := range l‘,jls { Once all accounts are available,
} a.accountsInUse [1d] = true marks requested accounts as in use
a.cond.L.Unlock ()

} Unlocks the mutex on the condition variable

Once the goroutine is done with its transfer logic, it needs to mark the accounts as no
longer in use. Listing 11.10 shows the UnlockAccounts () function. A goroutine calling
this function holds the condition variable’s mutex, marks all required accounts as
free, and then broadcasts on the condition variable. This has the effect of waking up
any suspended goroutines, which will then go ahead and check to see if their accounts
have become available.
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Listing 11.10 Using broadcasts to resume goroutines

func (a *Arbitrator) UnlockAccounts(ids... string) ({
a.cond.L.Lock ()
Marks | for _, id := range ids { Locks mutex on the condition variable
accounts a.accountsInUse[id] = false
as free | }
a.cond.Broadcast () <+—— Broadcasts to resume any suspended goroutines
a.cond.L.Unlock ()
} Unlocks the mutex on the condition variable

We can now use these two functions in our money-transfer logic. The next listing
shows the modified Transfer () function that calls LockAccounts () before making the
money transfer and calls UnlockAccounts () afterward.

Listing 11.11 Using the arbitrator to lock accounts during transfers

func (src *BankAccount) Transfer (to *BankAccount, amount int, tellerId int,
arb *Arbitrator)

5?2":0?.32: fmt.Printf("8d Locking $¢s and $s\n", tellerId, src.id, to.id)
andtmget arb.LockAccounts (src.id, to.id)
accounts src.balance -= amount Performs the transfer once
to.balance += amount both locks are obtained

arb.UnlockAccounts (src.id, to.id)
fmt.Printf ("%d Unlocked %s and %s\n", tellerId, src.id, to.id)

}

Unlocks both accounts after transfer

Finally, we can update our main () function to create an instance of the arbitrator and
pass it to the goroutines so that it can be used during the transfers. This is shown in
the following listing.

Listing 11.12 main () function using arbitrator (imports omitted for brevity)

package main
import (...)

func main() {
accounts := []BankAccount{
*NewBankAccount ("Sam") ,
*NewBankAccount ("Paul") ,
*NewBankAccount ("Amy") ,
*NewBankAccount ("Mia")

i

t};otal .= len (accounts) QJ Creates a new arbitrator to
arb := NewArbitrator () be used in the transfers
for i := 0; 1 < 4; i++{
go func(tellerId int) {
for i := 1; i < 1000; i++ {
from, to := rand.Intn(total), rand.Intn(total)
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for from == to {
to = rand.Intn(total)
}

accounts [from] .Transfer (&accounts [to], 10, tellerId, arb)

}

fmt.Println(tellerId, "COMPLETE")
}(1)
1

time.Sleep (60 * time.Second)

Deadlock avoidance in operating systems and language runtimes

Can deadlock avoidance algorithms be implemented in operating systems or in Go’s
runtime to schedule executions in a manner that avoids deadlocks? In practice, dead-
lock avoidance algorithms, such as the banker’s algorithm, are not very useful when
it comes to using them in operating systems and language runtimes because they
require advance knowledge of the maximum number of resources that an execution
will require. This requirement is unrealistic because operating systems and runtimes
cannot be expected to know what resources each process, thread, or goroutine might
ask for in advance.

In addition, the banker’s algorithm assumes that the set of executions does not
change. This is not the case for any realistic operating system in which processes are
constantly being started up and terminated.

11.2.3 Preventing deadlocks

If we know in advance the full set of exclusive resources that our concurrent execu-
tion will use, we can use ordering to prevent deadlocks. Consider again the simple
deadlock outlined in listing 11.1. That deadlock happens because the red() and
blue () goroutines are each acquiring the mutexes in a different order. The red()
goroutine is using lock 1 and then lock 2, while blue () is using lock 2 and then lock 1.
If we change the listing so that they use the locks in the same order, as shown in the
following listing, the deadlock won’t occur.

Listing 11.13 Ordering mutexes prevents deadlocks

func red(lockl, lock2 *sync.Mutex) {

for {
fmt.Println("Red: Acquiring lockl")
lockl.Lock ()
fmt.Println("Red: Acquiring lock2")
lock2.Lock ()
fmt.Println("Red: Both locks Acquired")
lockl.Unlock(); lock2.Unlock ()

fmt.Println("Red: Locks Released")
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func blue (lockl, lock2 *sync.Mutex) {

for {
fmt.Println("Blue: Acquiring lockl")
lockl.Lock ()
fmt.Println("Blue: Acquiring lock2")
lock2.Lock ()
fmt.Println("Blue: Both locks Acquired")
lockl.Unlock () ; lock2.Unlock ()

fmt.Println("Blue: Locks Released")

The deadlock doesn’t occur because we never get in a situation where both gorou-
tines are holding different locks and requesting the other one. In this scenario, when
they both try to obtain lock 1 at the same time, only one goroutine will succeed. The
other one will be blocked until both locks are available again. This creates a situation
where a goroutine can obtain either all the locks or none.

We can apply this rule to our ledger application. Whenever we get a transaction to
execute, we can define a simple rule that specifies the order in which to acquire the
mutex locks. The rule could be that we should acquire the locks in alphabetical order
based on the account ID. For example, if we have a transaction to transfer $10 from
Mia to Amy, we should lock Amy’s account first and then Mia’s because Amy’s account
ID is alphabetically first. If, at the same time, we have another transaction that is trans-
ferring $10 from Amy to Mia, this transaction will be blocked on its first lock request,
that of Amy. This example is shown in figure 11.13.

Mia pays Amy $10
request lock on @ both accounts unlocked
first account in

alphabetical order -

-

N

= ~
request lock on >«
second accountin

dlphabetical order \‘\ account locked

® 6

money transfer

S
[}
\

@ °
request lock on first
account dlphabetically

L SE—

waits for resource y acquired by x

account 1o be free

x requesting resource y

Amy pays Mia $10

Figure 11.13 Using ordering to avoid deadlocks in the ledger application
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In our ledger application example, we have made the account IDs equivalent to the
account holder’s name for simplicity. In a real-life application, the account ID might
be numeric or a version 4 UUID, both of which can be ordered. The following listing
shows the modified transfer function for our application where we are sorting the
accounts by their IDs and then locking them in order.

Listing 11.14 Ordering accounts transfer function

func (src *BankAccount) Transfer (to *BankAccount, amount int, tellerId int) {
accounts := []*BankAccount{src, to}

Places . .
the source sort.Slice (accounts, fu?c(a, b int) bool.{ Sorts the slice containing
and target return accounts[a].id < accounts[b].id both accounts by their ID
accounts b ) ) )
into a slice fmt.Printf ("%d Locking %s’s account\n", tellerId, accounts[0].id)

accounts [0] .mutex.Lock () <+—— Locks the account with the lower order by ID
fmt.Printf ("2%d Locking %s’s account\n", tellerId, accounts[1l].id)
accounts[1] .mutex.Lock ()

src.balance -= amount Locks the account with the higher order by ID
to.balance += amount
to.mutex.Unlock ()
src.mutex.Unlock ()
fmt.Printf ("%d Unlocked %s and %s\n", tellerId, src.id, to.id)

Unlocks both accounts

We can now run the preceding function and see that the accounts are always being
locked in alphabetical order. In addition, all the goroutines complete without getting
into any deadlocks. Here’s a sample of the output:

go run ledgermutexorder.go
Locking Amy'’s account
Locking Amy'’s account
Locking Paul’s account
Unlocked Amy and Paul

w w N W

1 Locking Mia’s account
1 Locking Paul’s account

2 COMPLETE
0 COMPLETE
3 COMPLETE
1 COMPLETE
We can also use this ordering strategy to prevent deadlocks if we don’t know in
advance which exclusive resources we need to use. The idea here is not to acquire
resources that have a lower order than the ones we’re currently holding. When a situ-

ation happens that requires us to acquire a higher-order resource, we can always
release the resources being held and request them again in the correct order.
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In our ledger application, consider a goroutine that is executing a special transac-
tion, such as “Pay Paul $10 from Amy’s account; if Amy’s account lacks sufficient
funds, use Mia’s account instead." In this scenario, we can write logic into our gorou-
tine to perform the following steps:

1 Lock Amy’s account.
2 Lock Paul’s account.
3 If Amy’s balance is sufficient to cover the transfer:
a Subtract money from Amy’s account and add it to Paul’s.
b Unlock both Amy’s and Paul’s accounts.
4 Otherwise:
a Unlock both Amy’s and Paul’s accounts.
b Lock Mia’s account.
¢ Lock Paul’s account.
¢ Subtract money from Mia’s account and add it to Paul’s.

e Unlock both Mia’s and Paul’s accounts.

The important rule here is to never lock a lower-order resource if the execution holds
a higher one. In this example, we had to release Paul’s and Amy’s accounts before
locking Mia’s. This ensures that we never get into a deadlock situation.

Deadlocking with channels

It’s important to understand that deadlocks aren’t limited to the use of mutexes.
Deadlocks can occur whenever executions hold mutually exclusive resources and
request other ones—this also applies to channels. A channel’s capacity can be thought
of as a mutually exclusive resource. Goroutines can hold a channel while also trying to
use another one (by sending or receiving messages).

We can think of a channel as being a collection of read and write resources. Initially,
anon-buffered channel has no read and write resources. A read resource becomes avail-
able when another goroutine is trying to write a message. A write operation makes one
read resource available while trying to acquire a write resource. Similarly, a read oper-
ation makes one write resource available while trying to acquire one read resource.

Let’s look at an example of a deadlock involving two channels. Consider a simple
program that needs to recursively output file details, such as the filename, file size,
and last modified date of all files under a directory. One solution is to have one gorou-
tine that handles files and another that deals with directories. The directory gorou-
tine’s job is to read the directory contents and feed each file to the file handler using
a channel. This is shown in the following handleDirectories () function.

Listing 11.15 Directory handler (error handling omitted for brevity)

package main

import (
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n fmt"

n os"
"path/filepath"
n time"

func handleDirectories(dirs <-chan string, files chan<- string) ({

for fullpath := range dirs {
fmt.Println("Reading all files from", fullpath) Readﬁthecontents
Reads the full , ) } of a directory
dhednrypaﬂl filesInDir, _ := os.ReadDir (fullpath)
ﬁomtheinput fmt.Prian("Pushing %d.files from $s\n", len(filesInDir), fullpath)
topic for , file := range filesInDir {
files <- filepath.Join(fullpath, file.Name()) Feeds each item of
} the directory contents
} } onto the output topic
The reverse happens in the file handler goroutine. When the file handler meets a new
directory, it sends it to the directory handler’s channel. The file handler consumes
items from an input channel if the item is a file, and it outputs information about it,
such as the file size and last modified date. If the item is a directory, it forwards the
directory to the directory handler. This is shown in the following listing.
Listing 11.16 Files handler (error handling omitted for brevity)
func handleFiles(files chan string, dirs chan string) {
for path := range files ({ If the file is
file,  := os.Open (path) Reads the full path of a file a directory,
Reads fileInfo, _ := file.Stat() writes it to
. . if fileInfo.IsDir() ({ the output
information £mt .Printf ("Pushing $s directory\n", fileInfo.Name()) - channel
abouttheﬁle m LPrin usning -<s lrectory\n", llelnro.Name
dirs <- path
} else { <
fmt.Printf ("File %s, size: %$dMB, last modified: %s\n",
fileInfo.Name (), fileInfo.Size() / (1024 * 1024),
fileInfo.ModTime () .Format ("15:04:05")
} } If the file is not a directory, displays
file information on the console

We can now wire the two goroutines together with a main () function. In listing 11.17,
we create the two channels and pass them to the newly created file and directory han-
dler goroutines. We then feed the initial directory read from the arguments to the
directory channel. To simplify the listing (for demonstration purposes), we have the
main() goroutine sleep 60 seconds instead of using waitgroups to wait for the gorou-

tines to complete.
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Listing 11.17 main () function creating file and directory handlers

func main() {
filesChannel := make(chan string) .
dirsChannel := make (chan string) Creates files and directory channels
go handleFiles (filesChannel, dirsChannel)
go handleDirectories (dirsChannel, filesChannel) }_‘ Starts file and directory
dirsChannel <- os.Args[1] handler goroutines

time.sl 60 * time.S da .
ime.Sleep | ime. Second) Feeds the directory from the

arguments to the directory channel

When we run all the listings together on a directory that has some subdirectories, we
immediately get into a deadlock. The following example output shows the goroutines
deadlocking soon after the directory handler tries to push 26 files onto the channel,
and the file handler’s goroutine tries to send the directory named CodingInterview-
Workshop:

$ go run allfilesinfo.go ~/projects/

Reading all files from ~/projects/

Pushing 26 files from ~/projects/

File .DS_Store, size: 8.00KB, last modified: Mon Mar 13 13:50:45 2023
Pushing CodingInterviewWorkshop directory

The deadlocking problem here is shown in figure 11.14. We have created a circular
wait condition between our two goroutines. The directory handler is waiting for a file
handler’s goroutine to read from the files channel while it’s blocking any writes to
the dirs channels. The file handler is waiting for a directory handler’s goroutine to
read from the dirs channel while it’s blocking any writes to the files channel.

dirs channel

nothing consuming messages
goroutine blocked trying Zz yA "9 "9 9

to send message \W Q@

oo’
' &{ ’ - e& A 7 goroutine blocked trying
fondeFles gorouf” 2 VA to send message

I O

nothing consuming messages

hond\eDi:ec’rories()
gor‘ouﬁne

files channel

Figure 11.14 Deadlock with two channels

We might be tempted to think that we can solve the deadlock problem by having a buffer
on the file or directory channel. This, however, will only postpone the deadlock. The
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problem will still occur once we encounter a directory that has more files or subdirec-
tories than our buffer can handle.

We can also attempt to increase the number of goroutines that are running our file
handlers. After all, a typical filesystem has substantially more files than directories.
Again, however, this would only delay the problem. Once our program navigates to a
directory that contains more files than the number of goroutines executing handle-
Files(), we will again get into a deadlock situation.

We can prevent the deadlock in this scenario by removing the circular wait. An
easy way to do this is to change one of our functions so that we send on the channel by
using a newly spawned goroutine. Listing 11.18 adapts the handleDirectories() func-
tion so that it starts up a new goroutine every time it needs to push new files onto the
files channel. In this way, we have freed the goroutine from having to wait for the
channel to become available, and we have delegated the wait to another goroutine,
breaking the circular wait.

Listing 11.18 Using a separate goroutine to write on a channel

func handleDirectories(dirs <-chan string, files chan<- string) ({
for fullpath := range dirs {
fmt.Println("Reading all files from", fullpath)

filesInDir, _ := os.ReadDir (fullpath)
fmt.Printf ("Pushing %d files from $%$s\n", len(filesInDir), fullpath)
for , file := range filesInDir {

go func(fp string) {
files <- fp
} (filepath.Join (fullpath, file.Name()))

Starts new goroutine that sends
each file to the files channel

An alternative solution that doesn’t involve creating loads of separate goroutines is to
read and write from our channels at the same time by using the select statement.
Again, this will break the circular wait that causes deadlocks while using channels. We
can adopt this approach in either the directories or the files goroutines. The following
listing shows this for the handleDirectories () goroutine.

Listing 11.19 Using select to break the circular wait

func handleDirectories(dirs <-chan string, files chan<- string) ({

toPush := make([]string, 0)
appendAllFiles := func(path string) { Creates a slice to store files
fmt.Println("Reading all files from", path) thatneedtob{pushedto
Appends filesInDir, _ := os.ReadDir (path) the file handler’s channel
all files in fmt.Printf ("Pushing %d files from %s\n", len(filesInDir), path)
a directory for , £ := range filesInDir {
to the slice toPush = append(toPush, filepath.Join(path, f.Name()))

}
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for {
if len(toPush) == 0 { If there are no files to push, reads directory from
appendAllFiles (<-dirs) the input channel and adds all files in the directory

} else {
Pushes the select {
first file on case fullpath := <-dirs: Reads the next directory from the input
the slice to appendAllFiles (fullpath) channel and adds all files in the directory
the channel case files <- toPush[0]:

}

toPush = toPush[1:
oFus oPush[l:] Removes the first
file on the slice

Having our goroutine complete the receive or send operation depending on which
channel is available gets rid of the circular wait that was causing the deadlock. If the
file handler’s goroutine is busy sending a directory path on its output channel, our
directory goroutine is not blocked and can still receive the directory path. The select
statement lets us wait for two operations at the same time. The contents of a directory
are appended to a slice so that when the output channel is available, they are pushed
onto the channel.

NOTE Having deadlocks in message-passing programs is often a sign of bad
program design. Having a deadlock while using channels means that we have
programmed a circular flow of messages going through the same goroutines.
Most of the time, we can avoid possible deadlocks by designing our programs
so that the flow of messages is not circular.

11.4 Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.

1 In the following listing, incrementScores () might produce a deadlock if it’s run
concurrently with multiple goroutines. Can you change the function so that it
avoids or prevents deadlocks?

Listing 11.20 Deadlocking on player scores

type Player struct {
name string
score int
mutex sync.Mutex

}

func incrementScores (players []*Player, increment int)
for , player := range players {
player.mutex.Lock ()
}

for , player := range players {

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>


http://github.com/cutajarj/ConcurrentProgrammingWithGo

272

}

CHAPTER 11  Avoiding deadlocks

player.score += increment

for , player := range players {

}

player.mutex.Unlock ()

In listing 11.19, we changed the handleDirectories () function so that it uses the
select statement to avoid a circular wait between the two goroutines. Can you
also change the handleFiles () function from listing 11.16 in the same way? The
goroutine should use the select statement to both receive and send on the two
channels.

Summary

A deadlock is when a program has multiple executions that block indefinitely,
waiting for each other to release their respective resources.

A resource allocation graph (RAG) shows how executions are using resources
by connecting them with edges.

In an RAG, an execution requesting a resource is represented by a directed
edge from the execution to the resource.

In an RAG, an execution holding a resource is represented by a directed edge
from the resource to the execution.

When an RAG contains a cycle, it signifies that the system is in a deadlock.

A graph cycle detection algorithm can be used on the RAG to detect a deadlock.
Go’s runtime provides deadlock detection, but it only detects a deadlock if all
the goroutines are blocked.

When Go’s runtime detects a deadlock, the entire program exits with an error.
Avoiding deadlocks by using scheduling executions in a specific manner can
only be done in special cases where we know beforehand which resources will
be used.

Deadlocks can be prevented programmatically by requesting resources in a pre-
defined order.

Deadlocks can also occur in programs that are using Go channels. A channel’s
capacity can be thought of as a mutually exclusive resource.

When using channels, take care to avoid circular waits to prevent deadlocks.
With channels, circular waits can be avoided by sending or receiving using sepa-
rate goroutines, by combining channel operations with a select statement, or
by better designing programs to avoid circular message flows.
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Atomics,
spin locks, and futexes

This chapter covers

= Synchronizing with atomic variables
= Developing mutexes with spin locks
= |Improving spin locks with futexes

In previous chapters, we have used mutexes to synchronize access to shared vari-
ables amongst threads. We have also seen how to use mutexes as primitives to build
more complex concurrent tools, such as semaphores and channels. We haven’t yet
explored how these mutexes are built.

In this chapter, we’ll cover the most primitive of the synchronization tools: the
atomic variable. We’ll then explore how we can use it to build a mutex using a tech-
nique called spin locking. Later, we’ll see how we can optimize the mutex implemen-
tation by making use of a futex—an operating system call allowing us to reduce the
CPU cycles while waiting for a lock to become free. Finally, we’ll focus on how Go
implements the bundled mutex.

273
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Lock-free synchronization with atomic variables

Mutexes ensure that critical sections of our concurrent code are executed by only one
goroutine at a time. They are used to prevent race conditions. However, mutexes have
the effect of turning parts of our concurrent programming into sequential bottle-
necks. If we are just updating the value of a simple variable, such as an integer, we can
make use of an atomic variable to keep it consistent amongst goroutines without need-
ing to rely on mutexes that turn our code into a sequential block.

Sharing variables with atomic numbers

In previous chapters, we looked at an example with two goroutines, named Stingy and
Spendy, that were sharing an integer variable representing their bank account. Access
to the shared variable was protected with a mutex. Every time we wanted to update the
variable, we would acquire the mutex lock. Once we were finished with the update, we
would release it.

Atomic variables allow us to perform certain operations that execute without inter-
ruption. For example, we can add to the value of an existing shared variable in a sin-
gle atomic operation, which guarantees that concurrent add operations do not
interfere with each other. Once the operation is executed, it is fully applied to the
value of the variable without interruption. We can use atomic variables to replace
mutexes in certain scenarios.

As an example, we can easily change our Stingy and Spendy program to use these
atomic variable operations. Instead of using mutexes, we will simply call the atomic
add () operation on our shared money variable. This guarantees that the goroutines do
not produce race conditions that produce inconsistent results (see figure 12.1).

shared money variable --... .

D add-10) T

______ wo] B
L )

i T add operation returns

: R updated new value
. @100 .-

Figure 12.1 Using atomic variables on Stingy and Spendy

In Go, the atomic operations are in the sync/atomic package. All calls in this package
accept a pointer to a variable on which the atomic operation is to be performed.
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Here’s a list of functions (from the sync/atomic package) that can be applied to 32-bit
integers:

func AddInt32 (addr *int32, delta int32) (new int32)

func CompareAndSwapInt32 (addr *int32, old, new int32) (swapped bool)
func LoadInt32 (addr *int32) (val int32)

func StoreInt32 (addr *int32, wval int32)

func SwapInt32(addr *int32, new int32) (old int32)

NOTE The same atomic package contains similar operations for other data-
types, such as Booleans and unsigned integers.

For our Stingy and Spendy application, we can replace the mutex locks and instead
use the AddInt32() operation every time we want to add to or subtract from the shared
variable, as shown in the following listing. In addition to changing the addition and
subtraction to use atomic operations, we also remove the need to use any mutexes.

Listing 12.1 Stingy and Spendy using atomic operations

package main

import (

" Emen

"sync"

"sync/atomic" <—— Imports the atomic package
)

func stingy (money *int32) {
for i := 0; i < 1000000; i++ { Adds $10 atomically to the
atomic.AddInt32 (money, 10) shared money variable
1

fmt.Println ("Stingy Done")

}

func spendy (money *int32) {
for i := 0; i < 1000000; i++ { Subtracts $10 atomically from
atomic.AddInt32 (money, -10) the shared money variable
1

fmt.Println ("Spendy Done")

NOTE The Addint32() function returns the new value after we add the delta.
However, in our Stingy and Spendy goroutines, we’re not making use of the
return value.

We can modify our main() function to read the atomic variable’s value by using the
LoadInt32 () function call. The following listing uses a waitgroup to wait for the gorou-
tines to complete, and then it reads the shared money variable.
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Listing 12.2 main () function using atomic variables

func main() { Creates a 32-bit integer
money := int32(100) with a value of 100
wg := sync.WaitGroup({}
wg.Add (2)
go func() {
stingy (&money)
wg . Done () Reads the value
1O of the shared
go func() { money variable
spendy (&money) and outputs it
wg.Done () Waits on the waitgroup until on the console
1O both goroutines are done
wg.Wait ()
fmt.Println("Money in account: ", atomic.LoadInt32 (&money))

As expected, when we run listings 12.1 and 12.2 together, we don’t get any race condi-
tions, and the final value of the shared money variable is $100:

$ go run atomicstingyspendy.go
Spendy Done

Stingy Done

Money in account: 100

Performance penalty when using atomics

Why don’t we just use atomic operations for everything to eliminate the risk of sharing
a variable and accidentally forgetting to use synchronization techniques? Unfortu-
nately, there is a performance penalty to pay whenever we use these atomic variables.
Updating a variable in a normal way is quite a bit faster than updating variables with
atomic operations.

Let’slook at this performance difference. Listing 12.3 uses Go’s built-in benchmark-
ing tools to test how fast it is to update a variable atomically compared with a normal
update. In Go, we can write a benchmark unit test by prefixing the function signature
with Benchmark and making the function accept a testing.B type. Listing 12.3 shows an
example of this. In the first benchmark function, we update the total 64-bit integer
using a normal read and update operation, and in the second, we update it using an
atomic AddInté4 () operation. When using Go’s benchmark functions, bench.N is the
number of iterations that our benchmark will execute. This value changes dynamically
to ensure that the test runs for the specific duration (1 second by default).

Listing 12.3 Micro-benching the atomic addition operator

package main

import (
"sync/atomic"
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"testing"

var total = inté64(0) <—— Creates a 64-bit integer

func BenchmarkNormal (bench *testing.B) {
for i := 0; i < bench.N; i++ {

1 +=1 . .
} total + Adds to the total variable using
} the normal add operator

func BenchmarkAtomic (bench *testing.B) {

for i := 0; i < bench.N; i++ { Adds to the total variable using
atomic.AddInté64 (&total, 1) the atomic Opel’ation function

We can now run this benchmark by adding the -bench flag to the go test command.
This test will tell us the performance difference between an atomic and a normal vari-
able operation. Here’s the output:

$ go test -bench=. -count 3

goos: darwin

goarch: armé64

pkg: github.com/cutajarj/ConcurrentProgrammingWithGo/chapterl2/listingl2.3

BenchmarkNormal-10 555129141 2.158 ns/op

BenchmarkNormal-10 550122879 2.163 ns/op

BenchmarkNormal-10 555068692 2.167 ns/op

BenchmarkAtomic-10 174523189 6.865 ns/op

BenchmarkAtomic-10 175444462 6.902 ns/op

BenchmarkAtomic-10 175469658 6.869 ns/op

PASS

ok github.com/cutajarj/Concurrent ProgrammingWithGo/chapterl2/listingl2.3

9.971s

The results of our micro-benchmark indicate that the atomic addition on 64-bit inte-
gers is more than three times slower than using the normal operator. These results will
vary on different systems and architectures, but on all systems, there is a substantial
difference in performance. This is because when using atomics, we are forfeiting
many compiler and system optimizations. For example, when we access the same vari-
able repeatedly, like we do in listing 12.3, the system keeps the variable in the proces-
sor’s cache, making access to the variable faster, but it might periodically flush the
variable back to main memory, especially if it’s running out of cache space. When
using atomics, the system needs to ensure that any other execution running in paral-
lel sees the update to the variable. Thus, whenever atomic operations are used, the sys-
tem needs to maintain the cached variables consistently. This can be done by flushing
to main memory and invalidating any other caches. Having to keep various caches
consistent ends up reducing our program performance.
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12.1.3 Counting using atomic numbers

A typical application of using atomic variables is when you need to count occurrences
of the same thing from multiple executions. In chapter 3, we developed a program
that used multiple goroutines to download web pages and count the frequencies of
English alphabet letters. The total count of each letter was maintained in a shared
slice data structure. Later, in chapter 4, we added a mutex to ensure that the updates
to the shared slice were consistent.

We can change the implementation to use atomic updates every time we need to
increment the count of a letter in the slice. Figure 12.2 shows that we’re still using
memory sharing, but this time, we’re simply sending atomic updates to the variables.
The previous approach used the two steps of reading the value and then writing the
update, forcing us to use a mutex. By using an atomic update, we do not have to wait
for another goroutine to release the mutex if we need to update a count. Our gorou-
tines will run without any blocking interruptions from other goroutines. Even if two
goroutines try to apply an atomic update at exactly the same time, the two updates are
applied sequentially without conflicting.

frequency Oint | e
goroutine 30

Figure 12.2 Using atomic operations for our letter-frequency program

Listing 12.4 modifies the previous implementation of the countLetters() function by
removing the mutex lock and unlock and instead uses the atomic variable operation.
In the listing, we use the reference of the integer contained in the slice directly and
increment the count by 1 every time we encounter a letter.

Listing 12.4 Atomic variables in countLetters () (imports omitted)

package main

import (...)
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const alllLetters = "abcdefghijklmnopgrstuvwxyz"

func countLetters (url string, frequency []lint32) {

resp, _ := http.Get (url)
defer resp.Body.Close()
if resp.StatusCode != 200 {
Reads the panic ("Server returning error code: " + resp.Status)
body of the
web page L body, := io.ReadAll (resp.Body) QJ Iterates over every letter contained
for _,_b := range body { in the body of the document
c := strings.ToLower (string (b))
cIndex := strings.Index(alllLetters, c) Checks to see if the letter is
if cIndex >= 0 { part of the English alphabet
atomic.AddInt32 (&frequency[cIndex], 1)
} Uses an atomic add
} operation to increment
fmt.Println("Completed:", url) the count of the letter
1

Next, we need to slightly modify the main() function so that the slice data structure
uses 32-bit integers. This is required since atomic operations only work on specific
data types such as int32 or inté4. In addition, we need to read the results by using the
atomic function LoadInt32 (). The following listing shows a main () function with these
changes and uses a waitgroup to wait for all goroutines to complete.

Listing 12.5 main () function for atomic letter counter

func main() {
wg := sync.WaitGroup{}
wg.Add (31) QJ Creates a slice with size 26
var frequency = make([]int32, 26) of type 32-bit integers
for i := 1000; i <= 1030; i++ {
url := fmt.Sprintf ("https://rfc-editor.org/rfc/rfcéd.txt", 1)
go func() {
Waits until all countLetters (url, frequency)
goroutines are wg . Done ()
complete 1O Loads the value of each

} count from the frequency
slice and outputs them

wg.Wait () th I
for i, ¢ := range allletters { on the console
fmt.Printf ("%$c-%d ", c, atomic.LoadInt32 (&frequencyl[i]))

}

NOTE Using the LoadInt32() function is not strictly necessary in the preced-
ing listing because all the goroutines are finished by the time we read the
results. However, it’s good practice to use atomic load operations when work-
ing with atomics to ensure that we read the latest value from main memory
and not an outdated cached value.

Licensed to Khalid Rizvi <khalid.rizvi@icloud.com>



280

12.2

CHAPTER 12 Atomics, spin locks, and futexes

In chapter 3, when we ran our letter-frequency application without any mutex locks
(listings 3.2 and 3.4), it produced inconsistent results. Using the atomic variables has
the same effect as eliminating the race condition by using a mutex. However, this
time, our goroutines are not blocking each other. Here is the output when we run list-
ings 12.4 and 12.5 together:

$ go run atomiccharcounter.go
Completed: https://rfc-editor.org/rfc/rfcl018.txt

Completed: https://rfc-editor.org/rfc/rfcl002.txt

a-103445 b-23074 c-61005 d-51733 e-181360 £-33381 g-24966 h-47722 1-103262 j-
3279 k-8839 1-49958 m-40026 n-108275 0-106320 p-41404 g-3410 r-101118 s-
101040 t-136812 u-35765 v-13666 w-18259 x-4743 y-18416 z-1404

Implementing a mutex with spin locks

In the previous scenario, we modified the letter-frequency program to use atomic vari-
ables. The changes were simple because we only needed to update one variable ata time.
What about when we have an application that requires us to update multiple variables
together? In the previous chapter, we had one such scenario—the ledger application
needed to subtract money from one account and add it to another. In that example, we
used mutexes to protect multiple accounts. We have used mutexes throughout this
book, but we’ve never looked at the details of how they’re implemented. Let’s pick a dif-
ferent scenario where we must use mutexes and then use atomic operations so we can
build our own implementation of a mutex using a technique called spin locking.

Imagine that we’re developing flight-booking software for an airline. When book-
ing flights, customers want to purchase tickets for either their entire route or none at
all if parts of the route are not available. Figure 12.3 shows the problem we’re trying to
solve. When we show a user that the full route has seats available and someone else
books the last seats for part of the route in the meantime, the full purchase needs to
be canceled. Otherwise, we risk irking customers by having them buy useless tickets
that don’t take them to their intended destinations. Even worse, we might end up
stranding passengers at their destination if the outward booking was successful but the
return flight booking failed when seats filled up. The flight-booking software needs to
have controls to avoid these types of race conditions.

To implement such a booking system, we can model each flight as a separate entity
containing details such as point of origin and destination, remaining seats on the
flight, departure time, flight time, and so on. Using atomic operations to update the
remaining seats on a flight will not solve the race condition outlined in figure 12.3
because when a customer books multiple flights together, we need to ensure that we
update all the remaining seat variables on the flights booked together in an atomic
unit. Atomic variables only guarantee atomic updates to one variable at a time.

To solve this problem, we can adopt the same approach we adopted for the ledger
application, that of having a lock on each account. In this case, before adjusting each
flight, we will obtain locks on each flight that is in the customer’s booking. Listing 12.6
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seats left: 15

only one seat
left! quick!

L & ~«_ Denver %Qo‘é

Seattle ~

seats left: 1

at the same time in Denver ...

only one seat
left! quick!
Denver

LS
SR @F: heg

seats left: 1 &K

Figure 12.3 A poorly written concurrent program for a flight-booking system results in race conditions.

shows how we can model the details of each flight using a struct type. In this
implementation, we’re keeping things simple and only storing the flight’s origin and
destination and the seats left on the flight. We also use the Locker interface, which
contains just two functions: Lock () and Unlock (). This is the same interface that a mutex
implements.

Listing 12.6 Struct type representing a flight

package listingl2 6

import (
"sync"

)

type Flight struct {
Origin, Dest string
SeatsLeft int Provides an interface containing
Locker sync.Locker QJ lock and unlock functions

}

We can now develop a function that adjusts the SeatsLeft variable when given a book-
ing containing a list of flights. Listing 12.7 implements this function, returning true
only if all flights on the input slice contain enough seats for the booking request. The
implementation starts by sorting the input list of flights in alphabetical order using
the origin and destination. This ordering is done to avoid deadlocks (see chapter 11).
The function proceeds by locking all the requested flights so that the number of seats
remaining on each flight does not change while we’re updating them. Then we check
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to see if each flight contains enough seats to fulfill the requested booking. If they
all do, we reduce the seats on each flight by the number of seats the customer wants
to buy.

Listing 12.7 Flight-booking function

package listingl2 7

import (
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapterl2/listingl2.6"
"sort"

)

func Book (flights []*listingl2 6.Flight, seatsToBook int) bool {
bookable := true
sort.Slice(flights, func(a, b int) bool ({
flightA := flights[a] .Origin + flights[a] .Dest
flightB := flights[b] .Origin + flights[b] .Dest
return flightA < (£1ightB)

Sorts flights in alphabetical
order based on their origin
and destination

3]

for , £ := range flights Locks all the
f.Locker.Lock () requested flights

1

for i := 0; i < len(flights) && bookable; i++ {

Checks to see that all
the requested flights
have enough seats

if flights[i].SeatsLeft < seatsToBook {
bookable = false
}

for i := 0; i < len(flights) && bookable; i++ {
flights[i] .SeatsLeft-=seatsToBook Subtracts the seats from each
} flight only if there are enough
for , £ := range flights ({ Unlocks all the seats for the entire booking
f.Locker.Unlock () locked flights

}

return bookable  <—— Returns the result of the booking

We could use Go’s sync.mutex, as this gives us both the Lock () and uUnlock() functions,
but instead, let’s take this opportunity to implement our own sync.Locker implemen-
tation. In doing so, we’ll learn how mutexes can be implemented.

Comparing and swapping

Can any of the operations on the atomic variable help us to implement our mutex?
The compareAndswap () function can be used to check and set a flag indicating that a
resource is locked. This function works by accepting a value pointer and old and new
parameters. If the old parameter is equal to the value stored at the pointer, the value is
updated to match that of the new parameter. This operation (like all operations in the
atomic package) is atomic and thus cannot be interrupted by another execution.
Figure 12.4 shows the CompareAndswap () function when used in two scenarios. On
the left side of the figure, the value of the variable is what we expect, equal to the old
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parameter. When this happens, the value is updated to that of the new parameter, and
the function returns true. The right side of the figure shows what happens when we
call the function on a value not equal to the old parameter. In this case, the update is
not applied, and the function returns false.

compare fails

S

compare succeeds

Y
23 no update performed

= od " &,
19 “new
A o)
returns true S returns false //
p
o J R S x L7

Figure 12.4 The CompareAndSwap () function operating in two scenarios

The two scenarios can be seen in action in listing 12.8. We call the same function twice
with the same parameters. For the first call, we set the variable to have the same value
as the old parameter, and for the second call, we change the value of the variable to
be different.

Listing 12.8 Applying the CompareAndSwap () function

package main

import (

n fmt n

"sync/atomic" .
) yne/ Sets the variable to

have the same value as
. the old parameter on Changes the value

func main() { CompareAndSwap() of the variable and

number := int32(17) returns true

result := atomic.CompareAndSwapInt32 (&number, 17, 19)

fmt.Printf ("17 <- swap(17,19): result %t, value: %d\n", result, number)
number = int32(23)

result = atomic.CompareAndSwapInt32 (&number, 17, 19)
fmt.Printf ("23 <- swap(17,19): result %t, value: %d\n", result, number)

} . .
. . Compares and fails, leaving the
Sets the variable to have a different value than value of the variable unchanged,
the old parameter on CompareAndSwap() and returns false

When we run the preceding listing, the first call succeeds, updating the variable and
returning true. After we change the value of the variable, the second call fails, and the
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CompareAndSwap () function returns false, leaving the variable unchanged. Here is the
output:

$ go run atomiccompareandswap.go
17 <- swap(17,19): result true, value: 19
23 <- swap(17,19): result false, value: 23

Now that we know how the CompareAndswap () function works, let’s see how it can help
us to implement our Locker interface.

Building a mutex

We can use the CompareAndSwap () function to implement a mutex completely in user
space without having to rely on the operating system. We’ll start by using an atomic
variable as an indicator showing whether the mutex is locked. We can then use the
CompareAndSwap () function to check and update the value of the indicator whenever
we need to lock the mutex. To unlock the mutex, we can call the Store () function on
the atomic variable. Figure 12.5 shows this concept.
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Figure 12.5 Implementing spin locks

If the indicator is showing as free, CompareAndSwap (unlocked, locked) will succeed, and
the indicator will be updated to locked. If the indicator is showing as locked, the
CompareAndSwap (unlocked, locked) operation will fail, returning false. At this point, we
can keep retrying until the indicator changes value and becomes unlocked. This type
of mutex is called a spin lock.
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DEFINITION A spin lock is a type of lock in which an execution will go into a
loop to try to get hold of a lock repeatedly until the lock becomes available.

To implement our spin lock’s indicator, we can make use of an integer variable. The
integer can have a value of o it the lock is free and a value of 1 if it’s locked. In listing
12.9, we use a 32-bit integer as our indicator.

The listing also shows how we can implementboth the lock () and Unlock () functions,
fully implementing the Locker interface. In the lock () function, the CompareAndSwap ()
operation is called in a loop until the call returns successfully and the atomic variable
is updated to 1. This is the spinning part of our lock. The goroutine locking the spin lock
will continue looping until the lock is free. In the Unlock() function, we simply call
the atomic store () function to set the value of the indicator to 0, signifying that the lock
is free.

Listing 12.9 Spin lock implementation

package listingl2 9

import (
"runtime"
n SYHC'"
"sync/atomic"

) A value of 0 indicates that the
lock is free, while 1 indicates

type SpinLock int32 that the lock is locked. Loops until
CompareAndSwap()
func (s *SpinLock) Lock() { succeeds and sets
for !atomic.CompareAndSwapInt32((*int32) (s), 0, 1) { the value to 1
runtime.Gosched ()
} Calls the Go scheduler to give
} execution time to other goroutines

func (s *SpinLock) Unlock() {

tomic.StoreInt32 ((*int32 , 0 .
} atomic.storein ((xint32) (s) ) Updates the integer value to

0, marking the lock as free

func NewSpinLock () sync.Locker {
var lock SpinLock
return &lock

In our spin lock implementation, we are calling the Go scheduler every time the
goroutine finds that the lock is already being used by another goroutine. This call is
not strictly necessary, but it should give other goroutines a chance to execute and pos-
sibly unlock the spin lock. In technical speak, we can say that the goroutine is yielding
its execution.

Listing 12.9 includes a function to create our spin lock, returning a pointer to the
Locker interface. We can use this implementation in our flight-booking program. The
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following listing shows the implementation for creating a new, empty flight using the
spin locks.

Listing 12.10 Creating a new flight using spin locks

package listingl2 10

import (
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapterl2/listingl2.6"
"github.com/cutajarj/ConcurrentProgrammingWithGo/chapterl2/1istingl2.9"
)

func NewFlight (origin, dest string) *listingl2 6.Flight {
return &listingl2 6.Flight({

Origin: origin,

Dest: dest,

SeatsLeft: 200,

Locker: listingl2_ 9.NewSpinLock (), <—— Creates a new spin lock

DEFINITION  Resource contention is when an execution (such as a thread, pro-
cess, or goroutine) uses a resource in a way that blocks and slows down
another execution.

The problem with implementing mutexes using spin locks is that when we have high
resource contention, such as a goroutine hogging a lock for a long time, other execu-
tions will be wasting valuable CPU cycles while spinning and waiting for the lock to be
released. In our implementation, the goroutines will be stuck in the loop, executing
CompareAndSwap () repeatedly until another goroutine calls unlock (). This waiting in a
loop wastes valuable CPU time that could be used to execute other tasks.

Improving on spin locking

How can we improve our Locker implementation so that we don’t have to loop contin-
uously when the lock is not available? In our implementation, we called run-
time.Gosched() to provide the opportunity for other goroutines to execute instead.
This is known as yielding the execution, and in certain other languages (such as Java),
the operation is called yield().

The problem with yielding is that the runtime (or operating system) doesn’t know
that the current execution is waiting for a lock to become available. It is likely that the
execution waiting for the lock will be resumed multiple times before the lock is
released, wasting valuable CPU time. To help with this, operating systems provide a
concept known as a futex.

Locking with futexes

Futex is short for fast userspace mutex. However, this definition is misleading, as futexes
are not mutexes at all. A futex is a wait queue primitive that we can access from user
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space. It gives us the ability to suspend and awaken an execution on a specific address.
Futexes come in handy when we need to implement efficient concurrency primitives
such as mutexes, semaphores, and condition variables.

When using futexes, we might use several system calls. The names and parameters
vary on each operating system, but most operating systems provide similar functional-
ity. For simplicity’s sake, let’s assume we have two system calls named futex_

wait (address, value) and futex wake (address, count).

Implementations of futexes on different operating systems

On Linux, futex wait () and futex wake () can both be implemented with the system
call syscall (sYs futex, ...). For the wait and wake functionality, we can use the
FUTEX WAIT and FUTEX WAKE parameters respectively.

On Windows, for futex wait(), we can use the waitOnAddress() system call.
The futex wake () call can be implemented by using either WakeByAddressSingle () Or
WakeByAddressAll ().

When we call futex wait(addr, value), we specify a memory address and a value. If
the value at the memory address is equal to the specified parameter value, the execu-
tion of the caller is suspended and placed at the back of a queue. The queue parks all
the executions that have called futex_wait () on the same address value. The operat-
ing system models a different queue for each memory address value.

When we call futex_wait (addr, value) and the value of the memory address is dif-
ferent from the parameter value, the function returns immediately, and the execution
continues. These two outcomes are shown in figure 12.6.
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Figure 12.6 Calling futex wait () with two different outcomes
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The futex wake (addr, count) wakes up suspended executions (threads and processes)
that are waiting on the address specified. The operating system resumes a total of
count executions, and it picks up the executions from the front of the queue. If the
count parameter is 0, all the suspended executions are resumed.

These two functions can be used to implement a user space mutex that only
switches to the kernel when it needs to suspend the execution. This is when our
atomic variable, representing the lock, is not free. The idea is that when an execution
finds the lock marked as locked, the current execution can go to sleep by calling
futex_wait (). The kernel takes over and places the execution at the back of the futex
wait queue. When the lock becomes available again, we can call futex_wake (), and the
kernel resumes one execution from the wait queue so that it can obtain the lock. This
simple algorithm is shown in listing 12.11.

NOTE In Go, we have no access to the futex system calls. The next code list-
ings are pseudocode in Go to illustrate how runtimes can use the futexes to
implement efficient locking libraries.

Listing 12.11 Locking and unlocking using futexes, attempt #1 (pseudo Go)

package listingl2 11

import "sync/atomic"

type FutexLock int32 Tries to mark the
atomic variable as
func (f *FutexLock) Lock() ({ locked by setting it
for !atomic.CompareAndSwapInt32((*int32) (£), 0, 1) { to 1ifitis 0

futex wait ((*int32) (£), 1)
} If the lock is not available, waits, but
}

only if the lock variable has a value of 1

func (f *FutexLock) Unlock() { Updates the atomic variable to
atomic.StoreInt32 ( (*:|.nt32) ( 0) ; have a value of 0, freeing the lock

futex wakeup ((*int32)
} Wakes up 1 execution

Passing a value of 1 to futex wait () ensures we avoid a race condition where the lock
is released just after we call CompareandSwap () but before futex_wait (). If this happens,
since futex_wait () is expecting a value of 1 but finds o, it will return immediately, and
we’ll go back to check again if the lock is free.

Our mutex implementation in the previous listing is an improvement on the spin
lock implementation. When there is resource contention, the executions will not loop
needlessly, wasting CPU cycles. Instead, they will wait on a futex. They will be queued
until the lock becomes available again.

Although we have made the implementation more efficient in scenarios when we
have contention, we have slowed it down in the reverse case. When there is no conten-
tion, such as when we are using a single execution, our Unlock () function is slower
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than the spin lock version. This is because we are always making an expensive system
call in futex_wakeup (), even when no other executions are waiting on the futex.

System calls are expensive because they interrupt the current execution, switch
context to the operating system, and then, once the call completes, switch back to the
user space. Ideally, we want to find a way to avoid calling futex_wakeup () when nothing
else is waiting on the futex.

Reducing system calls

We can further improve the performance of our mutex implementation if we change
the meaning of our atomic variable that stands for the lock and instead have it tell us
if there is an execution waiting for the lock. We can take the value of 0 as meaning
unlocked, 1 as locked, and 2 as telling us that it is locked with executions waiting for
the lock. In this way, we will only call futex wakeup () when we have a value of 2, and
we’ll save time whenever there is no contention.

Listing 12.12 shows the unlocking function using this new system. In this listing, we
unlock the mutex by first updating the atomic variable to 0, and then, if its previous
value was 2, we wake up any waiting execution by calling futex_wakeup (). In this way,
we will make this system call only when it’s needed.

Listing 12.12 Waking up a futex only when it’s needed

package listingl2 12
import "sync/atomic"
type FutexLock int32

func (f *FutexLock) Unlock () { Marks the lock as unlocked,
0) storing the old value

if oldvalue == {
futex wakeup ( (*int32) (f), 1) If the old value was 2, it means
executions are waiting.

}

To implement the lock () function, we can use both the compareandswap () and Swap ()
functions working together. Figure 12.7 shows the idea. In this example, the execu-
tion on the left first does a normal CompareAndSwap () and marks the atomic variable as
locked. Once it’s done with the lock, it calls swap () with a value of 0 to unlock. Since
the swap () function returns 2, it calls futex_wakeup (). On the right, after another exe-
cution finds that the atomic variable is already locked, it swaps the value of 2, and
since the swap () function returned a non-zero value, we call futex_wait (). In this way,
while we’re marking the variable as locked with waiters (a value of 2), we also check
again that the lock didn’t become free in the meantime. This swap () step is repeated
until it returns 0, signifying that we have acquired the lock.
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lock acquired

Y

Unlock()

----- 9 there's no other waiting execution.

(o] S 0

Figure 12.7 Using futexes only when there is contention

Listing 12.13 shows the Lock () function. The function first tries to acquire the lock by
doing a normal CompareAndSwap (). If the lock is not available, it goes into a loop where
it tries to acquire the lock and at the same time marks it as locked with waiters. It does
this by using the swap() function. If the Swap () function returns a non-zero result, it
calls futex wait () to suspend the execution.

Listing 12.13 Marking the lock variable as locked with waiters

func (f *FutexLock) Lock() { Swaps 1 when the lock’s

if l!atomic.CompareAndSwapInt32 ((*int32) (f), 0, 1) { value is 0. If the swap
for atomic.SwapInt32((*int32) (£), 2) != 0 { succeeds, there is
} futex wait ((*int32) (f), 2) nothing else to do.
} ) Otherwise, tries again to obtain
the lock while marking the lock
If it’s not successful in obtaining a lock, waits with a value of 2

on a futex only when lock has a value of 2

NOTE After the execution wakes up from futex wait (), it will always set the
variable to a value of 2. This is because there is no way of knowing if there is
another execution waiting. For this reason, we play it safe and set it to 2 at the
cost of occasionally doing an unnecessary futex wakeup () system call.
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12.3.3 Go’s mutex implementation

Since we now know how to implement an efficient mutex, it’s worth investigating Go’s
mutex implementation to understand how it works. Calling a wait on a futex results in
the operating system suspending the kernel-level thread. Since Go uses a user-level
threading model, Go’s mutex does not use futexes directly, as this would result in the
underlying kernel-level thread being suspended.

The use of user-level threads in Go means that a queuing system, similar to our
implementation using futexes, can be implemented completely in the user space. Go’s
runtime queues goroutines just as the operating system would do for kernel-level
threads. This means we save time by not switching to kernel mode every time we need
to wait for a locked mutex. Whenever a goroutine requests a mutex that is already
locked, Go’s runtime can put that goroutine into a waiting queue to wait for the
mutex to become available. The runtime can then pick up another goroutine to exe-
cute. Once the mutex is unlocked, the runtime can pick up the first goroutine from
the waiting queue, resume it, and make it attempt to acquire the mutex again.

To do all of this, the implementation of sync.mutex in Go makes use of a sema-
phore. This semaphore implementation takes care of queuing goroutines in cases
when the lock is not available. This semaphore is part of the internals of Go and can-
not be accessed directly, but we can explore it to understand how it works. The source
code can be found here: https://github.com/golang/go/blob/master/src/runtime/
sema.go.

Just like our mutex, the implementation of this semaphore uses an atomic variable
to store the permits available. It first does a CompareAndSwap () on the atomic variable
representing the permit available to reduce the permits by one. When it finds that
there aren’t enough permits (acting like a locked mutex), it puts the goroutine on an
internal queue and parks the goroutine, suspending its execution. At this point, Go’s
runtime is free to pick up another goroutine from its run queues and execute it with-
out the need to switch to kernel mode.

The code in Go’s semaphore implementation is hard to follow because there is extra
functionality to make it work with Go’s runtime and deal with numerous edge cases. To
help us understand how the semaphore works, the following listing shows pseudocode
that implements a semaphore acquire function using atomic variables. The listing
shows the core functionality of the semacquirel () function in Go’s source code.

Listing 12.14 Semaphore acquire using atomic variables (pseudocode)

func semaphoreAcquire (permits *int32, queueAtTheBack bool) ({ Reads the value of
for { comic.LoadInt32 ( ts) the atomic variable
Exits the v := atomic.LoadIn permits

loop if we have if v != 0 && atomic.CompareAndSwapInt32 (permits, v, v-1) {
. break
acquired the ) If the value of the
semaphore atomic variable is not

//The queue functions will only queue and park the

. . . ) ) . 0, tries to atomicall
//goroutine if the permits atomic variable is zero ’ Y

decrease the value by 1
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if queueAtTheBack
queueAndSuspendGoroutineAtTheEnd (permits)
} else {
queueAndSuspendGoroutineInFront (permits)
}

Queues and suspends the
goroutine at the back or front
only when permits is 0

In addition, this semaphore implementation has functionality to prioritize a gorou-
tine by placing it at the front of the queue instead of at the back. This can be used
when we want to give a higher priority to a goroutine so that it’s picked up first when a
permit becomes available. We will see that this comes in handy in the full sync.mutex
implementation.

The sync.mutex acts as a wrapper to the semaphore and, in addition, adds another
level of sophistication on top with the aim of improving performance. Just like a nor-
mal spin lock, Go’s mutex attempts first to grab hold of the lock by doing a simple
CompareAndSwap () on an atomic variable. If it fails, it falls back on the semaphore to put
the goroutine to sleep until the unlock is called. In this way, it’s using the internal
semaphore to implement the functionality of the futex we saw in previous sections.
This concept is shown in figure 12.8.

sync.mutex

[ M .
l s '@\f r—>, @ acquire() semaphore [O] permits available
X L) A Zz

@ CompareAndSwap()

™ suspends goroutine

<

Y, @ relecsel) ]
_@\f o @ release semaphore []] permits available

waiters
® & add(-)

no waiters

lock released *- resumes | goroutine

< _

Figure 12.8 The internals of Go’s mutex

This is still not the full story. The sync.mutex has an additional layer of complexity—it
has two modes of operation: normal and starvation mode. In normal mode, when the
mutex is locked, goroutines are queued up normally to the back of the semaphore
queue. Go’s runtime resumes the first waiting goroutine in this queue whenever a lock

is released.
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A mutex running in normal mode has a problem: a waiting goroutine, whenever
resumed, has to compete with new arriving goroutines. These are goroutines that
have just called the lock () function and haven’t yet been placed into the waiting
queue. The newly arriving goroutines have an advantage over the resumed goroutine:
since they are already running, they are more likely to acquire the lock than a gorou-
tine that is being taken out of the queue and resumed. This can create a situation
where the first goroutine in the waiting queue is resumed in vain because by the time
it tries to perform the compareandswap (), it will find the mutex already taken by the
newly arrived goroutine. This can happen multiple times, making the mutex prone to
starvation; the goroutines will remain stuck in the queue for as long as we have newly
arriving goroutines acquiring the lock (see figure 12.9).

semaphore queue mutex unlocked ---.

/\Jt/\d>
B VA A A / &
B .

semaphore queue

mutex T

new arrival has
advantage, jumps queue
and locks mutex

Figure 12.9 Newly arriving goroutines have an advantage over waiting ones.

In the implementation of sync.mutex, when a resumed goroutine fails to acquire the
mutex, the same goroutine is suspended again, but this time it is placed at the front of
the queue. This ensures that the next time the mutex is unlocked, the goroutine is
picked up first. If this repeats for a while and the goroutine fails to acquire the lock
after a certain period (set to 1 ms), the mutex switches to starvation mode.

When the mutex is in starvation mode, the mutex acts in a fairer manner. As soon
as the mutex is unlocked, it is passed to the goroutine at the front of the waiting
queue. Newly arriving goroutines do not try to acquire the mutex, but instead go
directly to the tail of the queue and get suspended until it’s their turn. The mutex
switches back to normal mode once the queue is empty or a waiting goroutine spends
less than 1 ms acquiring the lock.
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NOTE The source for Go’s mutex can be found at https://go.dev/src/
sync/mutex.go.

The purpose of this extra complexity is to improve performance while avoiding
goroutine starvation. In normal mode, when we have low contention, the mutex is
very efficient, as goroutines can acquire the mutex quickly, without having to wait on
the queue. When we have high contention and we switch to starvation mode, the
mutex ensures that goroutines do not get stuck on the wait queue.

12.4 Exercises

NOTE Visit http://github.com/cutajarj/ConcurrentProgrammingWithGo to
see all the code solutions.

In listing 12.9, we implemented a spin lock by using integers. Can you change
this implementation so that it uses the atomic Boolean type found in the
sync/atomic Go package? Just like in listing 12.9, the implementation needs to
provide the Lock () and Unlock () functions found in sync.Locker.

Go’s mutex implementation also includes a TryLock () function. Use the previ-
ous implementation of the spin lock with an atomic Boolean to include this
extra TryLock () function. This function should attempt to acquire the mutex
and immediately return true if the mutex was acquired and false otherwise.
Here is the full function signature:

func (s *SpinLock) TryLock() bool

Atomic variables can also be used to implement spinning semaphores. Write an
implementation of a semaphore that can be initialized with a specified number
of permits. The semaphore can use atomic variables to implement the following
function signatures:

func (s *SpinSemaphore) Acquire ()

The acquire() function reduces the number of permits available by 1. If no
more permits are available, it will spin on the atomic variable until one is avail-
able:

func (s *SpinSemaphore) Release()
The Rrelease () function increments the number of permits available by 1:
func NewSpinSemaphore (permits int32) *SpinSemaphore

The NewSpinSemaphore () function creates a new semaphore with the specified
number of permits.
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Summary

Atomic variables provide the ability to perform atomic updates on various data
types, such as atomically incrementing an integer.

Atomic operations cannot be interrupted by other executions.

Applications in which multiple goroutines are updating and reading a variable
at the same time can use atomic variables instead of mutexes to avoid race
conditions.

Updating an atomic variable is slower than updating a normal variable.

Atomic variables work on only one variable at a time. If we need to protect
updates to multiple variables together, we need to use mutexes or other syn-
chronization tools.

The CompareAndswap () function atomically checks to see whether the value of
the atomic variable has a specified value and, if it does, updates the variable
with another value.

The compareandswap () function returns true only when the swap succeeds.

A spin lock is an implementation of a mutex completely in the user space.

Spin locks use a flag to indicate whether a resource is locked.

If the flag is already locked by another execution, the spin lock will repeatedly
try to use the CompareAndSwap() function to determine whether the flag is
unlocked. Once the flag indicates that the lock is free, it can then be marked as
locked again.

When there is high contention, spin locks waste CPU cycles by looping until the
lock becomes available.

Instead of endlessly looping on the atomic variable to implement a spin lock, a
futex can be used to suspend and queue the execution until the lock becomes
available.

To implement a mutex with an atomic variable and a futex, we can have the
atomic variable store three states: unlocked, locked, and locked with waiting
executions.

Go’s mutexes implement a queuing system in the user space to suspend gorou-
tines that are waiting to acquire a lock.

The mutexes in the sync package wrap around a semaphore implementation
that queues and suspends goroutines when no more permits are available.

The mutex implementation in Go switches from normal to starvation mode in
situations where newly arriving goroutines are blocking queuing goroutines
from acquiring the lock.
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