
A Compact Guide to
Retrieval Augmented Generation (RAG)
Definitions, components and basics for practitioners

eBook

Introduction: Retrieval Augmented Generation (RAG) With Vector Search ..3
LLMs and prompts ...5

Vector Search and embedding models ..6

Asking RAG About Databricks Asset Bundles (DABs) .. 8
Asking an LLM without RAG about DABs ..8

Using RAG to give an LLM access to documentation about DABs ... 10

Addressing the Shortcomings of LLMs With RAG ..11
RAG compared to LLM-only approaches ...12

RAG Use Cases ...14
Question-answering systems .. 14

Customer service .. 14

Content generation .. 14

Code assistance ... 14

RAG With Vector Search — Step by Step ...15
Data preparation: Getting an external information source into a vector database ... 15

Retrieval: Getting relevant context .. 19

Augmentation: Adding context to the user’s prompt ... 23

Generation: Producing useful output with an LLM .. 27

Evaluation: Measuring RAG performance ...30

Utilizing RAG With Other Modeling and Model Customization Methods ..31
Prompt engineering ... 31

Fine-tuning ... 32

Pretraining ... 33

RAG .. 33

Combinations of methods ..34

RAG on Databricks ...35
Lakehouse architecture ..35

Vector Search ...35

Model serving ..35

MLflow ...36

Lakehouse Monitoring ..36

Summary .. 37
GenAI training .. 37

Additional resources .. 37

Contents

2E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Retrieval Augmented Generation (RAG) With Vector Search

Retrieval augmented generation (RAG) is the process of combining a user’s prompt with relevant external

information to form a new, expanded prompt for a large language model (LLM) such as GPT-4 or Llama 2. The

expanded prompt enables the LLM to provide more relevant, timely and accurate responses.

LLMs offer powerful language understanding and generation capabilities, but they aren’t reliable information

sources and they lack access to proprietary information or any other information they weren’t trained on. They

are also prone to so-called “hallucinations” — fabricating answers instead of acknowledging that they don’t know

the correct answer.

Introduction

3E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Using RAG with an LLM helps to address some of these issues. Giving the LLM all the information it needs to

answer a question enables it to provide answers about topics it was not trained on and reduces the likelihood

of hallucinations. For example, an LLM trained on public data cannot answer any questions about a company’s

internal memos or project documents. It’s likely to hallucinate if asked about such documents. A RAG

application can supply all or parts of those documents to the LLM, giving it the context it needs to give correct

and relevant answers.

RAG can work with a variety of data sources, including text, podcasts, videos, live search results and structured

databases. In this document, we look at RAG over stored unstructured data such as PDFs, scraped web pages

or code. This guide focuses on a RAG approach in which data is retrieved from vector databases using a

process known as Vector Search.

We’ll start with some brief background information on LLMs and prompts, which form the foundation for RAG.

4E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

LLMs and prompts
LLMs are a relatively new class of machine learning algorithms that can interpret, manipulate and generate

text-based content. They’re trained on massive text datasets from diverse sources, including books, text

scraped from the internet and code repositories. During the training process, the model learns statistical

relationships between words and phrases, enabling it to generate new text using the context of text it has

already seen or generated.

LLMs are typically used via “prompting.” A prompt is text that a user provides to an LLM and that the LLM

responds to. Prompts can take many different forms. Some models are trained to complete text, so prompts

to these models take the form of incomplete statements like “Jack and Jill went up the hill to…,” which the

model then continues. Other models expect questions or instructions as prompts. These models can answer

questions such as, “What happened to Jack after Jack and Jill went up the hill?” RAG applications that enable

users to ask questions about text generally use instruction-following and question-answering LLMs.

LLMs can typically handle prompts of at least several paragraphs in length. This is important for RAG. In RAG,

the user’s question or instruction is combined with some information retrieved from an external data source,

forming the new, augmented prompt.

Next, let’s discuss where the external information is retrieved from.

5E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Vector Search and embedding models
An effective RAG application must be able to find information relevant to the user’s prompt and supply it to the

LLM. Selecting the most relevant texts from potentially millions of documents can be a significant challenge. To

address this challenge, we use a technique called Vector Search to identify text relevant to the user’s prompt.

In a RAG system with Vector Search, a special type of language model called an “embedding model” translates

each text we want to search into a numeric vector, a series of numbers that encapsulates the text’s meaning.

The same model also converts the user’s query to a comparable vector. This process makes it possible

to mathematically compare the user’s query to the text and identify those that are the most similar and the

most relevant.

Crucially, these vectors represent the meanings of the text from which they are generated. Thus, when we

search for relevant vectors, we are searching on the basis of meaning. This approach enables us to retrieve the

text most relevant to the user’s query and pass it to the LLM along with the user’s original query.

We’ve talked a lot about embeddings encoding the meanings of texts. It’s important to note that this is the

meaning according to the model. The models are trained to capture meanings and relationships that humans

care about, but the meaning captured by the embedding model may not be exactly what we want. This is one

reason why it’s essential to test and evaluate every component of a RAG application.

6E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

VECTOR DATABASES

The vectors generated by embedding models are often stored in a specialized vector database. Vector

databases are optimized for storing and retrieving vector data efficiently. Like traditional databases, vector

databases can be used to manage permissions, metadata and data integrity, ensuring secure and organized

access to information. They also tend to include update mechanisms so newly added texts are indexed and

ready to use quickly.

7E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Suppose we want to ask some questions about Databricks Asset Bundles (DABs), a new Databricks feature

that enables an infrastructure as code (IaC) approach to managing Databricks projects. We’ll use the Llama 2

LLM, which doesn’t have access to up-to-date information about DAB because it was trained before the DAB

Public Preview was released.

All the following results are actual results generated by an LLM or by the vector database.

Asking an LLM without RAG about DABs
Let’s see what happens if we ask the Llama 2-70B-chat LLM a couple questions about Databricks Asset

Bundles without providing it with any documentation. In this case, the LLM is being used alone, not in the

context of a RAG application.

Asking
RAG About
Databricks
Asset Bundles
(DABs)

In this example, the model just guessed, stating incorrectly that DAB stands for “Databricks Automation

Building blocks” and expanding on what those might be. Notably, it never indicated that it didn’t know the

answer or that it was making things up. This could represent a real issue in a customer support setting.

1
2
3
4
5

6
7
8

User: What are databricks DABs?
Bot: Databricks DABs (Databricks Automation Building blocks) are a set of pre-built, reusable components that enable
users to automate and streamline their data engineering workflows on the Databricks platform. DABs provide a way to
encapsulate and reuse common data engineering patterns, such as data ingestion, transformation, and loading, across
different use cases and projects.

DABs are designed to be modular and can be combined to create more complex workflows. They provide a way to define
repeatable data engineering tasks that can be shared across different teams and projects, improving productivity and
reducing the risk of errors.

8E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Let’s try another question.

Databricks CLI version 1.10.0 doesn’t exist and isn’t the correct answer. Furthermore, there is no databricks

assets command. In both cases, the model hallucinated an answer.

1

2
3

4
5

6
7
8

9
10

11
12

User: What version of the databricks CLI do I need in order to use Databricks Asset Bundles?

Bot: To use Databricks Asset Bundles, you need to have a Databricks CLI version that is greater than or equal to
1.10.0.

You can check your current version of the Databricks CLI by running the command `databricks --versioǹ in your
terminal or command prompt.

If you have an older version of the Databricks CLI installed, you can upgrade to the latest version by running the
command `pip install --upgrade databricks-cli` (for Python 3) or `pip install --upgrade databricks-cli<=1.10.0̀ (for
Python 2).

Alternatively, you can download the latest version of the Databricks CLI from the Databricks website and install it
manually.

Once you have installed the required version of the Databricks CLI, you can use the `databricks assets̀ command to
manage Databricks Asset Bundles.

9E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Using RAG to give an LLM access to documentation about DABs
What happens if we set up a RAG system that can search for relevant segments of the Databricks Asset

Bundles docs and provide them to the model?

We set up a RAG application by extracting text from documentation about DABs, loading it into a vector

database and setting up a retrieval system to pass relevant information to the LLM.

Now when we ask our question, the RAG application queries the vector database and retrieves the most

relevant results, which it sends along with our question to the LLM. Let’s ask the same questions as before

and see how the results differ.

Here are the new results.

In both cases, the model generated correct answers because it was given access to the information it needed.

Without RAG, the best the LLM could do was guess or admit it didn’t know. With RAG, the LLM provided the

correct answers.

1

2
3
4
5
6
7

User: What are databricks DABs?

Bot: According to the provided context, Databricks Asset Bundles (DABs) are a tool for streamlining the development
of complex data, analytics, and machine learning (ML) projects on the Databricks platform. They provide a way to
manage complex projects during active development by offering CI/CD capabilities to software development workflows
in a single, concise, and declarative YAML syntax. DABs allow users to automate project tests, deployments, and
configuration management, which can reduce errors and promote software best practices across an organization through
templated projects.

1

2
3
4
5
6
7

User: What version of the databricks CLI do I need in order to use Databricks Asset Bundles?

Bot: Databricks CLI version 0.205 or higher is required for Databricks Asset Bundles. You can confirm the version by
running the command 'databricks --version' in your terminal. Note that version 0.205.2 or higher is required. If you
haven't installed the Databricks CLI yet, you can install it by following the instructions in the Install or update
the Databricks CLI documentation. Additionally, make sure that your remote Databricks workspaces are configured
correctly, specifically that the workspace files feature is enabled, which is the case by default for Databricks
Runtime version 11.2 or later.

10E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

LLMs are capable of giving compelling and coherent answers to user prompts. They’re often able to detect

nuance, identify context and give the appearance of reasoning when answering. And because they’re trained

on vast amounts of data, they have access to enormous amounts of knowledge.

LLMs, however, are not reliable as knowledge sources. LLMs often respond with made-up answers, or

hallucinations, rather than acknowledging that they don’t know the correct answer. Furthermore, LLMs are

fundamentally limited by their training data. An LLM alone doesn’t know anything that happened after it’s

training is completed, and it lacks access to proprietary information, such as company documents, that

weren’t publicly available during training.

We can try to mitigate these problems by explicitly giving the LLM the information it needs to address the

user’s prompt. This can be as simple as copying and pasting a couple of pages of reference documents and

sending them, along with a question, to ChatGPT or another LLM. In so doing, we have augmented the original

prompt (the question) with the information needed to answer the question accurately. The additional step

of building a retrieval system, such as a vector database, allows us to automate this process and ensure

that the model has the most relevant information without requiring the user to seek it out and add it to

the prompt manually.

While implementing RAG with Vector Search involves the extra steps of data processing and managing the

generated vectors (often with a vector database), it can help to address the limitations of using LLMs alone.

RAG improves on LLM-only approaches by providing additional, specific context that the LLM can use when

formulating an answer. RAG also has benefits compared to retrieval-only systems, as the LLM can process

texts from multiple sources into a readable output tailored to the user’s prompt.

Addressing the
Shortcomings of
LLMs With RAG

11E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

RAG compared to LLM-only approaches
Let’s explore some of the benefits of RAG in more detail.

12E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

 ■ RAG applications can incorporate proprietary data. Most LLMs are trained on publicly available data.

They don’t have access to a company’s internal documents or communications. RAG allows you to

supply proprietary or domain-specific information such as internal memos, emails or design documents

to the model.

 ■ RAG applications can access up-to-date information. LLMs are generally trained at a particular point

in time and then released for use. Older models lack updated information about the state of the world or

a particular field or business. For example, if a new version of a software product is released after an LLM

was trained, it won’t be able to provide assistance specific to the new version. RAG provides a way to

supply the model with up-to-date information.

 ■ RAG can enhance the accuracy of LLM responses. LLMs alone can respond with incorrect or

fabricated information (hallucinations). They aren’t consistent or reliable information sources. An

effective RAG system can retrieve relevant and correct references and supply them to the model,

potentially reducing the occurrence of hallucinations. Outputs can include citations of original sources,

allowing for human verification.

 ■ RAG enables fine-grained data access control. LLMs alone cannot reliably provide different

responses to different users based on security or permission considerations. RAG applications,

on the other hand, can be designed to retrieve only documents that a user has permission to access.

This can enable LLMs to securely reference confidential or personal data based on the access

credentials of the system’s user.

13E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

RAG equips LLMs with context-specific information that LLMs alone either don’t possess or may not be able to

generate reliably when needed. This enables several different applications that would be difficult or impossible

using only LLMs.

Question-answering systems
RAG becomes invaluable in use cases where the aim is to “talk to documents,” such as querying HR policies

or accessing real-time financial reports. Using RAG, information can be dynamically retrieved and presented

in a conversational manner to an end user. For instance, a large e-commerce company uses Databricks for an

internal RAG application, enabling their HR team to query hundreds of employee policy documents.

Customer service
RAG systems can streamline the customer service process by providing support personnel with personalized

and more informed responses to customer queries. This can enhance customer experience, reduce response

times and increase resolution efficiency. We see this kind of “internal copilot” RAG application across many

customers seeking to improve the efficiency and effectiveness of internal workers.

Content generation
In content creation scenarios, RAG can be used to draft communications, like sales emails, by integrating the

most recent data and relevant context. This can ensure that customer outreach is both personalized and

reflects the latest information. One Databricks customer is leveraging RAG to draft email responses to inbound

sales emails, incorporating external product and customer information into responses.

Code assistance
RAG can enhance code completion and code Q&A systems by intelligently searching and retrieving

information from code bases, documentation and external libraries. This can result in improved code

generation and more relevant responses compared to LLM-only code assistants.

RAG Use Cases

14E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

RAG with Vector Search involves retrieving information using a vector database, augmenting the user’s

prompt with that information and generating a response based on the user’s prompt and information retrieved

using an LLM. In this section, we’ll review each of these steps, focusing on the processes represented in a

reasonably standard RAG system. Be aware that there are many different approaches to these steps, including

some advanced techniques that may increase performance but add complexity.

Data preparation: Getting an external information source into
a vector database

RAG With Vector
Search — Step
by Step

Before we can perform RAG with Vector Search, we need to get data — in this case, unstructured text data —

into a vector database. There are many approaches to doing this, and it’s essential to try different methods to

determine which is the most effective for your use case.

15E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Data preparation generally isn’t a one-time task, because a vector database should be regularly updated to

provide up-to-date and high-quality information. This is one of the key benefits of RAG — we can continuously

update the vector database without needing to update the LLM weights over time.

A few core steps for preparing data for RAG include the following:

PARSING THE INPUT DOCUMENTS

The raw documents may not be in a format amenable to processing for RAG with Vector Search. Images may

need to be converted to text; tables or images might require further processing and there may be extraneous

text, such as page headers or page numbers, to clean up or remove. It is often necessary to parse the raw

input documents and get them into a format — usually text — that will work with the rest of the RAG pipeline.

SPLITTING DOCUMENTS INTO CHUNKS

You typically don’t want to retrieve entire books, web pages or articles in a RAG application. Instead, split the

documents into smaller chunks so you can send more specific results to the LLM for context. “Documents” is a

general term for referring to source texts, but you can think of documents as any kind of text.

Chunk size can affect the output quality of a RAG application. If the chunks are too small, they may not include

enough context to address the user’s query. If the chunks are too large, the LLM may fail to pull out the relevant

details, focusing instead on other details included in the chunk.

There’s no one-size-fits-all solution to choosing the best chunk size. It depends on the source documents, the

LLM and the RAG application’s goals. It’s important to try different chunk sizes.

16E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

EMBEDDING THE TEXT CHUNKS

After splitting the source documents into manageable chunks, use an embedding model to convert each of

those chunks into a high-dimensional numerical vector.

An embedding model is a special kind of language model that uses its knowledge of language to generate a

numeric vector or a series of numbers, called an embedding, from a text. Embeddings encode the nuanced

and context-specific meaning of each text in numeric form. A good embedding model will know that “raining

cats and dogs” is a phrase about the weather, not a phrase about pets.

The true power of embeddings for RAG is that they can be mathematically compared to each other. We can

measure how “similar” two embeddings are, which in this context, equates to how closely the meanings of

their original texts are related. This will be especially useful later in the RAG process when we embed a user’s

prompt, compare it to the embedded texts in the vector database and identify those we think are most likely

to help the LLM provide a useful answer.

STORING AND INDEXING THE EMBEDDINGS

Embeddings are stored in a specialized kind of database known as a vector database, which is designed to

efficiently store and search for vector data like embeddings. A vector database is a type of vector store —

these terms are often used interchangeably — though “vector store” can refer to any type of vector storage

solution, not just to databases. Vector databases often incorporate update mechanisms so newly added

chunks can be searched and retrieved immediately. While such databases are not strictly necessary for RAG

or Vector Search, they often meaningfully improve RAG performance and reliability.

Having a huge number of text chunks can result in slower retrieval speeds. A common approach to maintain

performance is to index the embeddings with a vector index. A vector index is a mechanism, often part of a

vector database, that uses various algorithms to organize and map vector embeddings in a way that optimizes

search efficiency.

17E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

RECORDING METADATA

Capturing metadata along with text chunks allows us to filter results based on metadata (if applicable)

and provide detailed references along with the results. A RAG application with metadata could, for instance,

provide specific URLs or page numbers for the sources retrieved, or it could allow users to explicitly filter

by date or source.

EXAMPLE: PREPROCESSING AND EMBEDDING

In the example above, we started with two documents about Databricks Asset Bundles. To use them for RAG, we:

1. Split each document into chunks. For example, one of those chunks is:

2. Embed the chunks. We use a general-purpose embedding model called bge-large-en to turn each

chunk into a 1024-dimension numeric vector, which is basically a list of 1024 numbers. The chunk above is

translated to:

1
2
3
4
5
6
7
8

Databricks Assets Bundles are an infrastructure-as-code (IaC) approach to managing your Databricks projects. Use them
when you want to manage complex projects where multiple contributors and automation are essential, and continuous
integration and deployment (CI/CD) are a requirement. Since bundles are defined and managed through YAML templates
and files you create and maintain alongside source code, they map well to scenarios where IaC is an appropriate
approach.\n\nSome ideal scenarios for bundles include:\n\nDevelop data, analytics, and ML projects in a team-
based environment. Bundles can help you organize and manage various source files efficiently. This ensures smooth
collaboration and streamlined processes.\n\nIterate on ML problems faster. Manage ML pipeline resources (such as
training and batch inference jobs) by using ML projects that follow production best practices from the beginning.'

1
2
3
4
5

6

7

[0.0209503173828125, 0.0172576904296875, -0.003314971923828125, -0.0025310516357421875, 0.00670623779296875,
-0.00506591796875, 0.0005450248718261719, -0.049896240234375, 0.00630950927734375, 0.0003032684326171875,
-0.001049041748046875, -0.0084991455078125, 0.031585693359375, -0.0621337890625, -0.009765625, 0.017669677734375,
-0.045623779296875, 0.0022907257080078125, -0.0736083984375, 0.0286102294921875, 0.01532745361328125, 0.0298919677734375,
-0.09027099609375, -0.0207977294921875, -0.048736572265625, 0.07818603515625, 0.0648193359375,

...

-0.01076507568359375, 0.0123443603515625, -0.016693115234375, 0.0243377685546875, 0.0244903564453125]

18E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

3. Once both documents are split into chunks and embedded, we use Databricks Vector Search to store

and index the embeddings. We also record some metadata — the document title and the document

date — along with each text chunk and embedding. We’ll come back to these vectors and show how

they are used to retrieve relevant information in the next section, which focuses on retrieval.

At this phase, the data has been preprocessed and can now be queried. The next step is to retrieve the

relevant information from the vector database.

Retrieval: Getting relevant context

After preprocessing our original documents, we have a vector database storing the text chunks, embeddings

and metadata. With this in place, we can get to the first step in RAG: retrieval. In the retrieval step, the user

provides a prompt, often a question, to the RAG application. The RAG application uses the prompt to query

the database and identify the most relevant results, which can be used to augment the original prompt (the

next step).

19E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

QUERYING THE VECTOR DATABASE

We can’t directly match a user’s input, which is usually plain text, with the records in our vector database.

So, first we need to use the same embedding model that was used to embed the original text chunks to also

embed the user’s query. Once we have the embedded query, we can search the vector database to find the

most similar records.

If the database contains only a small number of records, searching might involve calculating a similarity score

for each record. For larger databases, we use vector indexes and specialized search algorithms — many of

which use approximations to improve efficiency — to speed up the process.

Once the vector database has identified the most relevant results, the texts of those results can be combined

with the user’s prompt and sent to the LLM to generate the final response. Note that the embeddings are

not “translated back” to text. Instead, the text chunks are stored with the embeddings or linked to them via

database keys, so the chunks can simply be retrieved and sent to the next step in the RAG process.

We should decide how many results our RAG system should retrieve. This, like chunk size, is worth testing and

can have a significant impact on the quality of the results. Retrieving too few records may mean missing some

relevant information, while too many results may dilute the relevant information and make it more likely for the

LLM to give irrelevant answers.

20E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

IMPROVING RETRIEVAL

The approach described above is often quite effective, but there are many more advanced techniques for

improving retrieval, including:

 ■ Hybrid search: This method blends traditional keyword search with Vector Search, which can improve

retrieval accuracy

 ■ Reranking: An additional model can be used to reorder the records initially returned by the similarity

search, ensuring the most relevant results are prioritized

 ■ Summarized text comparison: Some RAG applications don’t compare the user’s prompt directly

to raw text embeddings. Instead, they use embeddings of summarized texts for a more efficient

matching process.

 ■ Contextual chunk retrieval: It’s often beneficial to include chunks adjacent to the most relevant ones

(e.g., the paragraphs preceding and following a retrieved chunk). This approach provides more complete

context, which might aid the LLM in generating a useful response.

 ■ Prompt refinement: Some RAG applications employ a language model to refine the user’s original

prompt, crafting a new query that better captures the user’s intent for more effective searching in the

vector database

 ■ Domain-specific tuning: Utilizing embedding models that are fine-tuned for specific tasks or domains

can enhance the accuracy and relevance of the retrieved information

These approaches are worth trying if testing reveals that the retrieval component of a RAG application is often

failing to return the most relevant records from the vector database.

21E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

EXAMPLE: RETRIEVING THE INFORMATION

All the information we need about Databricks Asset Bundles is now available in the vector database. In the

retrieval phase, we have to get that information out. To do so, we:

1. Embed the prompt. We use the same embedding model we used to embed the original document

chunks to embed the query, and once again the result is a 1024-dimensional vector. So if we start with

the prompt “What are Databricks Asset Bundles?,” we end up with the embedding:

2. Use the embedding to search the vector database. We use the built-in similarity_search method

of Databricks Vector Search to query the vector database with the embedded prompt. We specify that

we want it to return the stored text and that we want the two most relevant results. From this,

the database returns:

1
2
3
4
5

6

7

[0.006649017333984375, 0.029144287109375, 0.0001398324966430664, 0.00481414794921875, -0.006526947021484375,
-0.00818634033203125, 0.029571533203125, -0.031982421875, 0.01082611083984375, 0.0025653839111328125, -0.013031005859375,
0.01155853271484375, 0.054931640625, -0.049224853515625, -8.767843246459961e-05, 0.03131103515625, -0.022613525390625,
0.0148162841796875, -0.052520751953125, 0.003780364990234375, 0.0279998779296875, 0.018585205078125, -0.081787109375,
-0.030731201171875, -0.0236053466796875, 0.0357666015625, 0.03387451171875, 0.0335693359375,

...,

0.0260467529296875, -0.0013675689697265625, 0.032318115234375, -0.002666473388671875, 0.0269012451171875, 0.0616455078125]

22E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

['What are Databricks Asset Bundles?\nJanuary 08, 2024\n\nIn this article you will learn the basics of using
Databricks Asset Bundles, a new tool for streamlining the development of complex data, analytics, and ML projects for
the Databricks platform. Bundles make it easy to manage complex projects during active development by providing CI/CD
capabilities to your software development workflow in a single concise and declarative YAML syntax. By using bundles
to automate your project's tests, deployments, and configuration management you can reduce errors while promoting
software best practices across your organization as templated projects.\n\nPreview\n\nThis feature is in Public
Preview.\n\nBundles provide a way to include metadata alongside your project's source files to specify information
including:\n\nRequired cloud infrastructure and workspace configurations.\n\nUnit and integration tests.',

 'Databricks Assets Bundles are an infrastructure-as-code (IaC) approach to managing your Databricks projects.
Use them when you want to manage complex projects where multiple contributors and automation are essential, and
continuous integration and deployment (CI/CD) are a requirement. Since bundles are defined and managed through
YAML templates and files you create and maintain alongside source code, they map well to scenarios where IaC is an
appropriate approach.\n\nSome ideal scenarios for bundles include:\n\nDevelop data, analytics, and ML projects in
a team-based environment. Bundles can help you organize and manage various source files efficiently. This ensures
smooth collaboration and streamlined processes.\n\nIterate on ML problems faster. Manage ML pipeline resources (such
as training and batch inference jobs) by using ML projects that follow production best practices from the beginning.']

Now what do we do with this information? This is where the augmentation part of RAG comes in.

Augmentation: Adding context to the user’s prompt

23E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

The retrieval component of a RAG system queries the vector database with the user’s prompt. It returns a

selection of relevant texts and, in some cases, metadata. The texts are used to augment the original prompt.

AUGMENTING THE PROMPT WITH THE RETRIEVED CONTEXT

In its simplest form, “augmentation” means combining the user’s original prompt with the retrieved texts.

This equips the model with both the prompt and the context needed to address the prompt. In practice, the

structure of the new prompt that combines the retrieved texts and the user’s prompt can impact the quality of

the final result.

For example, the final prompt usually includes an instruction on how to use the context:

Depending on the model, putting the context first might be more or less effective than putting the user’s

question first. The phrasing might also be consequential. For example, you might want to phrase the instruction

to emphasize that the model should generate its answer using only the retrieved context.

1

2

3

4

5

6

`̀ `

Based on the following context, answer the user's question. Context:

{context}

User question:

{user question}

`̀ `

24E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

CONTEXT WINDOW: HOW MUCH CONTEXT SHOULD WE PROVIDE?

LLMs are limited by a “context window,” or the amount of text they can process to generate a response.

Designing a RAG system involves ensuring that all retrieved texts and the user’s prompt fit within this window.

Overloading the system with too many texts might lead to errors or lost context.

Some LLMs boast longer context windows, capable of handling texts as lengthy as short books. But this doesn’t

mean adding more texts to the user’s prompt will always be beneficial. LLMs sometimes struggle to pay equal

attention to all parts of a lengthy context. They typically focus more effectively on the beginning and end,

potentially overlooking the middle content. This is known as the “lost in the middle” phenomenon. Hence,

even with longer context windows, careful selection and arrangement of texts are crucial for augmenting

prompts effectively.

EXAMPLE: PROMPT AUGMENTATION

Our question for the RAG application was “What are Databricks Asset Bundles?” and we retrieved the following

two chunks for context:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

['What are Databricks Asset Bundles?\nJanuary 08, 2024\n\nIn this article you will learn the basics of using
Databricks Asset Bundles, a new tool for streamlining the development of complex data, analytics, and ML projects for
the Databricks platform. Bundles make it easy to manage complex projects during active development by providing CI/CD
capabilities to your software development workflow in a single concise and declarative YAML syntax. By using bundles
to automate your project's tests, deployments, and configuration management you can reduce errors while promoting
software best practices across your organization as templated projects.\n\nPreview\n\nThis feature is in Public
Preview.\n\nBundles provide a way to include metadata alongside your project's source files to specify information
including:\n\nRequired cloud infrastructure and workspace configurations.\n\nUnit and integration tests.',

 'Databricks Assets Bundles are an infrastructure-as-code (IaC) approach to managing your Databricks projects.
Use them when you want to manage complex projects where multiple contributors and automation are essential, and
continuous integration and deployment (CI/CD) are a requirement. Since bundles are defined and managed through
YAML templates and files you create and maintain alongside source code, they map well to scenarios where IaC is an
appropriate approach.\n\nSome ideal scenarios for bundles include:\n\nDevelop data, analytics, and ML projects in
a team-based environment. Bundles can help you organize and manage various source files efficiently. This ensures
smooth collaboration and streamlined processes.\n\nIterate on ML problems faster. Manage ML pipeline resources (such
as training and batch inference jobs) by using ML projects that follow production best practices from the beginning.']

25E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

We use these and some more general instructions to construct the final prompt we send to the model:

We’ve now augmented the original prompt with the context needed to address it and with instructions on how

to use the context. The last step is to pass this along to the LLM.

1
2
3

4

5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20

You are a helpful assistant. Answer the user's question. If context is provided, you must answer based only on the
context. If no context is provided, answer based on your knowledge. If you don't know the answer, say you don't know.
Be concise.

Answer the question based on the provided context. Context:

What are Databricks Asset Bundles?\nJanuary 08, 2024\n\nIn this article you will learn the basics of using Databricks
Asset Bundles, a new tool for streamlining the development of complex data, analytics, and ML projects for the
Databricks platform. Bundles make it easy to manage complex projects during active development by providing CI/CD
capabilities to your software development workflow in a single concise and declarative YAML syntax. By using bundles
to automate your project's tests, deployments, and configuration management you can reduce errors while promoting
software best practices across your organization as templated projects.\n\nPreview\n\nThis feature is in Public
Preview.\n\nBundles provide a way to include metadata alongside your project's source files to specify information
including:\n\nRequired cloud infrastructure and workspace configurations.\n\nUnit and integration tests.

Databricks Assets Bundles are an infrastructure-as-code (IaC) approach to managing your Databricks projects. Use them
when you want to manage complex projects where multiple contributors and automation are essential, and continuous
integration and deployment (CI/CD) are a requirement. Since bundles are defined and managed through YAML templates
and files you create and maintain alongside source code, they map well to scenarios where IaC is an appropriate
approach.\n\nSome ideal scenarios for bundles include:\n\nDevelop data, analytics, and ML projects in a team-
based environment. Bundles can help you organize and manage various source files efficiently. This ensures smooth
collaboration and streamlined processes.\n\nIterate on ML problems faster. Manage ML pipeline resources (such as
training and batch inference jobs) by using ML projects that follow production best practices from the beginning.

26E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Generation: Producing useful output with an LLM

After the retrieval and augmentation steps, we have a prompt and a set of retrieved texts, formatted with

instructions on how to use the texts to answer the prompt. In the generation step of RAG, we send the

augmented prompt to an LLM, and the LLM responds with an answer.

At this stage, many approaches can be used to customize the final output and adjust the end user’s

experience with the RAG system.

27E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

PROMPT ENGINEERING

As noted in the previous section, we can include instructions on how the model should use the retrieved

context (e.g., “answer only based on the provided context”). We can provide similar instructions to the LLM

to guide its output tone and structure. We might, for example, specify that the answers should be very polite

or should be phrased in a short and direct manner. We could also instruct the model to refuse to answer

questions about a competitor’s products.

PREPROCESSING AND POSTPROCESSING

Some LLMs are quite good at following instructions, but none are completely reliable. Some programmatic

preprocessing or postprocessing can be used to structure the output in a certain way or to guarantee that

certain types of responses are or are not generated. For example, we could append a list of links to the most

relevant context sources at the end of each response, or we could automatically respond with a polite refusal

to answer if specific words or phrases are included in the user’s prompt.

CONVERSATION HISTORY

Another important consideration is whether the RAG system should have a memory. In other words, can it

engage in multi-turn conversations in which it remembers earlier questions and responses? A conversational

AI system can give users the opportunity to refine their questions and ask follow-ups, but it adds some

complexity. Different models and frameworks use different approaches to storing conversation histories, and

including conversation histories may require more careful management of context length.

28E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

EXAMPLE: RAG OUTPUT

After we generate our augmented prompt, it is sent to the LLM. This is the response:

One way to enhance the generation step of RAG is to add multi-turn conversation ability. This allows us to ask

a follow-up question that refers back to the original question and answer:

1

2
3
4
5
6
7
8

User: What are Databricks Asset Bundles?

Bot: Databricks Asset Bundles are a way to manage complex data, analytics, and machine learning projects on the
Databricks platform using an infrastructure-as-code (IaC) approach. They provide a way to include metadata alongside
project source files to specify information such as required cloud infrastructure and workspace configurations, unit
and integration tests, and CI/CD capabilities. Bundles are defined and managed through YAML templates and files,
making it easier to manage complex projects with multiple contributors and automation, and promote software best
practices across an organization. They are particularly useful in scenarios such as team-based development, iterating
on machine learning problems, and managing ML pipeline resources.

1

2
3
4
5

User: What version of the CLI do I need in order to use them?

Bot: According to the provided context, you need Databricks CLI version 0.205.2 or higher to use Databricks Asset
Bundles. You can check the version of the Databricks CLI you are currently using by running the command `databricks
--versioǹ in your terminal. If you don't have the required version, you can install or update the Databricks CLI
following the instructions provided in the article.

29E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Evaluation: Measuring RAG performance
Because a RAG application has many adjustable variables that may affect the retrieval or generation quality, it’s

important to have ways to measure its performance.

RAG evaluation is an area of active research and experimentation. It’s one of the most challenging parts of

setting up a RAG application, and there’s no universal solution. As we’ve discussed, RAG comprises multiple

steps, and it’s often helpful to evaluate these steps separately. A great LLM won’t be able to compensate for a

poor retrieval pipeline, and the best retrieval system can’t overcome the limitations of a weak model.

At its core, RAG evaluations involve generating prompts, identifying the relevant records that should be

retrieved to address each prompt and generating good answers to those questions. Running the evaluations

means passing each evaluation prompt to the RAG application and comparing the desired retrievals and

responses to the actual retrievals and responses.

RAG evaluations often rely on other LLMs to judge response quality. For example, RAG responses are often

evaluated on their “faithfulness” to the provided context. A judge LLM examines the context and the end

response from a RAG application and provides a rating on how true the response is to the context.

30E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

At this point, you should have a good idea of what RAG is and how it compares to using an LLM alone. However,

RAG isn’t the only approach to customizing LLMs or equipping them with new information. In this section, we

explain how RAG fits into the broader context of LLM customization approaches.

All of the following approaches involve tradeoffs between cost, complexity and expressive power. “Cost” refers

simply to the financial cost of setting up and using a given model or system. “Complexity” means the intricacy

or technical difficulty, which may be reflected in the time, effort and expertise required. And “expressiveness”

refers to the model’s or system’s ability to generate diverse, meaningful and useful responses tailored to your

specific needs.

These methods are not mutually exclusive and should be used in combination to maximize task- or domain-

specific performance.

Prompt engineering
Prompt engineering is the process of designing prompts or prompt templates that guide a model’s outputs

toward a desired result. It’s typically the least complex approach and entails the lowest up-front costs

because it doesn’t involve changing the model’s weights or working with any external data systems.

The cost associated with prompt engineering will vary. Large and highly capable models are often required in

order to understand and follow complex prompts. These models often entail higher serving costs or per-token

costs than smaller, less-capable models. That said, prompt engineering doesn’t come with the high up-front

costs of training a model or setting up the infrastructure for a production RAG system.

The expressiveness obtainable via prompt engineering is fundamentally limited by the underlying model.

Prompt engineering offers a good alternative to RAG in cases where there’s no need for proprietary

or recent knowledge.

Utilizing RAG
With Other
Modeling
and Model
Customization
Methods

31E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Fine-tuning
Fine-tuning is the process of adapting a pretrained generative model to a new domain or task by training all or

some of the model’s weights (or, in the case of adapter methods, new weights) on new data. The primary goal

of fine-tuning is to enhance the model’s expressiveness and accuracy in handling domain-specific queries

or tasks. For example, a language model might be fine-tuned to follow instructions based on a large dataset

of instruction and response data. Or a model could be fine-tuned on a collection of medical texts in order to

better understand medical jargon.

The cost and complexity of this process can vary greatly, depending on factors such as the size of the model,

the quantity and specificity of the training data and the nature of the task. Fine-tuning can sometimes be

used to reduce costs. A smaller model fine-tuned on a specific task can replace a larger and more expensive

generalist model.

FINE-TUNING AND RAG

While RAG excels in enhancing a model’s responses with additional, relevant information, it doesn’t

fundamentally change the model’s behavior or linguistic style. Any limitations or quirks of the base model will

still be present in a RAG system, while fine-tuning can durably change the model’s behavior in ways that are

less constrained by the base model’s behavior.

On the other hand, fine-tuning doesn’t include a straightforward mechanism for rapidly updating the model

with new information, and it may not be as reliable as RAG for generating relevant responses, even if the model

was fine-tuned on relevant data.

32E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Pretraining
Pretraining is the process of training an LLM from scratch. This is the highest-cost and highest-complexity

approach, but it offers the greatest potential control over the model’s expressiveness.

Pretraining a model gives you control over all the data that goes into it. This might mean including proprietary

data not available to off-the-shelf models or excluding data from sources not deemed trustworthy, reliable or

legally acceptable in a given business context. For example, you may decide not to include Reddit data when

pretraining a model to give legal or financial advice.

Consider pretraining when it is essential to understand and control all the data a model is trained on or when

you need a domain-specific model that meets certain evaluation or performance requirements not available in

existing models.

RAG
RAG is more complex than prompt engineering alone. It requires setting up a retrieval system (i.e., a vector

database) and integrating the retrieved context with the prompt.

If access to external information is the goal, RAG offers many benefits:

 ■ Ability to add and remove data sources without changing the model

 ■ Control over who has permission to access certain data sources

 ■ Flexibility to compare different LLMs without needing to train them on new data

The cost and complexity of a RAG system depends on the choice of model and on the scale and structure of

the retrieval system. As with any database, a vector database that guarantees low-latency retrieval over a vast

number of records will be more costly than a higher-latency, smaller-scale system. But a RAG system alone will

not entail the up-front cost and complexity of pretraining or fine-tuning a model.

The expressiveness of a RAG system, though limited by the choice of LLM, can still be quite high given its

access to contextually relevant external data sources.

33E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Combinations of methods
These methods can and often should be used together. RAG and prompt engineering are already inseparable

— merging the user’s prompt with the external data sources is a form of prompt engineering.

Using a custom pretrained or fine-tuned model in a RAG system can improve the RAG system by offering

fine-grained control over the model’s data, the response tone and structure and the aptitude with

domain-specific language.

In general, it’s good practice to start with less costly, less complex methods and evaluate their performance.

Moving to more complex methods or combinations of methods is a good option when the simpler methods

prove inadequate for their tasks.

34E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

While it’s possible to set up a quick RAG demo on your laptop in a few minutes, a production-ready RAG

system requires careful orchestration of several different components in a reliable, scalable and secure

manner. Databricks offers an end-to-end RAG solution combining data management and governance with a

vector database, model serving and other tools for managing and monitoring AI processes.

Lakehouse architecture
RAG applications in Databricks are built on lakehouse architecture. The lakehouse centralizes the management

of structured data, unstructured data and AI assets under a common governance scheme, Unity Catalog.

Organizations can build cloud-agnostic RAG systems on proprietary data with sophisticated security, lineage

tracking and monitoring.

Vector Search
Databricks Vector Search enables you to create an auto-updating vector database from Delta tables,

managed via Databricks Unity Catalog and searchable using a simple API. Databricks Vector Search scales

automatically to handle different numbers of documents and queries.

Model serving
Databricks Model Serving provides a number of different ways to host and use LLMs and embedding models

for RAG. Databricks Model Serving supports custom models via MLflow; governance of external models such as

SaaS models from OpenAI, Anthropic or Google; and state-of-the-art open source models from the Databricks

Foundation Model APIs, which offer both pay-per-token and provisioned throughput offerings.

RAG on
Databricks

35E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

MLflow
MLflow is an open source end-to-end model lifecycle management platform. It includes a variety of tools

useful for implementing and improving RAG systems, including an evaluation framework and a prompt

engineering UI.

Lakehouse Monitoring
Databricks Lakehouse Monitoring provides a centralized monitoring solution for both model and data

monitoring. It allows you to keep track of various statistical properties for all your data sources as well as to

monitor the performance of your served models.

36E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

Whether you’re looking to disrupt traditional industries, enhance creative endeavors or solve complex

problems in novel ways, the potential applications of generative AI are limited only by your imagination and

willingness to experiment. Remember, every significant advancement in this field began with a simple idea and

the courage to explore it further.

For those seeking more knowledge or who are simply curious about the latest developments in the realm of

generative AI, we’ve provided some resources on training, demos and product information.

GenAI training
 ■ Generative AI engineer learning pathway: Take self-paced, on-demand and instructor-led courses on

generative AI

 ■ Free LLM course (edX): An in-depth course to learn GenAI and LLMs inside and out

 ■ GenAI webinar: Learn how to take control of your GenAI app performance, privacy and cost, and drive

value with generative AI

Additional resources
 ■ The Big Book of MLOps: A deep dive into the architectures and technologies behind MLOps — including

LLMs and GenAI

 ■ Mosaic AI: Product page covering the features of Mosaic AI within Databricks

 ■ The Big Book of Generative AI: Best practices for building production-quality GenAI applications

Summary

37E B O O K : A C O M P A C T G U I D E T O R E T R I E V A L A U G M E N T E D G E N E R A T I O N (R A G)

© Databricks 2024. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

About Databricks

Databricks is the data and AI company. More than 10,000 organizations worldwide —

including Comcast, Condé Nast, Grammarly and over 50% of the Fortune 500 — rely

on the Databricks Data Intelligence Platform to unify and democratize data, analytics

and AI. Databricks is headquartered in San Francisco, with offices around the globe,

and was founded by the original creators of Lakehouse, Apache Spark™, Delta Lake

and MLflow. To learn more, follow Databricks on LinkedIn, X and Facebook.

Build Production-Quality GenAI Applications — See How
Create high-quality generative AI applications and ensure your output is accurate,

governed and safe. See why over 10,000 organizations worldwide rely on Databricks for

all their workloads from BI to AI — test-drive the full Databricks Platform free for 14 days.

Try Databricks free Take Generative AI Fundamentals On-Demand Training

